
DOI: 10.4018/IJSDA.20220701.oa2

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Models for Efficient Utilization of Resources
for Upgrading Android Mobile Technology
Abha Jain, Shaheed Rajguru College of Applied Sciences for Women, India

Ankita Bansal, Netaji Subhas University of Technology, India

ABSTRACT

The need of the customers to be connected to the network at all times has led to the evolution of mobile
technology. Operating systems play a vitol role when we talk of technology. Nowadays, Android
is one of the popularly used operating system in mobile phones. The authors have analysed three
stable versions of Android, 6.0, 7.0, and 8.0. Incorporating a change in the version after it is released
requires a lot of rework and thus huge amount of costs are incurred. In this paper, the aim is to reduce
this rework by identifying certain parts of a version during early phase of development which need
careful attention. Machine learning prediction models are developed to identify the parts which are
more prone to changes. The accuracy of such models should be high as the developers heavily rely
on them. The high dimensionality of the dataset may hamper the accuracy of the models. Thus, the
authors explore four dimensionality reduction techniques, which are unexplored in the field of network
and communication. The results concluded that the accuracy improves after reducing the features.

KEywoRDS
Android Operating System, Dimensionality Reduction, Feature Selection, Machine Learning, Mobile Technology,
Model Prediction, Software Changes

INTRoDUCTIoN

In today’s rapidly growing industry, it is very essential to build an effective and reliable connectivity to
establish an efficient communication among the clients and employees of any business organization.
Communication involves sharing of critical information between the user and the organization
where security plays a key role in terms of privacy (Auxilia et al., 2020). The customers want to be
connected and be able to communicate with any business organization at any time and from anywhere.
The demand of being connected 24/7 is only possible due to the evolution of mobile and Internet
technology. The availability of newer operating systems in the competing market plays a significant
role in improving the mobile technology. Among many other characteristics and applications; one
of the distinguishing characteristics offered by mobile operating systems is that the users can get
connected to the internet using the wireless service provider of their smart phones which is cost
effective as the mobile system is completely wireless leading to benefits like saving of money and
space as compared to wired sensor network (Elfouly et al., 2017). Various types of operating systems
are available in the market, the most popular being Android. Android has seen various versions starting
from version 1.0, then1.5, 1.6, 2.1, 2.2, 2.3, 3.0and so on. Each version has the improvements over
the previous one and thus, it is always advisable to go with the latest version. The upgradation of a

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

2

version to a higher version may be due to a number of reasons, such as identification of some bug
in the previous version, change in the customers’ demands, change in technology in the market, etc.
We can also see that change is the need of the hour and we as humans must adapt to those changes.
However, seeing from the end of developer’s site, we should understand that incorporating a change
due to any of the above listed reason resulting in a new version is not at all an easy task. It comes with
lots of difficulty and requires huge amount of resources in terms of time, money and manpower. To
elaborate on this, let us understand that the development of a software goes through certain stages
before it can be deployed. Incorporating a change in any part of the software (due to any of the reasons
stated above) may need widespread changes in different parts of the software and thus lots of rework
is required (Sharma et al. 2014). Cost and effort of this rework significantly increases with the stages
in software development lifecycle (Boehm and Basili 2001).

The authors in this paper aim to work in the direction of reducing the rework and thus, saving of
cost and other resources. For this, the three stable versions of Android, viz Android 6.0 (Marshmallow),
Android 7.0 (Nougat) and Android 8.0 (Oreo) are analysed. Each version is fairly large in size consisting
of a large number of classes. Due to the availability of limited resources, the developers fail to pay
equal attention to all the classes, leading to poor quality software. Thus, the main idea revolves around
identification of those classes which are more vulnerable to changes in the next software update. The
authors have constructed the prediction models which can be used by the developers/designers in the
early phases of software development to identify the classes which need focussed attention. Next, we
discuss about the correctness or accuracy of the constructed prediction model. Since the developers
are relying on these models for identifying the classes, it is very important that the model should be
as accurate as possible. The high dimensionality of the dataset is one of the hindrance which may
hamper the accuracy of the models. In addition to this, the high index of features (high dimensionality)
makes the computation of data an expensive and tedious task (Rattanawadee and Srivihok, 2015).
Dimensionality Reduction refers to the process of reducing the number of dimensions of a given data
set. This leads to a reduction in the number of variables and utilization of a group of prime variables.

In this paper, the authors have used feature selection algorithms for selecting a subset of
relevant features from a given set of features such that they would yield the most optimum results
while building an effective and efficient predictive model (Padmaja and Vishnuvardhan, 2016).The
literature shows the wide use of traditional statistical method known as regression analysis to extract
the useful features. In this study, univariate Logistic Regression (LR) is used to find the effect of
each independent variable with the dependent variable. Thereafter, multivariate LR is also used for
constructing the model. In addition to the regression analysis which is a statistical approach, there
are much newer and popularly used feature selection techniques broadly classified under the three
approaches: filter approach, wrapper approach and embedded approach (Bachu and Anuradha 2019).
While filter approach focuses on the data instead of the algorithm used for mining it and gathering
the relevant information by analysing the nature of the data, the wrapper approach focuses on the
applicability or pertinence of each feature and the optimality of the solution thus obtained (Bolón-
Canedo et al. 2014). The embedded approach, on the other hand, is more focused and aims towards
optimizing the model for a particular training algorithm. In this research, the authors have analysed
four sequential search techniques viz. Sequential Forward Selection (SFS), Sequential Backward
Selection (SBS), Sequential Forward Floating Selection (SFFS) and Sequential Backward Floating
Selection (SBFS) that are employed by wrapper methods for feature selection. The authors found that
the usage of these sequential search techniques in different domains such as gene selection, big data
classification, pattern recognition and image recognition (Pudil et al. 1993 and Peralta et al. 2015)
have produced promising results. However, these techniques are unexplored in the field of networks
and communication. Thus, this motivated the authors to explore these search techniques to reduce
the features of popular mobile technology, Android.

To determine the efficiency of these sequential search techniques, the prediction models are
constructed using three popularly used machine learning classifiers viz. K-Nearest Neighbor (KNN),

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

3

Decision Tree (DT) and Random Forest (RF). In other words, after selecting useful features with each
of the four sequential search techniques, the dataset is trained and tested using KNN, DT and RF.
The authors also observed the relation between the number of features selected and the performance
of the searching technique.

The results showed that the maximum accuracy was observed in the mid region where the number
of features selected was neither too high nor too low. It was observed that the accuracy increases
as the number of features increases from 1 upto the mid - range. There is a slight fluctuation in the
accuracy for the mid values and it eventually decreases as the number of features reaches the maximum
value. In addition to this, when comparing and analysing the accuracy of the models obtained using
multivariate LR and the machine learning models, the authors observed that all the machine learning
models outperformed the statistical model.

In this paper, the authors aim to find answers to the following Research Questions (RQs):

RQ1: How did the sequential search techniques used to reduce the number of features perform in the
field of communication, i.e. on the datasets of Android operating system?

RQ2: How did the performance of machine learning classifiers improve when the number of features
are reduced?

RQ3: What trend can be observed in the values of accuracy at different number of features selected?
Is the highest accuracy achieved at the lowest possible value of number of features?

RQ4: How did multivariate LR model compare with the machine learning models in predicting the
change prone classes of Android operating system?

This paper is organized as follows. Following this section, the related work is given which
discusses the work done related to feature selection methods. Next section explains the concept
and process of feature selection used to select the optimal set of features. Further, it highlights the
different kinds of feature selection strategies and various searching techniques which can be used to
implement it. After this, the background of the research which includes the details about the empirical
data collection and the variables used are explained It also summarizes the empirical data used to
validate the results. Next section explains the framework and design of the research. This is followed
by the discussion of results. Application of the work and threats to validity are discussed thereafter.
Finally, the work is concluded providing important insights.

