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ABSTRACT

The need of the customers to be connected to the network at all times has led to the evolution of mobile 
technology. Operating systems play a vitol role when we talk of technology. Nowadays, Android 
is one of the popularly used operating system in mobile phones. The authors have analysed three 
stable versions of Android, 6.0, 7.0, and 8.0. Incorporating a change in the version after it is released 
requires a lot of rework and thus huge amount of costs are incurred. In this paper, the aim is to reduce 
this rework by identifying certain parts of a version during early phase of development which need 
careful attention. Machine learning prediction models are developed to identify the parts which are 
more prone to changes. The accuracy of such models should be high as the developers heavily rely 
on them. The high dimensionality of the dataset may hamper the accuracy of the models. Thus, the 
authors explore four dimensionality reduction techniques, which are unexplored in the field of network 
and communication. The results concluded that the accuracy improves after reducing the features.
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INTRoDUCTIoN

In today’s rapidly growing industry, it is very essential to build an effective and reliable connectivity to 
establish an efficient communication among the clients and employees of any business organization. 
Communication involves sharing of critical information between the user and the organization 
where security plays a key role in terms of privacy (Auxilia et al., 2020). The customers want to be 
connected and be able to communicate with any business organization at any time and from anywhere. 
The demand of being connected 24/7 is only possible due to the evolution of mobile and Internet 
technology. The availability of newer operating systems in the competing market plays a significant 
role in improving the mobile technology. Among many other characteristics and applications; one 
of the distinguishing characteristics offered by mobile operating systems is that the users can get 
connected to the internet using the wireless service provider of their smart phones which is cost 
effective as the mobile system is completely wireless leading to benefits like saving of money and 
space as compared to wired sensor network (Elfouly et al., 2017). Various types of operating systems 
are available in the market, the most popular being Android. Android has seen various versions starting 
from version 1.0, then1.5, 1.6, 2.1, 2.2, 2.3, 3.0and so on. Each version has the improvements over 
the previous one and thus, it is always advisable to go with the latest version. The upgradation of a 



International Journal of System Dynamics Applications
Volume 11 • Issue 2 • July-December 2022

2

version to a higher version may be due to a number of reasons, such as identification of some bug 
in the previous version, change in the customers’ demands, change in technology in the market, etc. 
We can also see that change is the need of the hour and we as humans must adapt to those changes. 
However, seeing from the end of developer’s site, we should understand that incorporating a change 
due to any of the above listed reason resulting in a new version is not at all an easy task. It comes with 
lots of difficulty and requires huge amount of resources in terms of time, money and manpower. To 
elaborate on this, let us understand that the development of a software goes through certain stages 
before it can be deployed. Incorporating a change in any part of the software (due to any of the reasons 
stated above) may need widespread changes in different parts of the software and thus lots of rework 
is required (Sharma et al. 2014). Cost and effort of this rework significantly increases with the stages 
in software development lifecycle (Boehm and Basili 2001).

The authors in this paper aim to work in the direction of reducing the rework and thus, saving of 
cost and other resources. For this, the three stable versions of Android, viz Android 6.0 (Marshmallow), 
Android 7.0 (Nougat) and Android 8.0 (Oreo) are analysed. Each version is fairly large in size consisting 
of a large number of classes. Due to the availability of limited resources, the developers fail to pay 
equal attention to all the classes, leading to poor quality software. Thus, the main idea revolves around 
identification of those classes which are more vulnerable to changes in the next software update. The 
authors have constructed the prediction models which can be used by the developers/designers in the 
early phases of software development to identify the classes which need focussed attention. Next, we 
discuss about the correctness or accuracy of the constructed prediction model. Since the developers 
are relying on these models for identifying the classes, it is very important that the model should be 
as accurate as possible. The high dimensionality of the dataset is one of the hindrance which may 
hamper the accuracy of the models. In addition to this, the high index of features (high dimensionality) 
makes the computation of data an expensive and tedious task (Rattanawadee and Srivihok, 2015). 
Dimensionality Reduction refers to the process of reducing the number of dimensions of a given data 
set. This leads to a reduction in the number of variables and utilization of a group of prime variables.

In this paper, the authors have used feature selection algorithms for selecting a subset of 
relevant features from a given set of features such that they would yield the most optimum results 
while building an effective and efficient predictive model (Padmaja and Vishnuvardhan, 2016).The 
literature shows the wide use of traditional statistical method known as regression analysis to extract 
the useful features. In this study, univariate Logistic Regression (LR) is used to find the effect of 
each independent variable with the dependent variable. Thereafter, multivariate LR is also used for 
constructing the model. In addition to the regression analysis which is a statistical approach, there 
are much newer and popularly used feature selection techniques broadly classified under the three 
approaches: filter approach, wrapper approach and embedded approach (Bachu and Anuradha 2019). 
While filter approach focuses on the data instead of the algorithm used for mining it and gathering 
the relevant information by analysing the nature of the data, the wrapper approach focuses on the 
applicability or pertinence of each feature and the optimality of the solution thus obtained (Bolón-
Canedo et al. 2014). The embedded approach, on the other hand, is more focused and aims towards 
optimizing the model for a particular training algorithm. In this research, the authors have analysed 
four sequential search techniques viz. Sequential Forward Selection (SFS), Sequential Backward 
Selection (SBS), Sequential Forward Floating Selection (SFFS) and Sequential Backward Floating 
Selection (SBFS) that are employed by wrapper methods for feature selection. The authors found that 
the usage of these sequential search techniques in different domains such as gene selection, big data 
classification, pattern recognition and image recognition (Pudil et al. 1993 and Peralta et al. 2015) 
have produced promising results. However, these techniques are unexplored in the field of networks 
and communication. Thus, this motivated the authors to explore these search techniques to reduce 
the features of popular mobile technology, Android.

To determine the efficiency of these sequential search techniques, the prediction models are 
constructed using three popularly used machine learning classifiers viz. K-Nearest Neighbor (KNN), 
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Decision Tree (DT) and Random Forest (RF). In other words, after selecting useful features with each 
of the four sequential search techniques, the dataset is trained and tested using KNN, DT and RF. 
The authors also observed the relation between the number of features selected and the performance 
of the searching technique.

