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ABSTRACT

The concept of IoT (internet of things) assumes a continuous increase in the number of devices, which 
raises the problem of classifying them for different purposes. Based on their semantic characteristics, 
meaning, functionality, or domain of usage, the system classes have been identified so far. This study’s 
purpose is to identify device classes based on traffic flow characteristics such as the coefficient of 
variation of the received and sent data ratio. Such specified classes can combine devices based on 
behavior predictability and can serve as the basis for the creation of network management or network 
anomaly detection classification models. Four generic classes of IoT devices were defined using the 
classification of the coefficient of variation method.
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INTRODUCTION

The Internet of Things is a term defined by numerous sources of professional and scientific research 
literature. The idea of the IoT concept was first defined by Kevin Ashton, co-owner and CEO of 
Auto-ID Center in 1999. With further development and increase of application, the concept of IoT was 
defined by numerous professional standardization bodies, organizations and associations in the field 
of IK technologies, as well as numerous researchers. The IoT concept can be viewed by expanding 
existing human-application interaction through a new dimension of integration and communication 
represented by objects. The IoT concept’s potential enables its implementation and application in 
various areas covering society, the environment, and industry.
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According to the forecasts presented in Statista, (2018a), at the end of 2020, approximately 31 
billion IoT devices where available globally, and until 2025 there will be 75 billion IoT devices. By 
doing so, 41% or 12.86 million IoT devices will be installed within the smart home (SH) concept 
Statista, (2018)b. Restrictions on IoT devices in general, and therefore the SHIoT (Smart Home IoT) 
devices are described in the research Ivan Cvitić et al. (2016), which include hardware constraints, 
demands for high autonomy, and low production costs, thus reducing the possibility of implementing 
advanced protection methods and increasing the risk of the many threats shown in Ali and Awad (2018). 
These device limitations in the IoT concept increase the risk of carrying out numerous cyberattacks 
on IoT devices or using IoT devices to pierce attacks on other targets.

Traffic generated by SHIoT devices or MTC (Machine Type Communication) traffic differs 
from traffic generated by conventional HTC (Human Type Communication) traffic, as shown in 
the survey Al-Shammari et al. (2018). Although SHIoT devices are characterized by heterogeneity, 
MTC traffic is homogeneous to HTC traffic, meaning that devices of the same or similar purpose 
behave approximately equally or generate similar traffic Laner et al., (2013). Current research focuses 
mainly on creating device behavioral patterns (fingerprinting) specific for an individual device 
or classifying them by functionality or purpose. Such an approach is not adequate nor efficient 
in dynamic conditions such as IoT where new devices are developed and put in the market daily 
with new features, functionalities, and purpose. More generic classes need to be defined in such an 
environment, independent of devices’ semantic characteristics and based solely on network traffic 
features that they are generating.

This research’s underlying hypothesis is that SHIoT devices can differentiate by traffic flow 
characteristics such as the ratio of received and sent data and that such features can be utilized to 
define IoT devices’ classes. Such an approach is vital for the future development of cyberattack 
detection and mitigation systems tailored for IoT concept. This kind of classes definition will be 
independent of semantic categorization and functionality based classification approach, which will 
be applicable to IoT devices developed in the future. In that way, novel systems for traffic anomaly 
detection based on machine learning can be developed because it will be possible to define normal 
behavior profiles for each defined class of IoT device as a foundation for the detection of individual 
IoT device anomalous behavior.

The rest of this paper is organized as follows: subsection „Related research“ deals with the current 
research, their shortcoming, and the positioning of our research according to previous findings. 
Subsection „Research methodology“ explains the methodology and methods used in the research. The 
second section gives an overview of the smart home environment, used communication technology, 
and device heterogeneity. Through the same section, some of the most important cybersecurity 
challenges related to IoT concept are addressed. The third section represents the data collection 
process, including used device description, descriptive statistics of collected data, and feature extraction 
process explanations. In the fourth section classes of IoT devices was defined based on the coefficient 
of variation of device’s upload and download traffic ratio. The fifth section discusses the presented 
approach for IoT devices class definition and feature calculations. In the final, sixth, section we gave 
the conclusion, final remarks, and future research direction based on this research findings.

Related Research
Identifying devices in the IoT environment is an important step. It represents the basis for activities 
related to the security in which such devices exist (detecting unauthorized activity, detecting 
unauthorized devices within the network, detecting malicious code). Meidan et al. (2017) seeks to 
detect unauthorized devices connected to the monitored network based on device identification. A 
total of 11 IoT devices have been used for this purpose, classified according to the device’s semantic 
characteristics ie their purpose (child monitoring devices, motion sensors, refrigerators, safety cameras, 
smoke sensors, sockets, thermostats, televisions, clocks). A similar way of classification, based on the 
device’s semantic characteristics, is also shown in the research by Bai et al. (2018) in which authors 
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use a secondary data set collected Sivanathan et al. (2017). The research covered 15 devices classified 
into four categories regarding each device’s purpose (hubs, electronic devices, cameras, and sockets). 
Specific features of MTC traffic were used to address numerous problems in the communications 
network. Research Meidan et al. (2018) monitors the impact of MTC traffic on QoS when integrating 
with HTC traffic in the LTE communications network. Identification and classification of IoT 
devices in smart cities and campuses and smart circles using MTC traffic characteristics are shown 
in Sivanathan et al. (2017, 2019). Mentioned research and research (Shahid et al., 2019) seeks to 
use machine learning methods for identifying individual IoT devices in the network, developing and 
learning classification models using data generated by those IoT devices. One of the most common 
reasons for IoT device identification based on traffic features is to detect deviance of devices from 
their normal behavior. Salman et al. (2019) developed a classification model for IoT devices where 
every class represents an individual device. Although such a model can identify individual IoT devices 
and deviations in behavior, such an approach is not applicable on new and previously unseen devices. 
Authors Bikmukhamedov and Nadeev (2019) used machine learning methods to categorize traffic 
flows generated by IoT devices using traffic flow features. Such an approach differs from previous 
ones by not focusing only on individual devices but staying unclear how this kind of categorization 
can be used and for what purpose.