RELATED woRK

Research shows that the majority of existing work on feature selection does not focus on change
prediction. The authors chose to implement various wrapper selection methods for feature reduction
to predict change prone classes of open source software as a large number of studies have found
that wrapper methods perform best (Kohavi& John, 1997), especially while dealing with lower
dimensionality. Wrapper methods like genetic search and sequential forward selection carry out a
search over the set of all viable subsets of features, continually calling the induction algorithm as a
procedure to assess multiple feature subsets. Work based on feature selection carried out in the past
for textual problems turned out to be of great assistance in providing motivation and guidance for
this study, which highlights a more substantial variety of metrics. For instance, the authors (Yang &
Pedersen, 1997) have examined five feature selection metrics on the common Reuters dataset and
OHSUMED. In the papers (Guyon & Elisseeff, 2003 and Liu & Yu, 2005),a thorough study for feature
(or variable) selection have been done in the domain of machine learning and statistics. In the paper by
Saeys et al. (2007), authors have worked in the domain of bioinformatics by applying feature selection
techniques. The work was done in the field of wrapper and filter methods being studied. In the paper
by Ma & Huang (2008), the selection of features is done on the basis of sparse regularization. The
authors Yang et al. (2013) have proposed an ensemble-based wrapper approach for feature selection

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

4

from data with highly imbalanced class distribution by creating multiple balanced datasets from the
original imbalanced dataset using sampling and then evaluating feature subsets using an ensemble of
base classifiers each trained on a balanced dataset. The authors Zhou et al. (2008) presented a Genetic
Algorithm (GA) based wrapper method which solves optimization problems using the methods of
evolution and is based on survival of the fittest. Their work is based on the classification of hyper
spectral data using Support Vector Machine (SVM). The authors (Maldonado and Weber, 2009) had
introduced a novel wrapper algorithm for feature selection using SVM with kernel functions. Similar
work was also done by the authors Rodriguez-Galiano et al. (2018) and Hu et al. (2015).

FEATURE SELECTIoN

Feature selection is a technique of dimensionality reduction which being very popular, has been a matter
of research in the recent times. It aims at reducing the number of features and providing a subset of
the most optimal ones. The process of feature selection process has been highlighted in figure 1. It can
be summarized as constituting of the following major steps; creating a subset, assessing the generated
subset, checking for the stopping condition and finally testing and validating the result. Following are
the advantages of feature selection for dimensionality reduction (Ladha and Deepa, 2011):-

1. Removes the un-important and useless data from the data set.
2. Makes the algorithm more efficient, thereby reducing the time taken by the algorithm to infer

results.
3. Overcomes the curse of dimensionality. Curse of dimensionality refers to the difficulties (mainly

time and resource constraints) faced in analyzing high dimensional data.
4. Improves the accuracy and performance of the models.

There are three main feature selection methods, namely; filter methods, wrapper methods
and embedded methods (Ladha and Deepa 2011). Filter methods are usually implemented in the
preconditioning stage. In these methods, the subset of features is picked on the grounds of the
correlation value of the features with the output. There are four types of filter methods viz. Linear
Discriminant Analysis, Pearson’s Correlation, Chi-square and Analysis of Variance. Figure 2 highlights
the process followed by filter methods to obtain a feature subset. Wrapper methods train a prediction
model by using different subsets of features (Ang et. al, 2015). Based on the performance of the
machine learning algorithm, we select the best subset of features from the given dataset. We may
choose to include or exclude a feature based on the basis of the performance of a subset. Wrapper

Figure 1. Process of feature selection

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

5

methods can be classified into two categories, namely; forward selection and backward elimination.
In Forward Selection, we start with a void set of features, and keep adding new features in the set
with each iteration. On the other hand, in backward elimination, we start a full set of features and
keep on eliminating the most useless feature in the entire set with each iteration. Figure 3 shows the
process followed by wrapper methods to obtain a feature subset. Embedded methods amalgamate
the good attributes of wrapper and filter methods. However, they are complex in implementation.
The differences between filter and wrapper methods have been summarized in table 1.Selecting the
right feature selection method is a crucial step in determining the efficiency of the algorithm used
along with the optimal subset of features to be used. Feature selection speeds up the training of the
algorithm used. It also lowers the dimensionality of the dataset, thereby reducing the computational
cost and time.

Wrapper methods can be implemented by using various search techniques (Kumari et. al, 2012)
which can be categorized as exponential search, random search and sequential search. Exponential
search, which may be referred to as total search or complete search, is a comprehensive approach.
Although the results that it provides are superlative, this approach takes exponential time to execute.
Thus, it cannot be used for large datasets or medium size datasets. An example of the same is Brute-
Force search which looks for the solution in each subset. On the other hand, random search, as the
name suggests, commences by picking features in a random fashion and then progresses with either
of the following search techniques. The first one is a two-way searching approach, like simulated
annealing and random hill-climbing. The second one uses techniques which have no uniform variation
e.g., Genetic Algorithm (GA) and Tabu search. Finally, sequential search is a greedy optimization
technique that finds the local optimum solution. Sequential search can be categorized into four types,
namely; Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential
Forward Floating Selection (SFFS) and Sequential Backward Floating Selection (SBFS) which have
been explained later in the paper.

Figure 2. Process followed by filter methods in order to obtain feature subset.

Figure 3. Process followed by wrapper methods to obtain the feature subset.

Table 1. Difference between wrapper and filter methods

PARAMETER FILTER METHODS WRAPPER METHODS

Criteria of selection Correlation between output variables and features Utility of a subset of features

Time Complexity These are faster than wrapper methods because they do not
require training of mode with each subset.

These are slower than filter
methods.

Evaluation Technique Statistical methods Cross Validation

Correctness Might not be able to find the best solution available Best Subset of features

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

6

Table 2 illustrates the comparison between different searching techniques used by the wrapper
methods. It can be seen from table 2 that the sequential search techniques can be implemented in
polynomial time as contrast to exponential search techniques. Although the complexity of randomized
search techniques is also polynomial, but it is not suitable for large datasets and it is difficult to be
implemented as compared to the sequential search techniques. Since both the datasets used in this
paper are large in size, the authors choose to work on sequential search techniques. The authors
mainly focus on sequential search techniques (SFS, SBS, SFFS, SBFS) used by wrapper methods
and explore their working, optimality and performance. It was observed that the above mentioned
techniques have been widely used in different domains such as gene selection, big data classification,
pattern recognition and image recognition (Pudil et al. 1993 and Peralta et al. 2015) and have produced
promising results. This provides a motivation to the authors to explore these techniques in the field
of communication and network.

RESEARCH BACKGRoUND

This section focuses on the dataset used highlighting the details of the same. Also, the section
elaborates on the independent and dependent variables used in the study.

Empirical Data Collection
For empirical data collection, we have used Android operating system. Android is currently one of
the most popular operating system being used in mobile phones and tablets. There are number of
versions of Android released in the market till date. The first stable version released was Android
2.3, known by the name of Gingerbread and the latest version is Android 10.0. In this study, we have
analyzed the three recent stable versions, Android 6.0, known as Marshmallow, Android 7.0, known
as Nougat and Android 8.0, known as Oreo. Since Android is an open source dataset, we downloaded
the source code of all these versions from https://source.android.com/source/initializing.html. The
details of each version which includes their common name, the total number of classes, the number of
classes changed (change - prone classes) and the release date are shown in table 3. The total number
of classes is the common classes between the two successive versions. For example, table 3 shows that
the total number of classes of Android 6.0 is 10,068. This implies that the common classes between
Android 6.0 and Android 7.0 are 10,068.