The results showed that the maximum accuracy was observed in the mid region where the number 
of features selected was neither too high nor too low. It was observed that the accuracy increases 
as the number of features increases from 1 upto the mid - range. There is a slight fluctuation in the 
accuracy for the mid values and it eventually decreases as the number of features reaches the maximum 
value. In addition to this, when comparing and analysing the accuracy of the models obtained using 
multivariate LR and the machine learning models, the authors observed that all the machine learning 
models outperformed the statistical model.

In this paper, the authors aim to find answers to the following Research Questions (RQs):

RQ1: How did the sequential search techniques used to reduce the number of features perform in the 
field of communication, i.e. on the datasets of Android operating system?

RQ2: How did the performance of machine learning classifiers improve when the number of features 
are reduced?

RQ3: What trend can be observed in the values of accuracy at different number of features selected? 
Is the highest accuracy achieved at the lowest possible value of number of features?

RQ4: How did multivariate LR model compare with the machine learning models in predicting the 
change prone classes of Android operating system?

This paper is organized as follows. Following this section, the related work is given which 
discusses the work done related to feature selection methods. Next section explains the concept 
and process of feature selection used to select the optimal set of features. Further, it highlights the 
different kinds of feature selection strategies and various searching techniques which can be used to 
implement it. After this, the background of the research which includes the details about the empirical 
data collection and the variables used are explained It also summarizes the empirical data used to 
validate the results. Next section explains the framework and design of the research. This is followed 
by the discussion of results. Application of the work and threats to validity are discussed thereafter. 
Finally, the work is concluded providing important insights.

RELATED woRK

Research shows that the majority of existing work on feature selection does not focus on change 
prediction. The authors chose to implement various wrapper selection methods for feature reduction 
to predict change prone classes of open source software as a large number of studies have found 
that wrapper methods perform best (Kohavi& John, 1997), especially while dealing with lower 
dimensionality. Wrapper methods like genetic search and sequential forward selection carry out a 
search over the set of all viable subsets of features, continually calling the induction algorithm as a 
procedure to assess multiple feature subsets. Work based on feature selection carried out in the past 
for textual problems turned out to be of great assistance in providing motivation and guidance for 
this study, which highlights a more substantial variety of metrics. For instance, the authors (Yang & 
Pedersen, 1997) have examined five feature selection metrics on the common Reuters dataset and 
OHSUMED. In the papers (Guyon & Elisseeff, 2003 and Liu & Yu, 2005),a thorough study for feature 
(or variable) selection have been done in the domain of machine learning and statistics. In the paper by 
Saeys et al. (2007), authors have worked in the domain of bioinformatics by applying feature selection 
techniques. The work was done in the field of wrapper and filter methods being studied. In the paper 
by Ma & Huang (2008), the selection of features is done on the basis of sparse regularization. The 
authors Yang et al. (2013) have proposed an ensemble-based wrapper approach for feature selection 
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from data with highly imbalanced class distribution by creating multiple balanced datasets from the 
original imbalanced dataset using sampling and then evaluating feature subsets using an ensemble of 
base classifiers each trained on a balanced dataset. The authors Zhou et al. (2008) presented a Genetic 
Algorithm (GA) based wrapper method which solves optimization problems using the methods of 
evolution and is based on survival of the fittest. Their work is based on the classification of hyper 
spectral data using Support Vector Machine (SVM). The authors (Maldonado and Weber, 2009) had 
introduced a novel wrapper algorithm for feature selection using SVM with kernel functions. Similar 
work was also done by the authors Rodriguez-Galiano et al. (2018) and Hu et al. (2015).

FEATURE SELECTIoN

Feature selection is a technique of dimensionality reduction which being very popular, has been a matter 
of research in the recent times. It aims at reducing the number of features and providing a subset of 
the most optimal ones. The process of feature selection process has been highlighted in figure 1. It can 
be summarized as constituting of the following major steps; creating a subset, assessing the generated 
subset, checking for the stopping condition and finally testing and validating the result. Following are 
the advantages of feature selection for dimensionality reduction (Ladha and Deepa, 2011):-

1.  Removes the un-important and useless data from the data set.
2.  Makes the algorithm more efficient, thereby reducing the time taken by the algorithm to infer 

results.
3.  Overcomes the curse of dimensionality. Curse of dimensionality refers to the difficulties (mainly 

time and resource constraints) faced in analyzing high dimensional data.
4.  Improves the accuracy and performance of the models.

There are three main feature selection methods, namely; filter methods, wrapper methods 
and embedded methods (Ladha and Deepa 2011). Filter methods are usually implemented in the 
preconditioning stage. In these methods, the subset of features is picked on the grounds of the 
correlation value of the features with the output. There are four types of filter methods viz. Linear 
Discriminant Analysis, Pearson’s Correlation, Chi-square and Analysis of Variance. Figure 2 highlights 
the process followed by filter methods to obtain a feature subset. Wrapper methods train a prediction 
model by using different subsets of features (Ang et. al, 2015). Based on the performance of the 
machine learning algorithm, we select the best subset of features from the given dataset. We may 
choose to include or exclude a feature based on the basis of the performance of a subset. Wrapper 

Figure 1. Process of feature selection
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methods can be classified into two categories, namely; forward selection and backward elimination. 
In Forward Selection, we start with a void set of features, and keep adding new features in the set 
with each iteration. On the other hand, in backward elimination, we start a full set of features and 
keep on eliminating the most useless feature in the entire set with each iteration. Figure 3 shows the 
process followed by wrapper methods to obtain a feature subset. Embedded methods amalgamate 
the good attributes of wrapper and filter methods. However, they are complex in implementation. 
The differences between filter and wrapper methods have been summarized in table 1.Selecting the 
right feature selection method is a crucial step in determining the efficiency of the algorithm used 
along with the optimal subset of features to be used. Feature selection speeds up the training of the 
algorithm used. It also lowers the dimensionality of the dataset, thereby reducing the computational 
cost and time.