The current research shows that approaches to identifying and classification IoT devices are based 
mainly on the device’s semantic features. The device classes are defined according to the mode of 
application of such devices or their primary functionalities Biswas et al., (2018). The lack of such 
an approach to defining device classes can be viewed from a smart home environment’s dynamism. 
Therefore, the SHIoT device class needs to be defined to be applicable to upcoming SHIoT devices 
that will differ from the currently available devices according to their functionality and application.

This research aims to define the class of IoT devices based solely on the characteristics of traffic 
flows generated by such devices following the conclusions presented by I. Cvitić et al. (2019). Such 
defined classes will be independent of the device’s semantic characteristics and functionality, which 
is why its application is also possible on new IoT devices that will be introduced in the future.

Research Methodology
To carry out this research, primary and secondary data were collected. To collect primary data, a 
laboratory environment was established in the Laboratory for Security and Forensic Analysis of the 
Information and Communication System of the Department for Information and Communication 
Traffic of the Faculty of Transport and Traffic Sciences of the University of Zagreb. Secondary data 
used in this research were collected for research (Hamza et al., 2018; Hamza et al., 2018; Sivanathan 
et al., 2019). The data collected represent the traffic generated by the IoT devices covered by this 
research. To define the device’s classes, mathematical and statistical methods and Stata software 
were used for data processing and interpretation of the results of the research.

SMART HOME ENVIRONMENT

The smart home is a concept of application of ubiquitous computing in the household environment. 
According to Alam et al. (2012), several synonyms are accepted in the scientific research and 
professional literature for smart home, such as home automation, intelligent home, adaptive home, 
and the like.

European standard EN 15232 and the Energy Performance of Buildings Directive 2010/31/EU, 
which is in line with Directive 2009/72/EC, as well as the Energy Plan for 2050, promote the adoption 
of smart home technologies to reduce energy consumption in the housing sector Lobaccaro et al. 
(2016). According to Bugeja et al. (2016), the smart home environment can be considered as a set 
of SHIoT devices, communication technologies and services. SHIoT devices are hardware units that 
combine sensors, actuators. Communication technologies enable the connectivity of SHIoT devices 
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into a single communication network, and the services provide various functionalities to end users 
through the use of application solutions Hamidi and Jahanshahifard (2018).

Although the emergence and rapid expansion of broadband Internet access in the late 1990s 
provided the technological foundation for the development of home networks, the smart home concept 
began to be implemented in the second half of the 2000s. The development and popularization of 
smartphones has contributed to this. After 2010, this concept began to develop rapidly and was 
based on a combination of IoT and artificial intelligence resulting in a situation-and context-aware 
environment (Yang et al., 2018).

A key aspect of a smart home’s functioning as a backbone is developing a reliable and 
straightforward communication architecture. From this perspective, the smart home can be seen as 
a concentrator and disseminator of information and services to cover broad functional areas in the 
home area. The function of a smart home is not only related to communication between some aspects 
within the physical home in order to improve the level of comfort and quality of life but also implies 
performing the role of a gateway or interface to the public communications network to communicate 
with other concepts such as smart energy network and smart city to exchange information (Godina 
et al., 2015).

Communication Technologies Used in a Smart Home Environment
Devices in a smart home environment can achieve certain functionalities by local control. However, 
they achieve full functionalities by remote control, which requires SHIoT devices’ connection to the 
local and public communication network Ivan Cvitić et al. (2018). The communication infrastructure 
used to connect SHIoT devices is also called HAN (Home Area Network). Depending on the area 
of operation, HAN includes LAN (Local Area Network) and PAN (Personal Area Network) or BAN 
(Body Area Network) communication networks and related communication technologies. Most of 
the communication technologies used in the HAN network were developed before the advent of the 
smart home environment, and most SHIoT device manufacturers use technologies such as Ethernet 
(IEEE 802.3), Wi-Fi (IEEE 802.11), ZigBee (IEEE 802.15.4), Z-Wave or Bluetooth (IEEE 802.15.1) 
to achieve their network communication (Godina et al., 2015). According to Nobuyuki Hayashi, 
(2017), these technologies currently represent the basis of communication in the HAN network, 
which will continue after 2020.