Independent and Dependent Variables
The dataset consists of 44 independent variables and 1 dependent variable. The independent variables
are various Object Oriented (OO) metrics used to determine OO relationships like coupling, cohesion,
inheritance etc. The independent variables are provided in table 5. The independent variables are
discrete in nature. The dependent variable on the other hand is binary in nature and is used to determine
whether the class changes in the next version or not. Its value is 0 for a class if it has not changed

Table 2. Comparison between different searching techniques

PARAMETER EXPONENTIAL RANDOMISED SEQUENTIAL

Complexity Exponential Polynomial Polynomial

Type of Algorithm Brute Force Greedy Greedy

Implementation Difficult to implement Easier than exponential but more difficult
than sequential

Easy to implement

Target dataset size Small datasets Small/Medium, but might produce
incorrect results

Large datasets

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

7

in the next version and the value is 1 if it has changed in the next version in terms of number of
lines added, deleted and modified. This data consisting of independent and the dependent variable
is collected with the help of a tool known as Change Report Generator (CRG) developed by one of
the authors (Malhotra et al. 2016).

RESEARCH DESIGN

This section presents the research design used for empirical analysis of change prediction. As depicted
in figure 4, the work in this study is conducted in three main phases viz. data filtration using regression
analysis and wrapper methods in order to achieve optimal subset of features, thereafter model prediction
by applying suitable statistical and machine learning algorithms and finally assessing the performance
of the predicted models using suitable performance evaluation measure. Each of the phases has been
explained in the subsequent sub-sections along with the methods/techniques followed in that phase.

Data Filtration Using Regression Analysis
In this study, the authors have used a statistical approach known as Logistic Regression (LR) to
identify the useful features and for model building. LR is used to predict the dependent variable
from a set of independent variables (Hosmer and Lameshow 1989). The authors have used LR as
the outcome variable is binary or dichotomous (0 or 1). Both univariate and multivariate regression
have been used in this study. Univariate logistic regression is used to find the relationship between the
dependent variable and each independent variable. It finds whether there is any significant association
between them. Multivariate logistic regression analyses which metrics are useful when they are used
in combination. It is used to construct a prediction model used for identifying the change prone classes.
To construct the multivariate model, metrics can be fed into the model using two stepwise selection
methods, which are forward selection and backward elimination (Hosmer and Lameshow 1989).
Forward selection examines the variables that are selected one at a time for entry at each step. The
backward elimination method includes all the independent variables in the model and the variables
are deleted one at a time from the model until the stopping criteria is fulfilled. However, the results
of the model obtained using forward selection were poorer (i.e. the values of R2 and log-likelihood
statistic defined below were low) than the model obtained from the backward elimination procedure.
The authors therefore used backward elimination method in this study.

The general multivariate logistic regression formula is as follows:
Prob (X1, X2, …, Xn) =
where g(x) = B0 + B1*X1 + B2* X2 + … + Bn* Xn
‘prob’ is the probability of a class being change prone
Xi, (1£ i £ n) are independent variables

Data Filtration Using wrapper Methods
In this sub-section, we discuss about the working of different wrapper methods which we have
applied for the process of feature selection. The reduced feature set that is obtained as a result of

Table 3. Details of the dataset used

Version Commonly known
as

Total Number of
Classes

Number of Classes
Changed

Release Date

Android 6.0 Marshmallow 10,068 2918 October 5, 2015

Android 7.0 Nougat 11,428 3696 August 22, 2016

Android 8.0 Oreo - - August 21, 2017

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

8

application of these wrapper methods is used for developing the prediction models. According to
S´anchez-Maro˜no et al. (2007) and Setiono & Liu (1996), wrapper methods explore all possible
combinations of the features and find the one that generates the best results for any given machine
learning algorithm. Wrapper methods employ greedy search algorithms. As already mentioned, there
are four main types of sequential search techniques (SFS, SBS, SFFS, SBFS) used to implement
wrapper methods. Description of each of these search techniques has been presented below. The
section also discusses the implementation of these techniques in terms of their pseudo code and
how the code was implemented in python. The authors have written the programs in python. The
classifiers have been implemented using scikit-learn library. This library has in-built classifiers
which can be called using functions. The functions take in various parameters for the classifier to be
built. The feature selection algorithm has been made using another python library, namely mlxtend.
This is an open source python library which provides machine learning and data science utilities to
python’s computing stack. They have used the functional sequential feature selector implemented in
this library. The function takes in parameters through which we determine if the algorithm is floating
or not, and whether the algorithm is forward or not. Furthermore, it takes as an input the classifier
which we implemented using the scikit-learn library of python.

In order to understand the working of these techniques, let us assume that there are D features
in a dataset but we want only K features.

Sequential Forward Selection (SFS)
According to Marcano-Cedeño et al. (2010), begin with a void set of features and add features to the
set one by one, measuring accuracy of the machine learning model at each step. The feature giving
the maximum accuracy is retained. The process is repeated K times, in order to store K elements in
the set. The final set thus obtained gives the maximum possible accuracy with the desired number
of features.

Pseudo code of SFS

Sequential Backward Selection (SBS)
Begin with a set containing all the D features. For each of the (D - K) iterations, each feature is
removed one by one and the corresponding change in accuracy is noted. The feature with the highest
reduction in accuracy is removed. In the end, K features are left which give us the maximum accuracy.

Process starts with F1 (a set containing no elements) and the method takes in a number of parameters viz. the classifier
to be used, the number of features to select (k), the scoring function and the cross validation. Let Xj be a random
variable for feature j and Y be the variable that determines the class label (e.g., healthy vs. unhealthy).
Steps:-
 Firstly, a feature Xj is chosen which maximizes the objective function J that takes in the arguments Xj, Y, and
F1.
 1. The feature Xj that maximizes the objective function is added to F1 and removed from F. This process is
repeated until the [REMOVED HYPERLINK FIELD]cardinality of F1 is k.

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

9

Pseudo code of SBS

Sequential Forward Floating Selection (SFFS)
According to Solberg et al (1997), for each step of SFFS, perform the corresponding step of SFS and
then find the worst feature in the feature set. Then remove that feature from the feature set if removing
it increases the accuracy. Continue removing the worst features as long as the accuracy after removing
that feature is greater than the one provided by the SFS set. Then move to the next iteration.

Pseudo code of SFFS

Sequential Backward Floating Selection (SBFS)
According to Dash et al. (1997) and Wu et al. (2013), for each step of SBFS, perform the corresponding
step of SBS and then find the best feature in the feature set. Insert that feature into the feature set if

Figure 4. Framework of the study

The process starts with F1 (Set of all features), and the method takes in a number of parameters, viz. the classifier to be
used, the number of features to select (k), the scoring function and the cross validation. Let Xj be a random variable for
feature j and Y be the variable that determines the class label (e.g., healthy vs. unhealthy)
Steps:-
 Firstly, feature Xj is chosen which minimizes the objective function J that takes in the arguments Xj, Y, and F1.
 1. The feature Xj that minimizes the objective function is removed from F1. This process is repeated until the
[REMOVED HYPERLINK FIELD]cardinality of F1 is k.

Process starts with F1 (a set containing no elements)
Steps:
 Perform SFS.
 Find the least significant feature in F1. If it is the feature just added, then keep it and return to step 1.
Otherwise, exclude the feature k.
 Keep repeating step 2 until we don’t have a feature in F1 removing which improves the accuracy.

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

10

adding it increases the accuracy. Continue inserting the best features as long as the accuracy after
adding that feature is greater than the one provided by the SBS set. Then move to the next iteration.

Pseudo code of SBFS

Model Development using Machine Learning Classifiers
Machine learning involves predicting and classifying data and to do so, various machine learning
models are used in literature. There are a number of machine learning classifiers available in the
literature which are widely used in the classification problems pertaining to diverse fields like software
defect prediction and fault severity (Panda, 2019, Hussein et al. 2017), breast cancer classification
(Majhi, 2018), health insurance claim prediction (Bhardwaj, 2020) etc. Machine learning classifiers
have gained huge popularity in the recent years due to their capability in capturing complex nonlinear
relationships among variables. Thus, the authors are motivated to explore the three most popularly
used machine learning classifiers viz. K Nearest Neighbour, Random Forest and Decision Tree as
their usage is minimal in the field of network for predicting the change prone classes of Android
operating system. The overview of these machine learning classifiers is presented in table 4 (Singh
et al. 2017, Jain & Vailaya 1996 and Corbane et al. 2009).