Wrapper methods can be implemented by using various search techniques (Kumari et. al, 2012) 
which can be categorized as exponential search, random search and sequential search. Exponential 
search, which may be referred to as total search or complete search, is a comprehensive approach. 
Although the results that it provides are superlative, this approach takes exponential time to execute. 
Thus, it cannot be used for large datasets or medium size datasets. An example of the same is Brute-
Force search which looks for the solution in each subset. On the other hand, random search, as the 
name suggests, commences by picking features in a random fashion and then progresses with either 
of the following search techniques. The first one is a two-way searching approach, like simulated 
annealing and random hill-climbing. The second one uses techniques which have no uniform variation 
e.g., Genetic Algorithm (GA) and Tabu search. Finally, sequential search is a greedy optimization 
technique that finds the local optimum solution. Sequential search can be categorized into four types, 
namely; Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential 
Forward Floating Selection (SFFS) and Sequential Backward Floating Selection (SBFS) which have 
been explained later in the paper.

Figure 2. Process followed by filter methods in order to obtain feature subset.

Figure 3. Process followed by wrapper methods to obtain the feature subset.

Table 1. Difference between wrapper and filter methods

PARAMETER FILTER METHODS WRAPPER METHODS

Criteria of selection Correlation between output variables and features Utility of a subset of features

Time Complexity These are faster than wrapper methods because they do not 
require training of mode with each subset.

These are slower than filter 
methods.

Evaluation Technique Statistical methods Cross Validation

Correctness Might not be able to find the best solution available Best Subset of features
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Table 2 illustrates the comparison between different searching techniques used by the wrapper 
methods. It can be seen from table 2 that the sequential search techniques can be implemented in 
polynomial time as contrast to exponential search techniques. Although the complexity of randomized 
search techniques is also polynomial, but it is not suitable for large datasets and it is difficult to be 
implemented as compared to the sequential search techniques. Since both the datasets used in this 
paper are large in size, the authors choose to work on sequential search techniques. The authors 
mainly focus on sequential search techniques (SFS, SBS, SFFS, SBFS) used by wrapper methods 
and explore their working, optimality and performance. It was observed that the above mentioned 
techniques have been widely used in different domains such as gene selection, big data classification, 
pattern recognition and image recognition (Pudil et al. 1993 and Peralta et al. 2015) and have produced 
promising results. This provides a motivation to the authors to explore these techniques in the field 
of communication and network.

RESEARCH BACKGRoUND

This section focuses on the dataset used highlighting the details of the same. Also, the section 
elaborates on the independent and dependent variables used in the study.

Empirical Data Collection
For empirical data collection, we have used Android operating system. Android is currently one of 
the most popular operating system being used in mobile phones and tablets. There are number of 
versions of Android released in the market till date. The first stable version released was Android 
2.3, known by the name of Gingerbread and the latest version is Android 10.0. In this study, we have 
analyzed the three recent stable versions, Android 6.0, known as Marshmallow, Android 7.0, known 
as Nougat and Android 8.0, known as Oreo. Since Android is an open source dataset, we downloaded 
the source code of all these versions from https://source.android.com/source/initializing.html. The 
details of each version which includes their common name, the total number of classes, the number of 
classes changed (change - prone classes) and the release date are shown in table 3. The total number 
of classes is the common classes between the two successive versions. For example, table 3 shows that 
the total number of classes of Android 6.0 is 10,068. This implies that the common classes between 
Android 6.0 and Android 7.0 are 10,068.

Independent and Dependent Variables
The dataset consists of 44 independent variables and 1 dependent variable. The independent variables 
are various Object Oriented (OO) metrics used to determine OO relationships like coupling, cohesion, 
inheritance etc. The independent variables are provided in table 5. The independent variables are 
discrete in nature. The dependent variable on the other hand is binary in nature and is used to determine 
whether the class changes in the next version or not. Its value is 0 for a class if it has not changed 

Table 2. Comparison between different searching techniques

PARAMETER EXPONENTIAL RANDOMISED SEQUENTIAL

Complexity Exponential Polynomial Polynomial

Type of Algorithm Brute Force Greedy Greedy

Implementation Difficult to implement Easier than exponential but more difficult 
than sequential

Easy to implement

Target dataset size Small datasets Small/Medium, but might produce 
incorrect results

Large datasets
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in the next version and the value is 1 if it has changed in the next version in terms of number of 
lines added, deleted and modified. This data consisting of independent and the dependent variable 
is collected with the help of a tool known as Change Report Generator (CRG) developed by one of 
the authors (Malhotra et al. 2016).

RESEARCH DESIGN

This section presents the research design used for empirical analysis of change prediction. As depicted 
in figure 4, the work in this study is conducted in three main phases viz. data filtration using regression 
analysis and wrapper methods in order to achieve optimal subset of features, thereafter model prediction 
by applying suitable statistical and machine learning algorithms and finally assessing the performance 
of the predicted models using suitable performance evaluation measure. Each of the phases has been 
explained in the subsequent sub-sections along with the methods/techniques followed in that phase.

Data Filtration Using Regression Analysis
In this study, the authors have used a statistical approach known as Logistic Regression (LR) to 
identify the useful features and for model building. LR is used to predict the dependent variable 
from a set of independent variables (Hosmer and Lameshow 1989). The authors have used LR as 
the outcome variable is binary or dichotomous (0 or 1). Both univariate and multivariate regression 
have been used in this study. Univariate logistic regression is used to find the relationship between the 
dependent variable and each independent variable. It finds whether there is any significant association 
between them. Multivariate logistic regression analyses which metrics are useful when they are used 
in combination. It is used to construct a prediction model used for identifying the change prone classes. 
To construct the multivariate model, metrics can be fed into the model using two stepwise selection 
methods, which are forward selection and backward elimination (Hosmer and Lameshow 1989). 
Forward selection examines the variables that are selected one at a time for entry at each step. The 
backward elimination method includes all the independent variables in the model and the variables 
are deleted one at a time from the model until the stopping criteria is fulfilled. However, the results 
of the model obtained using forward selection were poorer (i.e. the values of R2 and log-likelihood 
statistic defined below were low) than the model obtained from the backward elimination procedure. 
The authors therefore used backward elimination method in this study.