The application of particular communication technology will depend on the SHIoT device’s 
performance, purpose, and functionalities it supports. So SHIoT devices (e.g. smart thermostat) that 
use a battery as an energy source will also use energy-efficient communication technology (ZigBee or 
Z-Wave) and will communicate via IoT hubs. An IoT hub is a network device used as an intermediary 
in communication between two different communication technologies. This example will allow a 

Figure 1. Scenarios for connecting SHIoT devices in a smart home environment; a) with IoT concentrator and wired communication 
and b) without IoT concentrator and exclusively by wireless communication
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device using ZigBee or Z-Wave technology to communicate with a wireless access point that uses 
Wi-Fi technology. SHIoT devices that are connected to an uninterruptible power supply (smart sockets, 
smart light bulbs) will most often also use Wi-Fi communication technology.

Bluetooth technology will be used in the scenario of local connection and management of SHIoT 
devices. An example of such a scenario is a smart lock that detects the user’s proximity using Bluetooth 
technology and performs the appropriate activity (e.g. unlocking the door). Due to SHIoT devices’ 
dimensions and their potential number in the smart home environment, wireless communication 
technologies were primarily used due to the convenience and ease of connecting devices in the HAN 
network. However, individual manufacturers in specific segments of HAN infrastructure also use wired 
connection method (ethernet). Figure 1 shows two scenarios for connecting smart lighting fixtures. 
Part A of the same figure shows the IoT concentrator’s application and its wired communication with 
the network switch, while the communication between the IoT concentrator, the lighting device, and 
the remote control is performed using ZigBee technology.

The purpose of an IoT hub is to connect multiple devices from the same manufacturer through 
the same hub. This approach aimed to create a homogeneous smart home environment where SHIoT 
devices from the same manufacturer would provide all functionalities. It is the result of competition 
and gaining a competitive advantage. However, according to Blumtritt (2019), the mentioned trend 
is declining, and the integration of such devices into the gateway device is expected in the future. 
Therefore, in the future, a more realistic connectivity scenario is shown in Figure 1b where a SHIoT 
device connects to a wireless access point without the need for intermediary communication devices.

Security Aspects of the Smart Home Concept Application
Various authors explore security challenges that relate predominantly to the comprehensive area 
of the IoT concept. According to Jing et al. (2014), the IoT concept inherits the security challenges 
present in sensor networks, mobile communication networks, and the Internet. However, it additionally 
possesses security challenges related to privacy, authentication, access control, and accessibility, 
which are highlighted by numerous relevant researches (Adat & Gupta, 2018; Čolaković & Hadzialic, 
2018; Cvitić et al., 2016; Gupta et al., 2020; Jing et al., 2014; Pishva, 2017; Polk & Turner, 2014; 
Sethi & Sarangi, 2017). Cherdantseva and Hilton (2013) proves that the basic principles of security 
(confidentiality, integrity, and availability) or the CIA triad are not sufficient to take into account the 
new threats that arise as a result of the application of the IoT concept. Therefore, in addition to the CIA 
triad, it is proposed to consider additional principles: non-repudiation, privacy, audit, accountability, 
and credibility shown in Table 1.

As an area of the IoT concept application, the smart home environment provides numerous 
benefits to users from different aspects and through a variety of application possibilities. In parallel 
with the growing trend in the number of smart homes, the penetration of SHIoT devices, and the 
growth of investment in this concept, there is an increase in security threats. According to research 
by various authors, this environment consists of SHIoT devices, which have limited functionality and 
hardware resources. According to Ivan Cvitić et al. (2016), Bugeja et al. (2016), and Dahiya (2017), 
the restrictions of SHIoT devices are the result of the following requirements and characteristics:

•	 Size and design of the device - small dimensions of the device are often required, which results in 
the implementation of hardware components of even smaller dimensions and limited capabilities.

•	 Price of the device - due to the heterogeneity of the market and the number of manufacturers, 
the production of the device is required at the lowest possible price, which results in the use of 
components of poor quality, reliability and limited capabilities.

•	 Energy requirements - devices must meet high requirements in terms of autonomy while 
implementing energy-efficient components.

•	 Heterogeneity - a large number of devices that use different communication technologies and 
proprietary protocols.
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Limited hardware resources in SHIoT devices that result from these requirements prevent the 
implementation of adequate protection methods such as advanced cryptographic algorithms. In 
doing so, SHIoT devices remain exposed to many threats that have the potential to violate the basic 
principles of security (confidentiality, integrity, and availability) of such devices. Today’s facilities 
are not built and designed as smart homes, but SHIoT devices are retrogradely implemented in the 
existing environment and contribute to security challenges. Also, there is no professional support 
when designing a smart home or operating a SHIoT device in a home environment Lin and Bergmann 
(2016). An additional factor that affects the low level of security of SHIoT devices is their adaptability 
to end-users. To make SHIoT devices available to as many users as possible, manufacturers had 
to simplify their configuration to require minimal user interaction, such as connecting devices to 
an access point using WPS (Wi-Fi Protected Setup) whose vulnerabilities are known and proven 
Sanatinia et al., (2013). This results in SHIoT devices that do not have basic security mechanisms 
such as encrypted communication when connecting and configuring devices or device access data 
(username and password) (Geneiatakis et al., 2017).