Machine learning models have certain parameters (also known as hyperparameters) which can
be arbitrarily set by the user before the training process according to a given problem. However, it
is challenging to know what values to use for the hyperparameters of a given algorithm on a given
dataset. Moreover, there are many hyperparameters associated with each machine learning model
and more the hyperparameters we need to tune, the slower the tuning process becomes. Not all model
hyperparameters are equally important and some hyperparameters have an outsized effect on the
behavior, and in turn, the performance of a machine learning algorithm. Therefore, it is desirable to
select a minimum subset of model hyperparameters to search or tune.

In this paper, the authors have used the Random Search strategy (Bergstraand and Bengio, 2012)
for hyperparameter optimization. In this study, the criteria for selecting the right set of hyperparameters
is governed by the following two requirements: (1) minimum execution time and (2) maximum
accuracy of the model.

In Random Search, a grid of hyperparameters is created which consists of some random values of
these hyperparameters. The results of performance would be highly optimistic if training and testing
are done the same dataset. Thus, in this study, we have used k-cross validation wherein a single dataset
is divided into k parts, out of which one part is used for testing and the remaining other parts are used
for training the model (Stone 1974). This process is repeated k number of times, so that each of the
k part is used for testing once. In this study, the value of k is taken as 10. In addition to obtaining
unbiased results using cross validation, it also has an another important advantage when implementing
hyperparameter optimization. Since cross validation allows the dataset to be partitioned into training
and testing sets, the authors have avoided using the hyperparameters which worked good on training
data but not so good with the test data.

The authors implemented Random Search using a utility provided by Scikit-learn (Phython)
known as RandomSearchCV. Using the scikit-learn best-estimator attribute, the authors retrieved
the set of hyperparameters which gave the best accuracy of the model in minimum execution time.

Steps:-
 First perform SBS.
 Find the most significant feature in remaining features. If it is the feature just removed, then let it be removed
and return to step 1.
 Keep repeating step 2 until we don’t have a feature in remaining adding which improves the accuracy.

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

11

These hyperparameter values is provided in table 4. Once the model is trained, testing is performed
using these values of hyperparameters obtained during the training process.

EXPERIMENTAL RESULTS

In this section, we explain the results of regression analysis and the model evaluation results obtained
after applying ML classifiers on the features obtained from wrapper methods.

Evaluation of results using regression analysis
In this section, the results of univariate and multivariate LR are discussed (due to space constraint,
the results are shown for Android 6.0 only). Similar observations were observed for Android 7.0.
Table 5 represents the results of univariate analysis in terms of the coefficient (B) and statistical
significance(sig.) for each metric. The parameter “sig” tells whether each of the metric is a significant
in predicting the dependent variable (change proneness). If the “sig” value of a metric is below or at
the significance threshold of 0.01 or 0.05, then the metric is said to be significant in predicting the
change prone classes. In this study, the threshold value is considered as 0.05 (significant values are
shown in bold in table 5). The coefficient “B” shows the strength of the independent variable. The
higher the value, the higher the impact of the independent variable is. The sign of the coefficient tells
whether the impact is positive or negative. Table 5 shows that only the metrics ALB, NOC, CDIM,
WMC, NPM and RCC are found to be not significant, whereas all the other metrics are found to be
significant predictors of change proneness.

Once the impact of each independent variable on the dependent variable is found, multivariate
LR is used to determine the combined effect of independent variables on the dependent variable. All
metrics are allowed to enter the model. The variables included in the model are shown in table 6. Table
6 shows that 23 metrics are included in the multivariate model. It can be observed from the table that
the ‘sig.’ value of all the variables included in the model is less than 0.05. The sign of the coefficient
of AL, ALB, CCB, CDCM, CDIM,CLB,CLCE,CLC,CS,ME,DIT,SCmetrics is negative, though it
was positive in the univariate analysis. This is due to suppressor relationships among independent
variables commonly observed in multivariate logistic regression analysis (Briand et al. 2000).

Table 7 shows the confusion matrix for this multivariate model which can be used to evaluate the
performance of the model. To evaluate the performance of the models (LR and machine learning),

Table 4. Description of machine learning techniques along with the values of parameters

Machine learning
technique

Description

K Nearest Neighbour
(KNN)

KNN is a classifying technique which does not make any assumptions on the underlying data
distribution. In KNN, the testing data is classified on the basis of its Euclidean distance from
the classes. We take the value of K as 4. The number of parallel workers is set to 10 so as to
reduce the total computational time.

Random Forest
(RF)

In this method, there are multiple individual decision trees that operate as an ensemble, each
of which gives a class prediction and the class with the highest number of votes is returned as
the model’s prediction. The number of decision trees taken in the random forest is 100. The
maximum depth of the tree is set to 2. The seed for generating random numbers is set to 58
which is the best possible value so far. The number of parallel workers is set to 10 so as to
reduce the total computational time.

Decision Tree
(DT)

It classifies the testing data by forming simple if-else statements which are deduced from
the features of the training data set. The maximum depth of the tree is set to 2. The seed for
generating random numbers is set to 58 which is the best possible value so far. The number of
parallel workers is set to 10 so as to reduce the total computational time.

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

12

Table 5. Result analysis of univariate regression

S.No. Metric B Sig. S.No. Metric B Sig.

1 AC (Average Cyclomatic) .211 0.000 23
CL (Count
Line) .001 0.000

2 ACM (Average Cyclomatic Modified) .291 0.000 24
CLB (Count
Line Blank) .002 0.000

3 ACS (Average Cyclomatic Strict) .204 0.000 25
LOC (Lines of
Code) .001 0.000

4 AE (Average Essential) .181 0.000 26

CLCD (Count
Line Code
Declared)

.004
0.000

5 AL (Average Line) .042 0.000 27

CLCE (Count
Line Code
Executed)

.004
0.000

6 ALB (Average Line Blank) .026 0.099 28

CLC
(Count Line
Comment)

.006
0.000

7 ALC (Average Line Code) .050 0.000 29
(CS) Count
Semicolon .004 0.000

8 ALCo (Average Line Comment) .078 0.000 30
CS (Count
Statement) .002 0.000

9 CCB (Count Class Base) .195 0.000 31

CSD (Count
Statement
Declared)

.003
0.000

10 CBO (Coupling Between Objects) .110 0.000 32

CSE (Count
Statement
Executed)

.004
0.000

11 NOC (Number Of Children) .000 0.697 33

MC
(Maximum
Cyclomatic)

.112
0.000

12 CDCM (Count Declared Class Method) .060 0.000 34

MCM
(Maximum
Cyclomatic
Modified)

.145

0.000

13 CDCV (Count Declared Class Variable) .045 0.000 35

MCS
(Maximum
Cyclomatic
Strict)

.097

0.000

14 CDIM (Count Declared Instance Method) .000 0.754 36

ME
(Maximum
Essential)

.177
0.000

15 CDF (Count Declared Function) -.896 0.000 37

DIT (Depth
of Inheritance
Tree)

-.108
0.000

16 CDIV (Count Declared Instance Variable) .129 0.000 38

MN
(Maximum
Nesting)

.544
0.000

17 WMC (Weighted Methods per Class) .042 0.327 39

LCOM (Lack
of Cohesion of
Methods)

.019
0.000

18 RFC (Response For a Class) .000 0.007 40

RCC (Ratio
Comment to
Code)

.009
0.422

19 CDMD (Count Declared Method Default) .207 0.000 41
SC (Sum
Cyclomatic) .002 0.000

20

NPRM (Number of Private Methods)
.171

0.000 42

SCM (Sum
Cyclomatic
Modified)

.002
0.000

21

NPROM (Number of Protected Methods)
.146

0.000 43

SCS (Sum
Cyclomatic
Strict)

.002
0.000

22
NPM (Number of Public Methods) .000 0.114 44

SE (Sum
Essential) .001 0.000

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

13

a popularly used performance measure known as accuracy is employed. Accuracy is the fraction of
predictions the model got right. In other words, it is defined as the ratio of correct predictions to the
total number of predictions (both correct and incorrect). It can be seen from table 7 that the out of a
total of 10068 classes, 7824 classes are correctly predicted. In other words, 6730 classes are correctly
predicted to be change prone and 1094 classes are correctly predicted to be not change prone. Thus,
the accuracy of the LR model is 77.77% which is good but much less as compared to the accuracy of
the models achieved using machine learning classifiers (discussed in coming section).