The general multivariate logistic regression formula is as follows:
Prob (X1, X2, …, Xn) =
where g(x) = B0 + B1*X1 + B2* X2 + … + Bn* Xn
‘prob’ is the probability of a class being change prone
Xi, (1£ i £ n) are independent variables

Data Filtration Using wrapper Methods
In this sub-section, we discuss about the working of different wrapper methods which we have 
applied for the process of feature selection. The reduced feature set that is obtained as a result of 

Table 3. Details of the dataset used

Version Commonly known 
as

Total Number of 
Classes

Number of Classes 
Changed

Release Date

Android 6.0 Marshmallow 10,068 2918 October 5, 2015

Android 7.0 Nougat 11,428 3696 August 22, 2016

Android 8.0 Oreo - - August 21, 2017
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application of these wrapper methods is used for developing the prediction models. According to 
S´anchez-Maro˜no et al. (2007) and Setiono & Liu (1996), wrapper methods explore all possible 
combinations of the features and find the one that generates the best results for any given machine 
learning algorithm. Wrapper methods employ greedy search algorithms. As already mentioned, there 
are four main types of sequential search techniques (SFS, SBS, SFFS, SBFS) used to implement 
wrapper methods. Description of each of these search techniques has been presented below. The 
section also discusses the implementation of these techniques in terms of their pseudo code and 
how the code was implemented in python. The authors have written the programs in python. The 
classifiers have been implemented using scikit-learn library. This library has in-built classifiers 
which can be called using functions. The functions take in various parameters for the classifier to be 
built. The feature selection algorithm has been made using another python library, namely mlxtend. 
This is an open source python library which provides machine learning and data science utilities to 
python’s computing stack. They have used the functional sequential feature selector implemented in 
this library. The function takes in parameters through which we determine if the algorithm is floating 
or not, and whether the algorithm is forward or not. Furthermore, it takes as an input the classifier 
which we implemented using the scikit-learn library of python.

In order to understand the working of these techniques, let us assume that there are D features 
in a dataset but we want only K features.

Sequential Forward Selection (SFS)
According to Marcano-Cedeño et al. (2010), begin with a void set of features and add features to the 
set one by one, measuring accuracy of the machine learning model at each step. The feature giving 
the maximum accuracy is retained. The process is repeated K times, in order to store K elements in 
the set. The final set thus obtained gives the maximum possible accuracy with the desired number 
of features.

Pseudo code of SFS

Sequential Backward Selection (SBS)
Begin with a set containing all the D features. For each of the (D - K) iterations, each feature is 
removed one by one and the corresponding change in accuracy is noted. The feature with the highest 
reduction in accuracy is removed. In the end, K features are left which give us the maximum accuracy.

Process starts with F1 (a set containing no elements) and the method takes in a number of parameters viz. the classifier 
to be used, the number of features to select (k), the scoring function and the cross validation. Let Xj be a random 
variable for feature j and Y be the variable that determines the class label (e.g., healthy vs. unhealthy).
Steps:- 
               Firstly, a feature Xj is chosen which maximizes the objective function J that takes in the arguments Xj, Y, and 
F1. 
               1. The feature Xj that maximizes the objective function is added to F1 and removed from F. This process is 
repeated until the [REMOVED HYPERLINK FIELD]cardinality of F1 is k.
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Pseudo code of SBS

Sequential Forward Floating Selection (SFFS)
According to Solberg et al (1997), for each step of SFFS, perform the corresponding step of SFS and 
then find the worst feature in the feature set. Then remove that feature from the feature set if removing 
it increases the accuracy. Continue removing the worst features as long as the accuracy after removing 
that feature is greater than the one provided by the SFS set. Then move to the next iteration.

Pseudo code of SFFS

Sequential Backward Floating Selection (SBFS)
According to Dash et al. (1997) and Wu et al. (2013), for each step of SBFS, perform the corresponding 
step of SBS and then find the best feature in the feature set. Insert that feature into the feature set if 

Figure 4. Framework of the study

The process starts with F1 (Set of all features), and the method takes in a number of parameters, viz. the classifier to be 
used, the number of features to select (k), the scoring function and the cross validation. Let Xj be a random variable for 
feature j and Y be the variable that determines the class label (e.g., healthy vs. unhealthy)
Steps:- 
               Firstly, feature Xj is chosen which minimizes the objective function J that takes in the arguments Xj, Y, and F1.
               1. The feature Xj that minimizes the objective function is removed from F1. This process is repeated until the 
[REMOVED HYPERLINK FIELD]cardinality of F1 is k.

Process starts with F1 (a set containing no elements) 
Steps: 
               Perform SFS. 
               Find the least significant feature in F1. If it is the feature just added, then keep it and return to step 1. 
Otherwise, exclude the feature k. 
               Keep repeating step 2 until we don’t have a feature in F1 removing which improves the accuracy.
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adding it increases the accuracy. Continue inserting the best features as long as the accuracy after 
adding that feature is greater than the one provided by the SBS set. Then move to the next iteration.

Pseudo code of SBFS

Model Development using Machine Learning Classifiers
Machine learning involves predicting and classifying data and to do so, various machine learning 
models are used in literature. There are a number of machine learning classifiers available in the 
literature which are widely used in the classification problems pertaining to diverse fields like software 
defect prediction and fault severity (Panda, 2019, Hussein et al. 2017), breast cancer classification 
(Majhi, 2018), health insurance claim prediction (Bhardwaj, 2020) etc. Machine learning classifiers 
have gained huge popularity in the recent years due to their capability in capturing complex nonlinear 
relationships among variables. Thus, the authors are motivated to explore the three most popularly 
used machine learning classifiers viz. K Nearest Neighbour, Random Forest and Decision Tree as 
their usage is minimal in the field of network for predicting the change prone classes of Android 
operating system. The overview of these machine learning classifiers is presented in table 4 (Singh 
et al. 2017, Jain & Vailaya 1996 and Corbane et al. 2009).