SHIoT devices collect, process, store and transmit data of different levels of sensitivity. In the case 
of unauthorized access, such data may be used for various purposes such as identity theft, unauthorized 
access to users’ private data and monitoring of user behavior (Desai & Upadhyay, 2014). In addition 
to the above, there is a possibility of partial or complete disabling of the SHIoT device, which loses a 
smart home’s functionality. Improper functioning of SHIoT devices can also lead to disruption of the 
physics of human or object safety due to the increasing reliance of users on the information provided 
by such devices (Apthorpe et al., 2017). An example of this is the malfunction of a fire detector that 
alerts emergency services. Finally, SHIoT devices can also be used as intermediaries or a means to 
carry out other forms of attacks (DDoS – Distributed Deanial of Service attacks; Bugeja et al., 2016; 
Ivan Cvitić, 2020; Ivan Cvitić et al., 2019; Stergiou et al., 2018).

Table 1. Extended security principles necessary in environments applying the IoT concept

   The 
principle of 

security
   Explanation

   Resources of the IC system to which the principle applies

Data Users Processes Hardware Software Network

Confidentiality    Only authorized users/processes have the right to 
inspect and access the resources of the IC system    ●

Integrity    Only authorized users have the right to change the 
data in the IC system    ●

Availability
   IC resources must be available to the legitimate user/
process at the required time and according to the given 
conditions

   ●    ●    ●    ●    ●    ●

Non-
repudiation

   Participants in a transaction that takes place through 
the IC system cannot deny the execution of the 
transaction

   ●    ●    ●    ●    ●    ●

Privacy    The ability of the IC system to enforce defined 
privacy rules allowing the user to control sensitive data    ●

Audit
   The ability of the IC system to enable the 
implementation of an audit of activities in case of 
adverse event

   ●    ●    ●    ●    ●    ●

Accountability    The ability of the IC system to impose responsibility 
on the user for the actions taken    ●    ●

Credibility
   The ability of the IC system to unambiguously 
establish identity and ensure trust between third parties 
(users/processes)

   ●    ●

Source: Cherdantseva & Hilton (2013)
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DATA COLLECTION AND PROCESSING

The SHIoT devices covered by this research are presented in Table 2. The MAC (Media Access 
Control) represents unique identifiers of the SHIoT device in the network, the name of the device, 
the P / S tag that indicates whether the monitored device used for collecting primary or secondary 
data, and to which group belongs according to the segmentation shown in Ivan Cvitić et al. (2018).

SHIoT devices are provided by authorized distributors and dealers of a single device manufacturer. 
They are connected to and connected to the communications network in ways recommended by the 
manufacturer and in no way have the devices modified at the software and hardware level. Therefore, 
it is assumed that the devices used to collect legitimate traffic within this research work in the way 
they are designed and in no way compromised in any way.

The network topology and the characteristics of a smart home environment can be seen in 
Figure 2. Devices are connected directly or indirectly with Wi-Fi communications technology with 
the Fortinet AP 221C wireless access point, except for the Phillips Hue device that communicates 
with the rest of the local network via Ethernet communication technology. Some devices, such as the 
Blink Smart Camera, the Netatmo Smart Thermostat and the Philips Hue Smart Bulb, use IoT hubs 
with wireless communication and ZigBee technology. This is the energy efficiency of the device 
as it uses the battery as the ultimate power source, which gives them advantages from the aspect of 
mobility and independence of the power supply unit as a source of power. The IoT hub is connected 
to Wi-Fi (or Ethernet in the case of a Phillips Hue device) with a wireless access point technology. 
The subject mentioned as an adequate point of collecting traffic that SHIoT devices generate is a 
certain wireless access point. Because of computers and wireless Wi-Fi networks’ known working 
methods and characteristics, communication in the communications network cannot be collected 
directly. Several methods are available for collecting traffic, but mirroring the switch’s physical port 
is often used. The mentioned method proved to be effective in several studies such as Amar et al. 
(2018), Karimi et al. (2016), Meidan et al. (2017, 2018), which provides the basis for applying the 
same method for this research.

To collect network traffic, the port mirroring functionality is set up with a software-hardware 
platform consisting of a wireless access point, the Fortinet AP 221C, the Cisco 2960 Catalyst 48 PoE 
(Power over Ethernet) switch, and the HP Pavilion dm1 workstation (Microsoft Windows 10 10.0. 
17134 build 17134, x64 processor architecture, AMD E-350, 1600MHz 2 core, 4 GB RAM) with 
installed Wireshark software tool version 2.6.3.