Evaluation of results using wrapper methods
This section depicts the performance of three classifiers used in the study viz. KNN, RF and DT in
terms of accuracy when the features have been reduced using four sequential search techniques of
wrapper methods viz. SFS, SBS, SFFS and SBFS.

The authors depict the results with the values obtained for k=1,9,18,27,36,44 where k is the
number of features obtained after feature selection. The authors aim to analyze the trend which can
be observed in the accuracy obtained on the basis of the number of features selected and thereby
studying that in order to get the best possible accuracy, should the number of features selected be
high, low or average. Table 8 and 9 show the performance of classifiers when empirical validation
has been conducted on Android 6.0 and Android 7.0 dataset respectively. The accuracy results are

Table 6. Metrics included in the multivariate regression model

S.No.
Metrics included in the

model B Sig. S.No.

Metrics
included in
the model B Sig.

1 SE .025 .001 12 CL .011 .000

2 AL -.026 .010 13 CLB -.027 .000

3 ALB -.160 .000 14 CLCE -.007 .000

4 ALC .052 .000 15 CLC -.008 .000

5 CCB -.099 .032 16 CS -.006 .001

6 CBO .081 .000 17 CSD .007 .004

7 CDCM -.026 .001 18 MC .033 .000

8 CDIM -.020 .003 19 ME -.056 .000

9 CDIV .024 .000 20 DIT -.231 .000

10 RFC .001 .000 21 LCOM .004 .000

11 CDMD .065 .000 22 SC -.028 .001

23 SCM .016 .028

Table 7. Confusion matrix for multivariate logistic regression

Predicted

0 (Not change prone) 1 (Change prone)

Actual 0 (Not change prone) 6730 420

1 (Change prone) 1824 1094

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

14

Table 8. Performance of classifiers with respect to different search techniques applied on Android 6.0dataset

SFS SBS

No. of features KNN RF DT No. of features KNN RF DT

1 76.15 76.55 79.47 1 76.15 76.55 79.47

9 85.73 77.26 99.76 9 85.63 77.10 99.76

18 85.76 77.15 99.80 18 86.06 77.08 99.80

27 86.19 77.01 99.80 27 86.03 77.07 99.80

36 85.91 76.92 99.80 36 86.16 77.14 99.80

44 85.78 76.80 99.80 44 85.78 76.80 99.80

SFFS SBFS

No. of features KNN RF DT No. of features KNN RF DT

1 77.37 76.55 79.47 1 76.03 76.55 79.47

9 82.85 77.12 99.76 9 83.01 77.29 99.78

18 82.97 77.28 99.80 18 83.37 77.23 99.80

27 83.15 77.16 99.80 27 82.90 77.16 99.80

36 83.36 77.05 99.80 36 82.82 77.22 99.80

44 82.78 76.80 99.80 44 82.78 76.80 99.80

Table 9. Performance of classifiers with respect to different search techniques applied on Android 7.0 dataset

SFS SBS

No. of features KNN RF DT No. of features KNN RF DT

1 74.69 74.54 77.11 1 72.82 74.54 77.11

9 81.51 75.28 99.73 9 84.99 75.08 99.73

18 81.53 75.14 99.78 18 85.30 74.84 99.78

27 81.70 75.21 99.78 27 85.53 74.88 99.78

36 81.89 74.99 99.78 36 85.57 75.04 99.78

44 81.50 73.96 99.78 44 81.50 73.96 99.78

SFFS SBFS

No. of features KNN RF DT No. of features KNN RF DT

1 74.69 74.54 77.11 1 74.69 74.54 77.11

9 81.51 75.34 99.73 9 81.51 75.19 99.73

18 81.53 75.25 99.78 18 81.53 75.17 99.78

27 81.95 75.03 99.78 27 81.95 75.11 99.78

36 82.14 75.03 99.78 36 81.76 75.05 99.78

44 81.50 73.96 99.78 44 81.50 73.96 99.78

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

15

also graphically represented in figures5(a-d) and 6(a-d) depicting the performance of classifiers when
SFS, SBS, SFFS and SBFS techniques have been applied on Android 6.0 and Android 7.0 dataset
respectively.

Let us first discuss the accuracy achieved by each of the classifiers when SFS technique has been
used for feature selection on Android 6.0 dataset. As it can be observed from table 8, DT achieves the
highest accuracy values for all the values of k, while RF achieves the lowest values of accuracy. The
accuracy in the case of each of the classifier increases as the value of k increases for lower values
of k, however, it decreases when k approaches the maximum value. The highest accuracy value for
each classifier is shown in bold. Analyzing the values of k at these highest accuracies show that in
none of the cases the highest accuracy is attained at k=1 or k=44. This shows that when features are
reduced, the accuracy increases but we have to carefully decide the minimum number of features. The
accuracy value corresponding to DT begins at 79.47% for k=1, keeps increasing till k=18, attaining
the value of 99.8% and then remains constant. The accuracy value for KNN begins at 76.15% for
k=1 and increases until k=27, reaching the value 86.19% and then starts decreasing. The accuracy
value observed for KNN is 85.78%when k=44, lower than the accuracy value corresponding to DT
but higher than that of RF. The accuracy value with respect to RF begins at 76.55% for k=1, a value
that is lower than the corresponding value of accuracy for DT but higher than KNN. The accuracy
increases till k=9, reaching as high as 77.26% and then decreases continuously to stop at 76.80%
for k=44. It can be observed that the most optimal results in general are obtained when the value of
k= 18 with DT chosen as the classifier. This observation is consistent with other feature selection
techniques viz. SBS, SFFS and SBFS too.

For Android 7.0, similar observations can be inferred. The highest accuracies are obtained
at k=9 for RF and k=18 for DT using all the feature selection techniques. When KNN is used,
highest accuracies are obtained at k=27 for all the feature selection techniques except SFFS which
shows highest accuracy at k=36. DT shows the highest accuracy of 99.78% at k=18 amongst all the

Figure 5. Accuracy results of classifiers when feature selection of Android 6.0 dataset has been done using (a) SFS, (b) SBS, (c)
SFFS, (d) SBFS

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

16

classifier with all the feature reduction techniques. As discussed above, same conclusion is drawn
from the results on Android 6.0. Thus, the authors recommend the use of DT for model prediction
after reducing the number of features.