Machine learning models have certain parameters (also known as hyperparameters) which can 
be arbitrarily set by the user before the training process according to a given problem. However, it 
is challenging to know what values to use for the hyperparameters of a given algorithm on a given 
dataset. Moreover, there are many hyperparameters associated with each machine learning model 
and more the hyperparameters we need to tune, the slower the tuning process becomes. Not all model 
hyperparameters are equally important and some hyperparameters have an outsized effect on the 
behavior, and in turn, the performance of a machine learning algorithm. Therefore, it is desirable to 
select a minimum subset of model hyperparameters to search or tune.

In this paper, the authors have used the Random Search strategy (Bergstraand and Bengio, 2012) 
for hyperparameter optimization. In this study, the criteria for selecting the right set of hyperparameters 
is governed by the following two requirements: (1) minimum execution time and (2) maximum 
accuracy of the model.

In Random Search, a grid of hyperparameters is created which consists of some random values of 
these hyperparameters. The results of performance would be highly optimistic if training and testing 
are done the same dataset. Thus, in this study, we have used k-cross validation wherein a single dataset 
is divided into k parts, out of which one part is used for testing and the remaining other parts are used 
for training the model (Stone 1974). This process is repeated k number of times, so that each of the 
k part is used for testing once. In this study, the value of k is taken as 10. In addition to obtaining 
unbiased results using cross validation, it also has an another important advantage when implementing 
hyperparameter optimization. Since cross validation allows the dataset to be partitioned into training 
and testing sets, the authors have avoided using the hyperparameters which worked good on training 
data but not so good with the test data.

The authors implemented Random Search using a utility provided by Scikit-learn (Phython) 
known as RandomSearchCV. Using the scikit-learn best-estimator attribute, the authors retrieved 
the set of hyperparameters which gave the best accuracy of the model in minimum execution time. 

Steps:- 
               First perform SBS. 
               Find the most significant feature in remaining features. If it is the feature just removed, then let it be removed 
and return to step 1. 
               Keep repeating step 2 until we don’t have a feature in remaining adding which improves the accuracy.
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These hyperparameter values is provided in table 4. Once the model is trained, testing is performed 
using these values of hyperparameters obtained during the training process.

EXPERIMENTAL RESULTS

In this section, we explain the results of regression analysis and the model evaluation results obtained 
after applying ML classifiers on the features obtained from wrapper methods.

Evaluation of results using regression analysis
In this section, the results of univariate and multivariate LR are discussed (due to space constraint, 
the results are shown for Android 6.0 only). Similar observations were observed for Android 7.0. 
Table 5 represents the results of univariate analysis in terms of the coefficient (B) and statistical 
significance(sig.) for each metric. The parameter “sig” tells whether each of the metric is a significant 
in predicting the dependent variable (change proneness). If the “sig” value of a metric is below or at 
the significance threshold of 0.01 or 0.05, then the metric is said to be significant in predicting the 
change prone classes. In this study, the threshold value is considered as 0.05 (significant values are 
shown in bold in table 5). The coefficient “B” shows the strength of the independent variable. The 
higher the value, the higher the impact of the independent variable is. The sign of the coefficient tells 
whether the impact is positive or negative. Table 5 shows that only the metrics ALB, NOC, CDIM, 
WMC, NPM and RCC are found to be not significant, whereas all the other metrics are found to be 
significant predictors of change proneness.

Once the impact of each independent variable on the dependent variable is found, multivariate 
LR is used to determine the combined effect of independent variables on the dependent variable. All 
metrics are allowed to enter the model. The variables included in the model are shown in table 6. Table 
6 shows that 23 metrics are included in the multivariate model. It can be observed from the table that 
the ‘sig.’ value of all the variables included in the model is less than 0.05. The sign of the coefficient 
of AL, ALB, CCB, CDCM, CDIM,CLB,CLCE,CLC,CS,ME,DIT,SCmetrics is negative, though it 
was positive in the univariate analysis. This is due to suppressor relationships among independent 
variables commonly observed in multivariate logistic regression analysis (Briand et al. 2000).

Table 7 shows the confusion matrix for this multivariate model which can be used to evaluate the 
performance of the model. To evaluate the performance of the models (LR and machine learning), 

Table 4. Description of machine learning techniques along with the values of parameters

Machine learning 
technique

Description

K Nearest Neighbour 
(KNN)

KNN is a classifying technique which does not make any assumptions on the underlying data 
distribution. In KNN, the testing data is classified on the basis of its Euclidean distance from 
the classes. We take the value of K as 4. The number of parallel workers is set to 10 so as to 
reduce the total computational time.

Random Forest 
(RF)

In this method, there are multiple individual decision trees that operate as an ensemble, each 
of which gives a class prediction and the class with the highest number of votes is returned as 
the model’s prediction. The number of decision trees taken in the random forest is 100. The 
maximum depth of the tree is set to 2. The seed for generating random numbers is set to 58 
which is the best possible value so far. The number of parallel workers is set to 10 so as to 
reduce the total computational time.

Decision Tree 
(DT)

It classifies the testing data by forming simple if-else statements which are deduced from 
the features of the training data set. The maximum depth of the tree is set to 2. The seed for 
generating random numbers is set to 58 which is the best possible value so far. The number of 
parallel workers is set to 10 so as to reduce the total computational time.
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Table 5. Result analysis of univariate regression

S.No. Metric B Sig. S.No. Metric B Sig.

1 AC (Average Cyclomatic) .211 0.000 23
CL (Count 
Line) .001 0.000

2 ACM (Average Cyclomatic Modified) .291 0.000 24
CLB (Count 
Line Blank) .002 0.000

3 ACS (Average Cyclomatic Strict) .204 0.000 25
LOC (Lines of 
Code) .001 0.000

4 AE (Average Essential) .181 0.000 26

CLCD (Count 
Line Code 
Declared)

.004
0.000

5 AL (Average Line) .042 0.000 27

CLCE (Count 
Line Code 
Executed)

.004
0.000

6 ALB (Average Line Blank) .026 0.099 28

CLC 
(Count Line 
Comment)

.006
0.000

7 ALC (Average Line Code) .050 0.000 29
(CS) Count 
Semicolon .004 0.000

8 ALCo (Average Line Comment) .078 0.000 30
CS (Count 
Statement) .002 0.000

9 CCB (Count Class Base) .195 0.000 31

CSD (Count 
Statement 
Declared)