Extraction of Traffic Flows of IoT Devices
Defining the class of SHIoT devices in this research is based on the statistical characteristics of a 
particular device’s traffic flows. The traffic flow is defined by a packet with equal source of source 
IP address, destination IP address, source communication port, destination communication port, 
and protocol used (TCP or UDP) (Aghaei-Foroushani & Zincir-Heywood, 2015). The reason for 
choosing a traffic flow as the level of observation and analysis of the feature is that it represents 
the packet header’s aggregated (statistical) data for communication between the source and the 
destination. The packet-level traffic analysis includes more information such as packet content and 
more computing resources for their storage and processing. An example of the number of traffic flows 
and the number of packets over a 24-hour time is visible to the Google Chromecast device (covered 
by this survey), where 11877 individual traffic flows were generated while the number of packets 
collected in the same time interval was 2459538. Since most today’s devices and applications use 
cryptographic methods in the communication process, the package’s content cannot be observed 
and analyzed economically, time-consuming, and legally acceptable. Consequently, observation 
and analysis of traffic characteristics at the traffic flow level are acceptable and frequently used in 
many researches. Extraction of traffic flow features for individual SHIoT device was done using the 
software tool developed at CICFlowMeter Canadian Institute for Cyber Security at the University 
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Table 2. SHIoT devices for data collection

   No.    MAC address    SHIoT device name    Data 
aggregation 

source

   Functional 
category

   1 00:17:88:78:0a:cb Phillips Hue Starter kit 2xE26 P CL

   2 00:17:88:2b:9a:25 Phillip Hue Starter kit 4xE26 S CL

   3 a8:bb:50:05:31:f3 WiZ Colors ESP_0531F3 P CL

   4 a8:bb:50:05:06:b0 WiZ Colors ESP_0506B0 P CL

   5 d0:73:d5:01:83:08 Light Bulbs LiFX Smart Bulb S CL

   6 00:24:e4:20:28:c6 Withings Aura Sleep Tracking Mat S CL

   7 7c:2e:bd:3d:4f:cb Google Chromcast P M

   8 18:b7:9e:02:20:44 Invoxia Triby Speaker S M

   9 e0:76:d0:33:bb:85 PIX-STAR Photo-frame S M

   10 fc:65:de:31:69:d6 Amazon Alexa Dot P M

   11 44:65:0d:56:cc:d3 Amazon Alexa Echo S M

   12 20:df:b9:21:fd:79 Google Home mini P M

   13 ac:84:c6:5d:97:bc TPlink Smart Plug HS110 P MC

   14 50:c7:bf:00:56:39 TPlink Smart Plug HS105 S MC

   15 30:ae:a4:57:2d:54 MyStrom switch P MC

   16 74:da:da:5f:a8:19 D-link DSP-W245 plug P MC

   17 74:c6:3b:29:d7:1d iHome Power Plug S MC

   18 ec:1a:59:79:f4:89 Belkin Wemo switch S MC

   19 d0:52:a8:00:67:5e Samsung Smart Things S MC

   20 74:6a:89:00:2e:25 Blipcare Blood Pressure meter S MC

   21 70:88:6b:10:0f:c6 Awair air quality monitor S MC

   22 40:9f:38:e9:28:08 iRoobot Roomba 896 P SA

   23 80:c5:f2:bb:17:95 iRoobot Roomba 895 P SA

   24 00:24:e4:1b:6f:96 Withings Body S SA

   25 e8:ab:fa:9b:f0:9e Smartwares C923IP Camera P S

   26 00:03:7f:27:2c:c3 Blink XT2 Camera P S

   27 7c:70:bc:5d:5e:dc Canary View Camera S S

   28 70:ee:50:18:34:43 Netatmo Welcome Camera S S

   29 f4:f2:6d:93:51:f1 TPlink Day Night Cloud NC220 camera S S

   30 00:16:6c:ab:6b:88 Samsung SmartCam S S

   31 30:8c:fb:2f:e4:b2 Nest Dropcam S S

   32 00:24:e4:11:18:a8 Withings Smart Baby Monitor S S

   33 18:b4:30:25:be:e4 NEST Protect Smoke Alarm S S

   34 88:4a:ea:31:66:9d Ring Video Doorbell S S

   35 70:ee:50:0c:14:c2 Netatmo Smart Thermostat P EM

   36 70:ee:50:03:b8:ac Netatmo Smart Weather Station S EM

*P – Primary; S – Secondary; CL – Comfort and Lightning; M – Multimedia; MC – Monitor and Connectivity; S – Security; SA – Smart Appliances; EM – 
Energy Management
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of New Brunswick in Canada (Habibi Lashkari et al., 2017). This tool allows the extraction of 84 
traffic flow characteristics such as source and destination IP addresses, time of the traffic flow, 
interarrival time of packets, packet number per traffic flow, packet size, amount of data transferred, 
transfer rate, and so on.

The period for which the feature extraction is performed is 30 consecutive days, with a different 
number of generated traffic flows depending on the device and its characteristics.

DEFINING SHIOT DEVICE CLASSES

Classes of SHIoT devices are defined based on traffic flow features. For this purpose, the coefficient 
of variation of the ratio of the received and sent volume of traffic is used, which represents the index 
of the predictability level of the IoT’s behavior.