APPLICATIoN oF THE woRK

The usage of software in every field of Network and Communication has become an integral part of
everyone’s lives. Due to multiple reasons such as ever changing demands of the customers, change
in technology in the market, identification of some bug etc. lead to upgradation of a software from
one version to the next. When software developers work on upgrading the version, lots of effort is
required leading to utilization of large amount of resources. The results of this work will be of interest
to researchers as well as practitioners from industry in reducing this effort in terms of time, money and
manpower required in development of software, thus leading to the delivery of software with better
quality. This is done by identifying those classes amongst other classes which may change during
later phases of development and thus, need careful attention by the developers, designers and testers.
Such classes ae termed as ‘change - prone’ classes. The authors in this paper have developed various
machine learning models which can be used to predict change-prone classes. Timely identification
of such classes would be of great benefit to the software developers from industry as these classes
play a critical role in design and architecture of the system. The architecture of the system once built
acts as the scaffolding in which the functionality of the system is delivered, thus ensuring that system
delivered meets the customer’s functional expectations and needs. Once the change - prone classes are
identified during the early phases, the architecture of the system can be altered easily. For example,
if a class ‘A’ is predicted to be change - prone, using the software metrics we can check its coupling,
cohesion, inheritance etc. Accordingly we can modify the architecture in the design phases such that
the values of these software metrics fall within the required range. In other words, certain corrective
measures can be taken to ensure the software delivered is error-free which is actually significant when
different versions of software are released frequently. The measurements derived from design can be
used as benchmark in organizations, to assess the quality of software products. Releasing software

Figure 6. Accuracy results of classifiers when feature selection of Android 7.0 dataset has been done using (a) SFS, (b) SBS, (c)
SFFS, (d) SBFS

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

17

of good quality leads to happy and satisfied customer. This leads in increasing the reputation and
status of the software organization (in which the software is developed) in the market. Thus, customer
satisfaction which is of utmost importance in today’s scenario is met. Also, design of the classes of
future release can be re-checked and better designs can be suggested.

THREATS To VALIDITy

The empirical validation in this work has certain limitations which may adversely affect the validity of
the results. These limitations are discussed in terms of four threats to validity, viz. construct validity,
internal validity, external validity and conclusion validity.

1. Construct Validity

This type of validity is one of the most important threats to validity. It is defined as the extent to
which the variables (independent and dependent variables) and the performance parameters precisely
measure the concept they intend to measure (Dean and Voss 1999, Zhou et al. 2009). This threat can
be due to the improper collection of the dependent variable and the independent variables. There have
been studies in research which have determined the accuracy of some of the OO metrics employed
in this study(Briand et al. 1998, 1999, 2000). As a result, this threat is reduced in the study. The
dependent and the independent variables in this study are collected using the tool known as CRG
(Malhotra et al. 2016) developed by the authors themselves. Due to this, the exact steps or procedure
to collect the dependent and the independent variables is known, which is important to provide for
an accurate assessment of their construct validity. Hence, the threat due to improper collection of the
variables is also reduced in this study. However, the authors have not taken into consideration the type
of change (corrective, adaptive, perfective or preventive) a class may go through which may pose a
threat on the evaluation of the results. In the future work, this threat can be reduced by considering
the type of change as well.

2. Internal Validity

This validity is defined as the degree to which conclusions can be drawn about the causal effect of
independent variable on the dependent variable” (Zhou et al. 2009). In this work, independent variables
used are a set of OO metrics measuring different concepts of OO paradigm. These independent
variables are not related to each other in any way. All these metrics together determine the value of
the dependent variable. It is not possible to determine the causal effect of each independent variable
on the dependent variable. In other words, goal of this study is to develop prediction models that will
identify change - prone classes rather than to discover the cause-effect relationships. Thus, the threat
to internal validity does not exist in the study.

3. External Validity

This validity deals with the generalization of the results obtained by the study. In other words, it
concerns itself with finding out whether the results produced by the study are applicable in different
domains or can be replicated in different scenarios for which the results are not evaluated (Harrison
et al. 2000). For this, all such information which is required for replicating the study should be
transparently available in the study. For example, the information about the availability of the dataset,
nature of the dataset, details of the approaches used in the paper and their default or tuned parameters
etc. should be clearly stated in the study. Since, in the present work, Android dataset used is an open
source dataset, the source codes of all the versions can be downloaded from https://source.android.

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

18

com/source/initializing.html. In addition to this, the authors have provided complete details of the
three versions that are analysed in this study in table 3. Moreover, for empirical validation, the authors
have written the programs in python. The classifiers have been implemented using scikit-learn
library. This library has in-built classifiers which can be called using functions. The functions take in
various parameters for the classifier to be built. The feature selection algorithm has been made using
another python library, namely mlxtend. The pseudo code of each of the feature selection algorithm
is provided and the parameters used for the machine learning classifiers are also mentioned in table
4. Using all this information, the results can be replicated and generalized across different datasets. In
this study, the authors have worked on different releases of software that large in size with the aim to
draw meaningful conclusions. However, we cannot consider it as a complete generalization wherein
the results could be applied universally. This is so because we are dealing with multiple versions of a
single software as of now. In the future, we will be comparing the results of different datasets across
different projects having diverse characteristics.

4. Conclusion Validity

This threat includes all those threats that may affect the conclusion of the study. In other words,
all the threats which may lead to improper results or conclusions of the study are called as conclusion
validity threats (Malhotra 2016). The authors in this study have not performed the statistical evaluation
of the results using statistical tests. Thus, this leads to a conclusion validity threat.

CoNCLUSIoN AND FUTURE woRK

The upcoming technologies in mobile phones have evolved rapidly over the last some years. Nowadays,
one of the essential needs of human beings is that of mobile phones. It helps everyone to be connected
to each other all the time and all the places. Amongst many other factors playing important role
in improving mobile’s technology, operating system is one of the important factor too. Android,
Symbian, iOS, Palm OS etc. are some of the commonly used operating systems of mobile integrated
with multiple user-friendly features. The most popularly and widely used mobile operating system
is Android. Android has seen multiple versions, the most recent one being Android 10.0 (officially
known as Android 10).Advancing from one version to a newer version requires a lot of effort in
terms of resources utilized. We know that the resources such as time, money and manpower are very
limited and thus, judicious use of such resources is very essential. In this paper, the broad objective
is to reduce this effort, thus leading to saving of resources. For doing this, machine learning models
are constructed which can be used during the initial phases of software development for identifying
certain parts of software which have a higher tendency to change in the later stages. Once such parts
(classes) are known, careful attention is required to be given to them in order to avoid wastage of
essential resources. The accuracy of such models should be high and high dimensionality play a
very important role in the accuracy of the models. The authors in this paper are working on feature
selection methods to reduce the dimensionality of the data.

In other words, feature selection is an important method that can be used for dimensionality
reduction of multi-dimensional data that we often encounter in real life situations. Feature selection can
be achieved via wrapper methods, filter methods or embedded methods but the authors choose wrapper
methods as they analyze the utility of a subset of features and return the best possible subset. Feature
selection can also be viewed in terms of searching techniques like sequential search, exponential search
and random search. However, the authors implemented sequential search techniques as they are greedy
optimization techniques that find the local optimum solution in polynomial time complexity and are
easy to implement, even with large datasets. Authors focused on the implementation of the four major
sequential feature selection techniques which are Sequential Forward Selection (SFS), Sequential

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

19

Backward Selection (SBS), Sequential Forward Floating Selection (SFFS) and Sequential Backward
Floating Selection (SBFS). In addition to the wrapper methods for selecting useful features, the authors
have also used statistical approach of regression analysis to extract the useful features. Univariate
and multivariate Logistic Regression have been used to extract useful features and constructing the
prediction model respectively. Empirical validation was conducted against three stable versions of
Android operating system, Android 6.0, Android 7.0 and Android 8.0. The dataset comprised of 44
independent variables. The aim is to reduce the number of features and select the most relevant ones
from this set. In order to achieve the above objective, prediction models are constructed using three
machine learning classifiers viz. K-Nearest Neighbor (KNN), Decision Tree (DT) and Random Forest
(RF). These models are used to identify those change prone classes of the software in early phases
of software development, leading to optimum utilization of limited resources.

Following are the important insights gathered from the results:

• DT classifier outperformed the remaining two classifiers (KNN and RF) depicting high values
of accuracy for each of the sequential feature selector used.

• With respect to KNN classifier, it was observed that SBS is the best sequential selector. On the
other hand, with respect to RF classifier, SFFS sequential classifier is the best.

• Highest value of accuracy was achieved when the number of features selected was 9 or 18 (in
general). Therefore, it can be inferred that either too high(44) or too low(1) number of features
selected leads to decrease in accuracy. So, we must choose the number of features which is
neither too high nor too low.