.003
0.000

10 CBO (Coupling Between Objects) .110 0.000 32

CSE (Count 
Statement 
Executed)

.004
0.000

11 NOC (Number Of Children) .000 0.697 33

MC 
(Maximum 
Cyclomatic)

.112
0.000

12 CDCM (Count Declared Class Method) .060 0.000 34

MCM 
(Maximum 
Cyclomatic 
Modified)

.145

0.000

13 CDCV (Count Declared Class Variable) .045 0.000 35

MCS 
(Maximum 
Cyclomatic 
Strict)

.097

0.000

14 CDIM (Count Declared Instance Method) .000 0.754 36

ME 
(Maximum 
Essential)

.177
0.000

15 CDF (Count Declared Function) -.896 0.000 37

DIT (Depth 
of Inheritance 
Tree)

-.108
0.000

16 CDIV (Count Declared Instance Variable) .129 0.000 38

MN 
(Maximum 
Nesting)

.544
0.000

17 WMC (Weighted Methods per Class) .042 0.327 39

LCOM (Lack 
of Cohesion of 
Methods)

.019
0.000

18 RFC (Response For a Class) .000 0.007 40

RCC (Ratio 
Comment to 
Code)

.009
0.422

19 CDMD (Count Declared Method Default) .207 0.000 41
SC (Sum 
Cyclomatic) .002 0.000

20

NPRM (Number of Private Methods)
.171

0.000 42

SCM (Sum 
Cyclomatic 
Modified)

.002
0.000

21

NPROM (Number of Protected Methods)
.146

0.000 43

SCS (Sum 
Cyclomatic 
Strict)

.002
0.000

22
NPM (Number of Public Methods) .000 0.114 44

SE (Sum 
Essential) .001 0.000
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a popularly used performance measure known as accuracy is employed. Accuracy is the fraction of 
predictions the model got right. In other words, it is defined as the ratio of correct predictions to the 
total number of predictions (both correct and incorrect). It can be seen from table 7 that the out of a 
total of 10068 classes, 7824 classes are correctly predicted. In other words, 6730 classes are correctly 
predicted to be change prone and 1094 classes are correctly predicted to be not change prone. Thus, 
the accuracy of the LR model is 77.77% which is good but much less as compared to the accuracy of 
the models achieved using machine learning classifiers (discussed in coming section).

Evaluation of results using wrapper methods
This section depicts the performance of three classifiers used in the study viz. KNN, RF and DT in 
terms of accuracy when the features have been reduced using four sequential search techniques of 
wrapper methods viz. SFS, SBS, SFFS and SBFS.

The authors depict the results with the values obtained for k=1,9,18,27,36,44 where k is the 
number of features obtained after feature selection. The authors aim to analyze the trend which can 
be observed in the accuracy obtained on the basis of the number of features selected and thereby 
studying that in order to get the best possible accuracy, should the number of features selected be 
high, low or average. Table 8 and 9 show the performance of classifiers when empirical validation 
has been conducted on Android 6.0 and Android 7.0 dataset respectively. The accuracy results are 

Table 6. Metrics included in the multivariate regression model

S.No.
Metrics included in the 

model B Sig. S.No.

Metrics 
included in 
the model B Sig.

1 SE .025 .001 12 CL .011 .000

2 AL -.026 .010 13 CLB -.027 .000

3 ALB -.160 .000 14 CLCE -.007 .000

4 ALC .052 .000 15 CLC -.008 .000

5 CCB -.099 .032 16 CS -.006 .001

6 CBO .081 .000 17 CSD .007 .004

7 CDCM -.026 .001 18 MC .033 .000

8 CDIM -.020 .003 19 ME -.056 .000

9 CDIV .024 .000 20 DIT -.231 .000

10 RFC .001 .000 21 LCOM .004 .000

11 CDMD .065 .000 22 SC -.028 .001

23 SCM .016 .028

Table 7. Confusion matrix for multivariate logistic regression

Predicted

0 (Not change prone) 1 (Change prone)

Actual 0 (Not change prone) 6730 420

1 (Change prone) 1824 1094
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Table 8. Performance of classifiers with respect to different search techniques applied on Android 6.0dataset

SFS SBS

No. of features KNN RF DT No. of features KNN RF DT

1 76.15 76.55 79.47 1 76.15 76.55 79.47

9 85.73 77.26 99.76 9 85.63 77.10 99.76

18 85.76 77.15 99.80 18 86.06 77.08 99.80

27 86.19 77.01 99.80 27 86.03 77.07 99.80

36 85.91 76.92 99.80 36 86.16 77.14 99.80

44 85.78 76.80 99.80 44 85.78 76.80 99.80

SFFS SBFS

No. of features KNN RF DT No. of features KNN RF DT

1 77.37 76.55 79.47 1 76.03 76.55 79.47

9 82.85 77.12 99.76 9 83.01 77.29 99.78

18 82.97 77.28 99.80 18 83.37 77.23 99.80

27 83.15 77.16 99.80 27 82.90 77.16 99.80

36 83.36 77.05 99.80 36 82.82 77.22 99.80

44 82.78 76.80 99.80 44 82.78 76.80 99.80

Table 9. Performance of classifiers with respect to different search techniques applied on Android 7.0 dataset

SFS SBS

No. of features KNN RF DT No. of features KNN RF DT

1 74.69 74.54 77.11 1 72.82 74.54 77.11

9 81.51 75.28 99.73 9 84.99 75.08 99.73

18 81.53 75.14 99.78 18 85.30 74.84 99.78

27 81.70 75.21 99.78 27 85.53 74.88 99.78

36 81.89 74.99 99.78 36 85.57 75.04 99.78

44 81.50 73.96 99.78 44 81.50 73.96 99.78

SFFS SBFS

No. of features KNN RF DT No. of features KNN RF DT

1 74.69 74.54 77.11 1 74.69 74.54 77.11

9 81.51 75.34 99.73 9 81.51 75.19 99.73

18 81.53 75.25 99.78 18 81.53 75.17 99.78

27 81.95 75.03 99.78 27 81.95 75.11 99.78

36 82.14 75.03 99.78 36 81.76 75.05 99.78

44 81.50 73.96 99.78 44 81.50 73.96 99.78
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also graphically represented in figures5(a-d) and 6(a-d) depicting the performance of classifiers when 
SFS, SBS, SFFS and SBFS techniques have been applied on Android 6.0 and Android 7.0 dataset 
respectively.