Determination of Features for Defining SHIoT Device Classes
The predictability of the IoT devices behavior is a phenomenon resulting from the communication 
activities of IoT devices observed in the research (Amar et al., 2018; Doshi et al., 2018; Meidan et 
al., 2018). Since IoT devices have a limited number of functionalities, certain devices will behave 
approximately the same over time according to the values of the observed traffic features. Unlike 
IoT devices, conventional devices (smartphones, desktops, laptops, etc.) support installing a large 
number of applications where the communication activity of such devices depends on end-users and 
how the device is used. According to the above, the IoT device predictability level indices expressed 
by the coefficient of variation of received and sent data (Cu index) is a measure based on which it 
is possible to determine the IoT device’s behavior over a given period of time. As the Cu index is 
closer to 0, the observed device has less deviation of the amount of received and sent data, and the 
level of predictability of such device behavior is considered to be greater than the device whose Cu 
index is greater than 0.

The Cu index is calculated for mean values of 20 consecutive traffic flows of a single SHIoT 
device over a time period of 30 days according to expression (1).

Figure 2. Smart home laboratory environment
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Where:
Cu – index of traffic predictability level for SHIoT device u
N – total number of mean values of the received and sent data volume ratio for 20 consecutive 

traffic flows in the time period t = 30 days
xi –the mean value of received and sent data volume ratio for 20 consecutive traffic flows
In order to avoid that the mean values to tend 0, which is the problem of the coefficient of variation 

method application as a normalized dispersion value in the data set, the traffic flows in which the 
ratio of received and sent data is equal to 0 is removed.

Defining the IoT Device Classes Based on the Coefficient of Variation
For the purpose of the SHIoT device classes definition based on the Cu index value, the coefficient 
of variation classification method applied by Couto et al. (2017), Ferreira et al. (2019), Romano et 
al. (2005), Vaz et al. (2017) was used. It assumes normal data distribution. Since the distribution 
of the obtained values (Cu index) are asymmetric in nature (negative skewness) the data have been 
transformed. The data transformation method was selected using the Ladder of powers (Tukey method) 
to clearly show a suitable data transformation function to achieve normal distribution (Ernst et al., 
2017). Table 3 shows the chi2 values of a particular transformation function. The data distribution 
is closest to the normal chi2 closer to 0 and P (chi2) closer to 1. The normal distribution of the data 
obtained is also confirmed by the Shapiro-Wilk test of normality (p = 0.7262).

To apply the method of classifying the coefficient of Cu index, it is normalized by the min-max 
method according to the expression (2):

C
C C

C Cu norm

u umin

umax umin
( ) =

( )−
− ( )

log log

log log

( )

( )
���������������������������������������������������������� 22( ) 	

Where:
C
u norm( )

 – the normalized value of the logarithmically transformed Cu index in the interval [0,1]

log C
u( )  – logarithmic value of Cu device u

log( )C
umin

 – minimum logarithmic value of Cu for all devices

log( )C
umax

 – maximum logarithmic value Cu for all devices
After the normal distribution of the data was established, classifying the coefficient of variation 

is applied. It is a result of the mean coefficient variation values and their standard deviations.
The mean value of the coefficient of variation is calculated according to (3):

A
N

C C C

NC
u

n
norm norm n norm

u norm( )
=

+ + +

=

( ) ( ) ( )
∑
1

1

1 2
�

������������������������������������������������������� 3( ) 	

Where:
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A
C
u norm( )

– the arithmetic mean of the coefficient of variation for all devices
N – number of SHIoT devices
C
u norm( )

 – coefficient of variation of the device u
The standard deviation of the coefficient of variation was calculated according to the formula (4):

σ
C

u

n

u normu norm N
C C

( )
=

−
−

=
( )∑� �������������������������

1

1 1

2( ) ����������������������������������������� 4( ) 	

Where:
σ
C
u norm( )

 – standard deviation of the coefficient of variation for all devices
N – number of SHIoT devices
C
u norm( )

 – coefficient of variation of the device u

C  – the arithmetic mean of the coefficient of variation for all devices
Based on previously performed data processing, a total of 4 classes of IoT devices were defined 

according to the method used in the research Romano et al., (2005). The first class includes devices 
for which the condition is met Cu(norm) ≤ A

C
u norm( )

-σ
C
u norm( )

. The second class includes devices that 

Table 3. Ladder of powers results

   Transformation    Formula    chi2    P(chi2)

   Cubic    Cu
3    50,29    0

   Square    Cu
2    42,42    0

   Identity    Cu    25,18    0

   Square root C
u    12,08    0,002

   Logarithmic    log(Cu)    0,44    0,804

   1/(square root)
1

C
u

   9,48    0,009

   Inverse
1

C
u

   25,07    0

   1/square
1
2C
u

   43,37    0

   1/cubic
1
3C
u

   51,08    0



Journal of Organizational and End User Computing
Volume 33 • Issue 6 • November-December 2021

12

meet the condition A
C
u norm( )

-σ
C
u norm( )

<  Cu(norm) ≤ 
A
C Cu u
+ σ

2
. The third class includes devices that 

meet the condition 
A
C Cu u
+ σ

2
 < Cu(norm) ≤  A

C Cu u
+ σ , while the last class includes devices that 

meet the condition Cu(norm) > A
C Cu u
+ σ .