• The machine learning models (built using KNN, DT and RF) outperformed the statistical model
(built using multivariate Logistic Regression) by depicting higher values of accuracy. Thus, the
authors suggest the use of machine learning models for predicting the change prone classes of
Android operating system.

As future work, the authors plan to work on feature selection methods based on other searching
techniques as well, i.e. exponential search and random search so that a comparative analysis can be
done. For the purpose of empirical validation, the study can be extended on different datasets belong
to diverse domains. In addition to this, more machine learning techniques could be used so that a fair
and exhaustive evaluation is possible.

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

20

REFERENCES

Ang, J. C., Mirzal, A., Haron, H., & Hamed, H. N. A. (2016). Supervised, Unsupervised and Semisupervised
Feature Selection: A Review on Gene Selection. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 13(5), 971–989. doi:10.1109/TCBB.2015.2478454 PMID:26390495

Auxilia, M., Raja, K., & Kannan, K. (2020). Cloud-Based Access Control Framework for Effective Role
Provisioning in Business Application. International Journal of System Dynamics Applications, 9(1), 1–18.
doi:10.4018/IJSDA.2020010104

Bachu, V., & Anuradha, J. (2019). A Review of Feature Selection and Its Methods. Cybernetics and Information
Technologies, 19(1), 3–26. doi:10.2478/cait-2019-0001

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of Machine
Learning Research, 13, 281–305.

Bhardwaj, A. (2020). Health Insurance Claim Prediction Using Artificial Neural Networks. International Journal
of System Dynamics Applications, 9(3), 1–18.

Boehm, B., & Basili, V. R. (2001). Software defect reduction top 10 list. Computer, 34(1), 135–137.
doi:10.1109/2.962984

Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2014). Data classification using an ensemble
of filters. Neurocomputing, 135, 13–20. doi:10.1016/j.neucom.2013.03.067

Briand, L., Daly, J., & Wust, J. (1998). A unified framework for cohesion measurement in object-oriented
systems. Empirical Software Engineering, 3(1), 65–117. doi:10.1023/A:1009783721306

Briand, L., Daly, J., & Wust, J. (1999). A unified framework for coupling measurement in object-oriented systems.
IEEE Transactions on Software Engineering, 25(1), 91–121. doi:10.1109/32.748920

Briand, L., Wust, J., Daly, J. W., & Victor Porter, D. (2000). Exploring the relationship between design measures
and software quality in object-oriented Systems. Journal of Systems and Software, 51(3), 245–273. doi:10.1016/
S0164-1212(99)00102-8

Corbane, C., Baghdadi, N., Descombes, X., Wilson, G. J., Villeneuve, N., & Petit, M. (2009). Comparative
Study on the Performance of Multiparameter SAR Data for Operational Urban Areas Extraction Using Textural
Features. Geoscience and Remote Sensing Letters, IEEE, 6(11), 728–732. doi:10.1109/LGRS.2009.2024225

Dash, M., Liu, H., & Yao, J. (1997). Dimensionality Reduction of Unsupervised Data. Proceedings Ninth IEEE
International Conference on Tools with Artificial Intelligence. doi:10.1109/TAI.1997.632300

Dean, A., & Voss, D. (1999). Design and analysis of experiments. Springer. doi:10.1007/b97673

Elfouly, F. H., Ramadan, R. A., Mahmoud, M. I., & Dessouky, M. I. (2017). Efficient Data Reporting in a Multi-
Object Tracking Using WSNs. International Journal of System Dynamics Applications, 6(1), 1–20. doi:10.4018/
IJSDA.2017010103

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning
Research, 3, 1157–1182.

Hall, M. A., & Smith, L. A. (1999). Feature Selection for Machine Learning: Comparing a Correlation-based
Filter Approach to the Wrapper. Proceedings of the Twelfth International Florida Artificial Intelligence Research
Society Conference, 235-239.

Harrison, R., Counsell, S., & Nithi, R. (2000). Experimental Assessment of the Effect of Inheritance on the
Maintainability of Object-Oriented Systems. Journal of Systems and Software, 52(2-3), 173–179. doi:10.1016/
S0164-1212(99)00144-2

Hosmer, D., & Lemeshow, S. (1989). Applied logistic regression. Wiley.

Hu, Z., Bao, Y., Xiong, T., & Chiong, R. (2015). Hybrid filter–wrapper feature selection for short-term load
forecasting. Engineering Applications of Artificial Intelligence, 40, 17–27.

http://dx.doi.org/10.1109/TCBB.2015.2478454
http://www.ncbi.nlm.nih.gov/pubmed/26390495
http://dx.doi.org/10.4018/IJSDA.2020010104
http://dx.doi.org/10.2478/cait-2019-0001
http://dx.doi.org/10.1109/2.962984
http://dx.doi.org/10.1016/j.neucom.2013.03.067
http://dx.doi.org/10.1023/A:1009783721306
http://dx.doi.org/10.1109/32.748920
http://dx.doi.org/10.1016/S0164-1212(99)00102-8
http://dx.doi.org/10.1016/S0164-1212(99)00102-8
http://dx.doi.org/10.1109/LGRS.2009.2024225
http://dx.doi.org/10.1109/TAI.1997.632300
http://dx.doi.org/10.1007/b97673
http://dx.doi.org/10.4018/IJSDA.2017010103
http://dx.doi.org/10.4018/IJSDA.2017010103
http://dx.doi.org/10.1016/S0164-1212(99)00144-2
http://dx.doi.org/10.1016/S0164-1212(99)00144-2

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

21

Hussein, H. A. T., Ammar, M. E., & Moustafa Hassan, M. A. (2017). Three Phase Induction Motor’s Stator
Turns Fault Analysis Based on Artificial Intelligence. International Journal of System Dynamics Applications,
6(1), 1–19. doi:10.4018/IJSDA.2017070101

Jain, K., & Vailaya, A. (1996). Image Retrieval Using Color and Shape. Pattern Recognition, 29(8), 1233–1244.
doi:10.1016/0031-3203(95)00160-3

Jain, A., & Zonkar, D. (1997). Feature Selection: Application, Evaluation and small sample performance. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(2), 153–158. doi:10.1109/34.574797

Kagdi, H., & Maletic, J.I. (2016). Software-Change Prediction: Estimated+Actual. International Journal of
Computer Applications in Technology, 54(4), 240-256.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273–324.
doi:10.1016/S0004-3702(97)00043-X

Kumar, V., & Minz, S. (2015). Feature Selection: A literature Review. Proceedings of the Third International
Symposium on Women in Computing and Informatics, 31-37.

Kumari, A., Tripathi, R., Pal, M., & Chakraborty, S. (2012). Linear Search versus Binary Search: A statistical
comparison for binomial inputs. International Journal of Computer Science Engineering and Applications,
2(2), 29–39.

Ladha, L., & Deepa, T. (2011). Feature selection methods and algorithms. International Journal on Computer
Science and Engineering, 3(5), 1787–1797.

Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classiðcation and clustering. IEEE
Transactions on Knowledge and Data Engineering, 17(4), 491–502. doi:10.1109/TKDE.2005.66

Ma, S., & Huang, J. (2008). Penalized feature selection and classiðcation in bioinformatics. Briefings in
Bioinformatics, 9(5), 392–403. doi:10.1093/bib/bbn027 PMID:18562478

Majhi, S. K. (2018). An Efficient Feed Foreword Network Model with Sine Cosine Algorithm for Breast
Cancer Classification. International Journal of System Dynamics Applications, 7(2), 1–14. doi:10.4018/
IJSDA.2018040101

Malhotra, R. (2016). Empirical research in software engineering: concepts, analysis, and applications. CRC
Press, Taylor & Francis. doi:10.1201/b19292

Malhotra, R., Bansal, A., & Jajoria, S. (2016). An Automated Tool for Generating Change Report from Open-
Source Software. Int. Conference on Advances in Computing, Communications and Informatics (ICACCI).
doi:10.1109/ICACCI.2016.7732273

Maldonado, S., & Weber, R. (2009). A wrapper method for feature selection using Support Vector Machines.
Information Sciences, 179, 2208–2217.