Let us first discuss the accuracy achieved by each of the classifiers when SFS technique has been 
used for feature selection on Android 6.0 dataset. As it can be observed from table 8, DT achieves the 
highest accuracy values for all the values of k, while RF achieves the lowest values of accuracy. The 
accuracy in the case of each of the classifier increases as the value of k increases for lower values 
of k, however, it decreases when k approaches the maximum value. The highest accuracy value for 
each classifier is shown in bold. Analyzing the values of k at these highest accuracies show that in 
none of the cases the highest accuracy is attained at k=1 or k=44. This shows that when features are 
reduced, the accuracy increases but we have to carefully decide the minimum number of features. The 
accuracy value corresponding to DT begins at 79.47% for k=1, keeps increasing till k=18, attaining 
the value of 99.8% and then remains constant. The accuracy value for KNN begins at 76.15% for 
k=1 and increases until k=27, reaching the value 86.19% and then starts decreasing. The accuracy 
value observed for KNN is 85.78%when k=44, lower than the accuracy value corresponding to DT 
but higher than that of RF. The accuracy value with respect to RF begins at 76.55% for k=1, a value 
that is lower than the corresponding value of accuracy for DT but higher than KNN. The accuracy 
increases till k=9, reaching as high as 77.26% and then decreases continuously to stop at 76.80% 
for k=44. It can be observed that the most optimal results in general are obtained when the value of 
k= 18 with DT chosen as the classifier. This observation is consistent with other feature selection 
techniques viz. SBS, SFFS and SBFS too.

For Android 7.0, similar observations can be inferred. The highest accuracies are obtained 
at k=9 for RF and k=18 for DT using all the feature selection techniques. When KNN is used, 
highest accuracies are obtained at k=27 for all the feature selection techniques except SFFS which 
shows highest accuracy at k=36. DT shows the highest accuracy of 99.78% at k=18 amongst all the 

Figure 5. Accuracy results of classifiers when feature selection of Android 6.0 dataset has been done using (a) SFS, (b) SBS, (c) 
SFFS, (d) SBFS
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classifier with all the feature reduction techniques. As discussed above, same conclusion is drawn 
from the results on Android 6.0. Thus, the authors recommend the use of DT for model prediction 
after reducing the number of features.

APPLICATIoN oF THE woRK

The usage of software in every field of Network and Communication has become an integral part of 
everyone’s lives. Due to multiple reasons such as ever changing demands of the customers, change 
in technology in the market, identification of some bug etc. lead to upgradation of a software from 
one version to the next. When software developers work on upgrading the version, lots of effort is 
required leading to utilization of large amount of resources. The results of this work will be of interest 
to researchers as well as practitioners from industry in reducing this effort in terms of time, money and 
manpower required in development of software, thus leading to the delivery of software with better 
quality. This is done by identifying those classes amongst other classes which may change during 
later phases of development and thus, need careful attention by the developers, designers and testers. 
Such classes ae termed as ‘change - prone’ classes. The authors in this paper have developed various 
machine learning models which can be used to predict change-prone classes. Timely identification 
of such classes would be of great benefit to the software developers from industry as these classes 
play a critical role in design and architecture of the system. The architecture of the system once built 
acts as the scaffolding in which the functionality of the system is delivered, thus ensuring that system 
delivered meets the customer’s functional expectations and needs. Once the change - prone classes are 
identified during the early phases, the architecture of the system can be altered easily. For example, 
if a class ‘A’ is predicted to be change - prone, using the software metrics we can check its coupling, 
cohesion, inheritance etc. Accordingly we can modify the architecture in the design phases such that 
the values of these software metrics fall within the required range. In other words, certain corrective 
measures can be taken to ensure the software delivered is error-free which is actually significant when 
different versions of software are released frequently. The measurements derived from design can be 
used as benchmark in organizations, to assess the quality of software products. Releasing software 

Figure 6. Accuracy results of classifiers when feature selection of Android 7.0 dataset has been done using (a) SFS, (b) SBS, (c) 
SFFS, (d) SBFS
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of good quality leads to happy and satisfied customer. This leads in increasing the reputation and 
status of the software organization (in which the software is developed) in the market. Thus, customer 
satisfaction which is of utmost importance in today’s scenario is met. Also, design of the classes of 
future release can be re-checked and better designs can be suggested.

THREATS To VALIDITy

The empirical validation in this work has certain limitations which may adversely affect the validity of 
the results. These limitations are discussed in terms of four threats to validity, viz. construct validity, 
internal validity, external validity and conclusion validity.

1.  Construct Validity

This type of validity is one of the most important threats to validity. It is defined as the extent to 
which the variables (independent and dependent variables) and the performance parameters precisely 
measure the concept they intend to measure (Dean and Voss 1999, Zhou et al. 2009). This threat can 
be due to the improper collection of the dependent variable and the independent variables. There have 
been studies in research which have determined the accuracy of some of the OO metrics employed 
in this study(Briand et al. 1998, 1999, 2000). As a result, this threat is reduced in the study. The 
dependent and the independent variables in this study are collected using the tool known as CRG 
(Malhotra et al. 2016) developed by the authors themselves. Due to this, the exact steps or procedure 
to collect the dependent and the independent variables is known, which is important to provide for 
an accurate assessment of their construct validity. Hence, the threat due to improper collection of the 
variables is also reduced in this study. However, the authors have not taken into consideration the type 
of change (corrective, adaptive, perfective or preventive) a class may go through which may pose a 
threat on the evaluation of the results. In the future work, this threat can be reduced by considering 
the type of change as well.