RESEARCH RESULTS AND DISCUSSION

For this research, the classification of coefficient of variation method was used to define the clasess of 
IoT devices based on the ratio of received and sent data in the given time. This method was previously 
used in different research fields but through its analysis we concluded that it is suitable for solving 
the problem represented in this research, and that is how to distinguish various IoT devices based on 
their network traffic behavior. For this purpose we define index Cu as the ratio of sent and received 
data for individual IoT device. By using the classification of the coefficient of variation method we 
managed to define a level of IoT device behavior predictability and get the solid stronghold for future 
research of IoT devices classification. Values of Cu index, logarithmically transformed values, and 
min-max normalized values for each analyzed device are shown in Table 4.

Figure 3 shows phases of conducted research through UML activity diagram (on the left) and 
future planned research (on the right). It is visualized, for better understanding, all main activities 
conducted for defining classes of SHIoT devices covered by this research. For every device (d), 
traffic flows (tf) are extracted in 30 consecutive days, where we observed the amount of sent and 
received data and calculate its mean value. It was the basis for calculating index Cu as the sent and 
received ratio of the variation coefficient. Given values for every SHIoT device are logarithmically 
transformed for the data to follow a normal distribution as a requirement for applying the method of 
variation coefficient classification.

According to the data presented in Table 4, four device classes are defined based on the Cu index 
value. The first class (C1) comprises all devices whose log-transformed and normalized value Cu(norm) 
£ 0,253722. The second class (C2) combines devices that meet the requirement 0,253722 < Cu(norm) 

Figure 3. Current and future research process and activities
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Table 4. Device classes defined by the value of index Cu

No. SHIoT device Index Cu
log(Cu) 

transformation

Min-max 
normalization 

(Cu(norm))

Class 
definition Class name

   1    TPlink Day Night Cloud NC220 
camera    0,042916917    -1,367371486    0 Cu(norm) £ 

A
Cu

-σ
Cu

   C1
   2    WiZ Colors ESP_0531F3    0,075820416    -1,120213838    0,124242056

   3    TPlink Smart Plug HS105    0,076231674    -1,117864541    0,125423008

   4    WiZ Colors ESP_0506B0    0,08086321    -1,092249024    0,138299504

   5    Samsung Smart Things    0,123562483    -0,908113372    0,230861447

   6    iHome Power Plug    0,148887517    -0,827141714    0,271564558
A
Cu

-σ
Cu
<  

Cu(norm) £

A
C Cu u
+ σ

2

   C2

   7    Withings Smart Baby Monitor    0,176239975    -0,753895577    0,308384178

   8    NEST Protect Smoke Alarm    0,192606687    -0,715328639    0,327771139

   9    Phillips Hue Starter kit 2xE26    0,200187894    -0,69856219    0,336199355

   10    Canary View Camera    0,209863653    -0,678062771    0,346504073

   11    Tplink Hs110    0,24742122    -0,606563056    0,382445795
A
C Cu u
+ σ

2
 

< Cu(norm) £

A
C Cu u
+ σ

   C3

   12    Belkin Wemo Switch    0,254614637    -0,594116633    0,388702406

   13    Witthings Sleep    0,261184872    -0,583051981    0,394264423

   14    D-link DSP-W245 plug    0,27041724    -0,567965624    0,401848085

   15    Netatmo Smart Thermostat    0,290797956    -0,53640865    0,417711253

   16    Amazon Alexa Dot    0,318918293    -0,496320569    0,437862868

   17    Blink XT2 Camera    0,344500361    -0,462810319    0,454707915

   18    Samsung SmartCam    0,34686605    -0,459838205    0,456201948

   19    Light Bulbs LiFX Smart Bulb    0,346886878    -0,459812128    0,456215056

   20    Smartwares C923IP Camera    0,357559305    -0,446651916    0,462830477

   21    iRoobot Roomba 895    0,358681004    -0,445291624    0,463514273

   22    iRoobot Roomba 896    0,379012744    -0,421346187    0,475551248

   23    MyStrom switch    0,432393144    -0,364121201    0,5043173

   24    Blipcare Blood Pressure meter    0,479127026    -0,319549331    0,526722841

   25    Netatmo Smart Weather Station    0,543491131    -0,264807539    0,554240633

   26    Amazon Alexa Echo    0,632948837    -0,198631394    0,587506285

   27    Netatmo Welcome Camera    0,764635407    -0,116545595    0,628769456

   28    Phillip Hue Starter kit 4xE26    0,791347539    -0,101632744    0,636265899

   29    PIX-STAR Photo-frame    0,958787396    -0,018277684    0,678167108

   30    Withings Body    1,140461786    0,057080738    0,716048538      Cu(norm) > 

A
C Cu u
+ σ

   C4

   31    Google Chromcast    1,267801595    0,103051294    0,739157175

   32    Ring Video Doorbell    1,370122066    0,136759261    0,756101612

   33    Nest Dropcam    1,985562839    0,297883636    0,837096166

   34    Invoxia Triby Speaker    2,468462951    0,392426613    0,884621355

   35    Awair air quality monitor    2,553917945    0,40720694    0,89205118

   36    Google Home mini    4,187473486    0,62195207    1
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0,354866. The third class (C3) includes devices that meet the requirements 0,354866 < Cu(norm) ≤ 
0,709732 while the last class (C4) includes devices that meet the requirements Cu(norm) > 0,709732.