Marcano-Cedeño, A., Quintanilla-Domínguez, J., Cortina-Januchs, M. G., & Andina, D. (2010). Feature Selection
Using Sequential Forward Selection and classification applying Artificial Metaplasticity Neural Network. 36th
Annual Conference on IEEE Industrial Electronics Society (IECON). doi:10.1109/IECON.2010.5675075

Padmaja, D. L., & Vishnuvardhan, B. (2016). Comparative Study of Feature Subset Selection Methods for
Dimensionality Reduction on Scientific Data. IEEE 6th International Conference on Advanced Computing (IACC).

Panda, M. (2019). Software Defect Prediction Using Hybrid Distribution Base Balance Instance Selection
and Radial Basis Function Classifier. International Journal of System Dynamics Applications, 8(3), 53–75.
doi:10.4018/IJSDA.2019070103

Peralta, D., Rios, S., Ramirez-Gallegos, S., Triguero, I., Benitez, J. M., & Herrera, F. (2015). Evolutionary
Feature Selection for Big Data Classification: A MapReduce Approach. Mathematical Problems in Engineering,
2015, 1–11. doi:10.1155/2015/246139

Pudil, P., Novovicova, J., & Kittler, J. (1993). Floating search methods in feature selection. Pattern Recognition
Letters, 15(11), 1119–1125. doi:10.1016/0167-8655(94)90127-9

http://dx.doi.org/10.4018/IJSDA.2017070101
http://dx.doi.org/10.1016/0031-3203(95)00160-3
http://dx.doi.org/10.1109/34.574797
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.1109/TKDE.2005.66
http://dx.doi.org/10.1093/bib/bbn027
http://www.ncbi.nlm.nih.gov/pubmed/18562478
http://dx.doi.org/10.4018/IJSDA.2018040101
http://dx.doi.org/10.4018/IJSDA.2018040101
http://dx.doi.org/10.1201/b19292
http://dx.doi.org/10.1109/ICACCI.2016.7732273
http://dx.doi.org/10.1109/IECON.2010.5675075
http://dx.doi.org/10.4018/IJSDA.2019070103
http://dx.doi.org/10.1155/2015/246139
http://dx.doi.org/10.1016/0167-8655(94)90127-9

International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

22

J. A. Jain is an Assistant Professor at the Department of Computer Science Engineering, Shaheed Rajguru College
of Applied Sciences for Women, Delhi University, India. Prior to joining the college, she worked as full-time research
scholar and received a doctoral research fellowship from Delhi Technological University (formerly Delhi College of
Engineering). She received her master’s and doctorate degree in software engineering from Delhi Technological
University. Her research interests are IoT, networks and communication, data mining, software quality, and statistical
and machine learning models. She has published papers in International journals and conferences.

A. Bansal is an Assistant Professor at the Department of Information Technology, Netaji Subhas University of
Technology (formerly known as Netaji Subhas Institute of Technology), Delhi, India. Prior to joining the university,
Ankita Bansal worked as full-time research scholar at Delhi Technological University (formerly Delhi College of
Engineering), Delhi, India. She received her master’s and doctoral degree in computer science from Delhi College
of Engineering. Her research interests are network models, communication technology, IoT, software quality, soft
computing, database management, machine learning and meta heuristic models. She has published papers in
international journals and conferences.

Rattanawadee, P., & Srivihok, A. (2015). Wrapper Feature Subset Selection for Dimension Reduction Based
on Ensemble Learning Algorithm. Procedia Computer Science, 72, 162–169. doi:10.1016/j.procs.2015.12.117

Rodriguez-Galiano, V.F., Luque-Espinar, J.A., Chica-Olmo, M., & Mendes, M.P. (2018). Feature selection
approaches for predictive modelling of groundwater nitrate pollution: An evaluation of filters, embedded and
wrapper methods. Science of the Total Environment, 624, 661–672.

Saeys, Y., Inza, I., & Larraaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics
(Oxford, England), 23(19), 2507–2517. doi:10.1093/bioinformatics/btm344 PMID:17720704

S’anchez-Maro˜no, N., Alonso-Betanzos, A., & Tombilla-Sanrom’an, M. (2007). Filter Methods for Feature
Selection- A Comparative Study. In H. Yin, P. Tino, E. Corchado, W. Byrne, & X. Yao (Eds.), Lecture Notes
in Computer Science: Vol. 4881. Intelligent Data Engineering and Automated Learning - IDEAL 2007 (pp.
178–187). Springer. doi:10.1007/978-3-540-77226-2_19

Setiono, R., & Liu, H. (1996). A probabilistic approach to feature selection - a filter solution. ICML’96 Proceedings
of the Thirteenth International Conference on International Conference on Machine Learning Pages, 319-327.

Sharma, V. S., Ramnani, R. R., & Sengupta, S. (2014). A framework for identifying and analyzing non-functional
requirements from text. Proceedings of the 4th International Workshop on Twin Peaks of Requirements and
Architecture. doi:10.1145/2593861.2593862

Singh, A., Halgamuge, M. N., & Lakshmiganthan, R. (2017). Impact of Different Data Types on Classifier
Performance of Random Forest, Naïve Bayes, and K-Nearest Neighbors Algorithms. International Journal
of Advanced Computer Science and Applications, 8(12). Advance online publication. doi:10.14569/
IJACSA.2017.081201

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Society
of Arts, 36(2), 111–114. doi:10.1111/j.2517-6161.1974.tb00994.x

Yang, P., Liu, W., Zhou, B. B., Chawla, S., & Zomaya, A. Y. (2013). Ensemble-Based Wrapper Methods for
Feature Selection and Class Imbalance Learning. In J. Pei, V. S. Tseng, L. Cao, H. Motoda, & G. Xu (Eds.),
Lecture Notes in Computer Science: Vol. 7818. Advances in Knowledge Discovery and Data Mining. PAKDD
2013. Springer. doi:10.1007/978-3-642-37453-1_45

Yang, Y., & Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text Categorization. ICML
‘97 Proceedings of the Fourteenth International Conference on Machine Learning Pages, 412-420.

Wu, S., Hu, Y., Wang, W., Feng, X., & Shu, W. (2013). Application of global optimization methods for feature
selection and machine learning. Mathematical Problems in Engineering, •••, 1–9.

Zhou, Y., Leung, H., & Xu, B. (2009). Examining the Potentially Confounding Effect of Class Size on the
Associations between Object-Oriented Metrics and Change-Proneness. IEEE Transactions on Software
Engineering, 35(5), 607–623. doi:10.1109/TSE.2009.32

Zhuo, L., Zheng, J., Li, X., Wang, F., Ai, B., & Qian, J. (2008). A genetic algorithm based wrapper feature
selection method for classification of hyperspectral images using support vector machine. Proc. SPIE 7147,
Geoinformatics and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images,
71471. doi:10.1117/12.813256

http://dx.doi.org/10.1016/j.procs.2015.12.117
http://dx.doi.org/10.1093/bioinformatics/btm344
http://www.ncbi.nlm.nih.gov/pubmed/17720704
http://dx.doi.org/10.1007/978-3-540-77226-2_19
http://dx.doi.org/10.1145/2593861.2593862
http://dx.doi.org/10.14569/IJACSA.2017.081201
http://dx.doi.org/10.14569/IJACSA.2017.081201
http://dx.doi.org/10.1111/j.2517-6161.1974.tb00994.x
http://dx.doi.org/10.1007/978-3-642-37453-1_45
http://dx.doi.org/10.1109/TSE.2009.32
http://dx.doi.org/10.1117/12.813256