2.  Internal Validity

This validity is defined as the degree to which conclusions can be drawn about the causal effect of 
independent variable on the dependent variable” (Zhou et al. 2009). In this work, independent variables 
used are a set of OO metrics measuring different concepts of OO paradigm. These independent 
variables are not related to each other in any way. All these metrics together determine the value of 
the dependent variable. It is not possible to determine the causal effect of each independent variable 
on the dependent variable. In other words, goal of this study is to develop prediction models that will 
identify change - prone classes rather than to discover the cause-effect relationships. Thus, the threat 
to internal validity does not exist in the study.

3.  External Validity

This validity deals with the generalization of the results obtained by the study. In other words, it 
concerns itself with finding out whether the results produced by the study are applicable in different 
domains or can be replicated in different scenarios for which the results are not evaluated (Harrison 
et al. 2000). For this, all such information which is required for replicating the study should be 
transparently available in the study. For example, the information about the availability of the dataset, 
nature of the dataset, details of the approaches used in the paper and their default or tuned parameters 
etc. should be clearly stated in the study. Since, in the present work, Android dataset used is an open 
source dataset, the source codes of all the versions can be downloaded from https://source.android.
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com/source/initializing.html. In addition to this, the authors have provided complete details of the 
three versions that are analysed in this study in table 3. Moreover, for empirical validation, the authors 
have written the programs in python. The classifiers have been implemented using scikit-learn 
library. This library has in-built classifiers which can be called using functions. The functions take in 
various parameters for the classifier to be built. The feature selection algorithm has been made using 
another python library, namely mlxtend. The pseudo code of each of the feature selection algorithm 
is provided and the parameters used for the machine learning classifiers are also mentioned in table 
4. Using all this information, the results can be replicated and generalized across different datasets. In 
this study, the authors have worked on different releases of software that large in size with the aim to 
draw meaningful conclusions. However, we cannot consider it as a complete generalization wherein 
the results could be applied universally. This is so because we are dealing with multiple versions of a 
single software as of now. In the future, we will be comparing the results of different datasets across 
different projects having diverse characteristics.

4.  Conclusion Validity

This threat includes all those threats that may affect the conclusion of the study. In other words, 
all the threats which may lead to improper results or conclusions of the study are called as conclusion 
validity threats (Malhotra 2016). The authors in this study have not performed the statistical evaluation 
of the results using statistical tests. Thus, this leads to a conclusion validity threat.

CoNCLUSIoN AND FUTURE woRK

The upcoming technologies in mobile phones have evolved rapidly over the last some years. Nowadays, 
one of the essential needs of human beings is that of mobile phones. It helps everyone to be connected 
to each other all the time and all the places. Amongst many other factors playing important role 
in improving mobile’s technology, operating system is one of the important factor too. Android, 
Symbian, iOS, Palm OS etc. are some of the commonly used operating systems of mobile integrated 
with multiple user-friendly features. The most popularly and widely used mobile operating system 
is Android. Android has seen multiple versions, the most recent one being Android 10.0 (officially 
known as Android 10).Advancing from one version to a newer version requires a lot of effort in 
terms of resources utilized. We know that the resources such as time, money and manpower are very 
limited and thus, judicious use of such resources is very essential. In this paper, the broad objective 
is to reduce this effort, thus leading to saving of resources. For doing this, machine learning models 
are constructed which can be used during the initial phases of software development for identifying 
certain parts of software which have a higher tendency to change in the later stages. Once such parts 
(classes) are known, careful attention is required to be given to them in order to avoid wastage of 
essential resources. The accuracy of such models should be high and high dimensionality play a 
very important role in the accuracy of the models. The authors in this paper are working on feature 
selection methods to reduce the dimensionality of the data.

In other words, feature selection is an important method that can be used for dimensionality 
reduction of multi-dimensional data that we often encounter in real life situations. Feature selection can 
be achieved via wrapper methods, filter methods or embedded methods but the authors choose wrapper 
methods as they analyze the utility of a subset of features and return the best possible subset. Feature 
selection can also be viewed in terms of searching techniques like sequential search, exponential search 
and random search. However, the authors implemented sequential search techniques as they are greedy 
optimization techniques that find the local optimum solution in polynomial time complexity and are 
easy to implement, even with large datasets. Authors focused on the implementation of the four major 
sequential feature selection techniques which are Sequential Forward Selection (SFS), Sequential 
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Backward Selection (SBS), Sequential Forward Floating Selection (SFFS) and Sequential Backward 
Floating Selection (SBFS). In addition to the wrapper methods for selecting useful features, the authors 
have also used statistical approach of regression analysis to extract the useful features. Univariate 
and multivariate Logistic Regression have been used to extract useful features and constructing the 
prediction model respectively. Empirical validation was conducted against three stable versions of 
Android operating system, Android 6.0, Android 7.0 and Android 8.0. The dataset comprised of 44 
independent variables. The aim is to reduce the number of features and select the most relevant ones 
from this set. In order to achieve the above objective, prediction models are constructed using three 
machine learning classifiers viz. K-Nearest Neighbor (KNN), Decision Tree (DT) and Random Forest 
(RF). These models are used to identify those change prone classes of the software in early phases 
of software development, leading to optimum utilization of limited resources.

Following are the important insights gathered from the results:

•  DT classifier outperformed the remaining two classifiers (KNN and RF) depicting high values 
of accuracy for each of the sequential feature selector used.

•  With respect to KNN classifier, it was observed that SBS is the best sequential selector. On the 
other hand, with respect to RF classifier, SFFS sequential classifier is the best.

•  Highest value of accuracy was achieved when the number of features selected was 9 or 18 (in 
general). Therefore, it can be inferred that either too high(44) or too low(1) number of features 
selected leads to decrease in accuracy. So, we must choose the number of features which is 
neither too high nor too low.

•  The machine learning models (built using KNN, DT and RF) outperformed the statistical model 
(built using multivariate Logistic Regression) by depicting higher values of accuracy. Thus, the 
authors suggest the use of machine learning models for predicting the change prone classes of 
Android operating system.

As future work, the authors plan to work on feature selection methods based on other searching 
techniques as well, i.e. exponential search and random search so that a comparative analysis can be 
done. For the purpose of empirical validation, the study can be extended on different datasets belong 
to diverse domains. In addition to this, more machine learning techniques could be used so that a fair 
and exhaustive evaluation is possible.
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