Class C1 signifies IoT devices with a very high level of behavior predictability since the coefficient 
of variation in the received and sent data ratio is closest to 0. This means that such devices over time 
behave approximately the same from the aspect of the observed feature. The use of IoT devices of 
class C1 devices by users, other devices or the environment will not significantly affect the change 
in the value of the Cu index. Class C2 combines devices with a high level of behavior predictability. 
The use of devices from the specified class by users, other devices or the environment may result in 
minor changes in the relationship between received and sent data. Devices classed with C3 represent 
devices with a medium level of behavior predictability. The impact of interaction between users, other 
devices or the environment on the relationship between received and sent data can be significant. 
Such behavior may be the additional functionalities of devices that at certain times result in a greater 
amount of data in the incoming or outgoing direction. The last class C4, combines IoT devices with 
low levels of behavior predictability. Such devices and their interaction with the user, other devices, 
or environment significantly affect the relationship between received and sent data. As a reason, a 
significantly higher amount of data is received in the incoming direction (download) due to the user’s 
request. An example is visible to devices such as Google Chromecast where a user plays video content 
that requires downloading the same through a Youtube service. This class also includes the Google 
Home mini device, a smart speaker that can provide different audio content on a user’s request, which 
also causes a greater variation in the relationship between received and sent traffic.

With respect to classes based on semantic features, this way of class definition allows comprising 
of IoT devices that are not covered by this research based on their behavior that the Cu index can 
measure. Given the accelerated development and the increasingly frequent application of the IoT 
concept, classes defined by this research will be able to consolidate IoT devices regardless of their 
functionalities, purpose and capabilities.

Feature vectors (examples) of traffic flow are labeled according to previously acquired findings 
and defined classes. The process of forming a dataset containing aggregated data of feature values 
for traffic flows and the traffic flow affiliation to the defined classes is shown by the UML activity 
diagram in Figure 4. Each traffic flow is generated by a SHIoT device belonging to a particular class 
according to the classification shown in Table 4. Therefore, it is associated with every traffic flow, 
the corresponding class to which the device generating the observed traffic flow belongs, as it is 
shown in Table 5.

Extraction of traffic flow feature generated by the individual SHIoT device described through 
this paper and defining their classes represents foundations for creating dataset containing class labels 
for each observed traffic flow. Such formed dataset can be used for further development of novel 
classification and anomaly detection models.

CONCLUSION

The classification of devices in the IoT concept is a challenging research problem. As an initial problem 
arises way in which it is possible to define and distinguish IoT devices. Previous research defines the 
classes based on the device’s semantic characteristics and their purpose and scope of application. 
Such a class definition method represents a potential problem for new devices whose application 
and characteristics will differ from the existing ones. To solve this problem, this research has defined 
classes based on traffic features. The coefficient of variation of the received and sent dana ratio for 
an individual device (index Cu) was used to define the class. The Cu index was calculated for a total 
of 36 SHIoTs based on an average of 20 consecutive traffic flows over a 30-day time period and 
represents the scattering measure of the received and sent data. The data were analyzed, transformed, 
and normalized using the Stata tool for statistical analysis and using logarithmic transformation 
and min-max normalization method. The variation coefficient classification method was applied 
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to define four classes of devices according to the predictability level of their behavior (C1 - very 
high level; C2 - high level; C3 - middle level; C4 - low level). The class of IoT devices defined in 
this way provides a framework for further research in the area of classification of the IoT device to 
identify their behavior and detect anomalies of network traffic that such devices can generate. Further 
research will seek to develop a classification model that will, on the basis of the value of the traffic 
flow characteristics of a variety of IoT devices, be assigned to the classes defined by this research. 
Such a developed classification model will be the basis for further research of various cybersecurity 
problems that are coming with the concept of IoT, mainly in the domain of detection, mitigation, and 
protection of DDoS attacks or other cyber attacks that can be identified by network traffic analysis.

Figure 4. Process of aggregated dataset formation
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Table 5. Example of combining traffic flows and class designations

   No. Device    z8    z9    z10    z11    z12    z13    z14    z15    …    z83    Class 
label

   1    u6    110,176,901    5    4    372    648    186    0    74    …    54,900,000    C1

   2    u6    110,117,149    5    4    372    648    186    0    74    …    54,800,000    C1

   3    u4    113,285,202    30    23    2,012    3,831    267    0    67    …    5,740,188    C1

   4    u11    9,383    7    1    2,156    308    308    308    308    …    0    C2

   5    u11    1,649    3    1    924    308    308    308    308    …    0    C2

   6    u10    4,785,250    17    1    5,104    296    305    296    300    …    0    C2

   7    u30    104,123,962    2    4    96    192    48    48    48    …    49,300,000    C3

   8    u30    2,090    1    3    33    143    33    33    33    …    0    C3

   9    u30    2,126    1    3    33    143    33    33    33    …    0    C3

   10    u41    141,088    4    7    454    2,881    357    28    114    …    0    C4

   11    u42    68,231    1    3    32    140    32    32    32    …    0    C4

   12    u43    15,158,091    9    9    6,181    3,268    1,350    23    687    …    14,900    C4
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