
DOI: 10.4018/IJSDA.20220701.oa3

International Journal of System Dynamics Applications
Volume 11 • Issue 2

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

1

Multi-Layer and Clustering-Based Security
Implementation for an IoT Environment
Deena Nath Gupta, Jamia Millia Islamia, India

 https://orcid.org/0000-0001-6323-411X

Rajendra Kumar, Jamia Millia Islamia, India

ABSTRACT

IoT devices have many constraints related to computation power and memory. Many existing
cryptographic algorithms of security could not work with IoT devices because of these constraints.
Since the sensors are used largely to collect the relevant data in an IoT environment, and different
sensor devices transmit this data as useful information, the first thing that needs to be secured is the
identity of devices. The second most important thing is the reliable information transmission between
a sensor node and a sink node. While designing the cryptographic method in the IoT environment,
programmers need to keep in mind the power limitation of the constraint devices. Mutual authentication
between devices and encryption-decryption of messages needs some sort of secure key. In the proposed
cryptographic environment, there will be a hierarchical clustering, and devices will get registered by
the authentication center at the time they enter the cluster. The devices will get mutually authenticated
before initiating any conversation and will have to follow the public key protocol.

KEywoRDS
Cryptographic Protocols, Device-to-Device Communication, Hierarchical Clustering, Information Security,
Internet of Things, Lightweight Cryptography, Mutual Authentication, Random Number Generation

INTRoDUCTIoN

Random numbers play an essential role in cryptographic applications. The journey started long back
in 1983 when the scientists from the University of California presented their work on random number
generation. This work is commonly known as the Blum Sub generator (Blum, 1986). IoT is also known
as the constrained environment because devices used in this network are low powered. These devices
are not capable of performing complex mathematical calculations because of the large number of
Circuit Gates, more than 2000 Gate Equivalent (GE), used. The EPCglobal® restricts the GE to be
less than 2000 for the use in constrained devices (GS1, 2013). Hence the researcher needs some sort
of less complicated procedure for their calculations. Mathematicians find that the computational
power required for shift operations needs much lower power than the other mathematical operations.
The researcher can use any of the listed shift operations (left shift, right shift, circular shift, etc.) to
permute their bit sequences (GUPTA et al., 2020).

https://orcid.org/0000-0001-6323-411X

International Journal of System Dynamics Applications
Volume 11 • Issue 2

2

Some test suites are there to examine the randomness of generator functions. One can test RNG
work on Diehard battery designed by Marsaglia or on TestU01 suite with 6 test batteries (Small
Crush, Crush, Big Crush, Alphabit, and Rabbit batteries and a pseudo-NIST battery) designed by
L’ecuyer and Simard, or on the NIST test suite having 15 tests. The National Institute of Statistics
and Technology released SP800-90 (a, b, c) recently (Rukhin et al., 2010).

Here, the authors are following the specifications given by the National Institute of Standards
and Technology. A uniform and independent distribution of both the digits (zero and one), is the
prime requirement from an ideal random number generator. A random number generator used in
current cryptographic applications is a sequence of 26-bit or 32-bit discrete values. One can further
divide random number generators into two parts; True Random Number Generators (TRNGs) and
Pseudo Random Number Generators (PRNGs). The natural source of randomnesses like oscillators or
thermal noise is in use for the generation of exact random numbers. These sources are unpredictable
because of entropy. This variation produces a random output. Pseudo Random Number Generators
(PRNGs) or Deterministic Random Number Generators (DRNGs) are purely based on programming
(Gupta & Kumar, 2019).

Peris et al. presented their work in 2007 in which they generated some random numbers and
then applied genetic programming on them to create a large number of sequences. They, however,
are not that efficient in terms of circuit gate count but somehow manage to be less than 2000 GE
(minimum requirement to name any algorithm lightweight) (Peris-Lopez et al., 2009). In 2008, Che
et al. proposed a new method of generating random numbers by using valid random physical sources,
like low-frequency oscillators and thermal noise generators. As they create output bits using very
little power, one can use it as a component in his/her RNG design (Che et al., 2008). Electronic
Product Code (EPCglobal®) issues some specifications regarding the manufacturing details of tags
and readers. One should follow these restrictions to make their security design compatible with
lightweight cryptographic applications. Any random number generator should go through the NIST
suite to test their randomness. Many other tests are also available like the ENT test, David Sexton’s
battery, Diehard suite to check the randomness in obtained sequences.

IoT devices are having many constraints related to computation power and memory etc.
Many existing cryptographic algorithms of security could not work with IoT devices because of
these constraints. Since the sensors are used in large amounts to collect the relevant data in an IoT
environment, and different sensor devices transmit these data as useful information, the first thing
that needs to be secure is the identity of devices. The second most important thing is the reliable
information transmission between a sensor node and a sink node. While designing the cryptographic
method in the IoT environment, programmers need to keep in mind the power limitation of the
constraint devices. Mutual authentication between devices and encryption-decryption of messages
need some sort of secure key. In the proposed cryptographic environment, there will be a hierarchical
clustering, and devices will get registered by the authentication center at the time they enter the
cluster. The devices will get mutually authenticated before initiating any conversation and will have
to follow the public key protocol.

The organization of the study is as follows—section 2 surveys related works based on different
technologies of the lightweight security scheme. Proposed public key protocol is described in section
3. Section 4 presents the layering and clustering of devices in an IoT environment. Section 5 describes
the proposed method having four modules, namely, the BiBiSeG module, the RandKeyGen module, the
KeyConversion module, and the EncDec module. In section 6, the authors show the implementation
of the proposed method. It includes device registration, mutual authentication, public key protocol,
and hierarchical clustering. Section 7 presents the experimental setup and results. Section 8 shows
the security analysis. Section 9 describes the countermeasure of expected threats. Section 10 gives
the conclusion and future work.

International Journal of System Dynamics Applications
Volume 11 • Issue 2

3

RELATED woRKS

While searching for new methods to produce random binary bit sequences, authors explore many
technologies that they found useful in the generation process of random binary bit sequences (Bussi
et al., 2016; Gao et al., 2014; Leonard & Jackson, 2015; Poorghanad et al., 2008; Salustowicz &
Schmidhuber, 1997; Stipcevic & Rogina, 2006; Vasyltsov et al., 2008; Wu & O’Neill, 2010; Naugle
et al., 2017; Auxilia et al., 2020). Researchers can generate random bit sequences from any event, like
from rolling of dice or from flipping a coin. In computational theory, the researcher creates random
sequences either by using linear feedback shift registers, or by using genetic programming, or by
transforming a circuit from its meta-stable to bi-stable state, or by performing simple mathematical
operations or anything else. The author segregates the work from different researchers of different
fields to get a clear picture of every method. The authors also presented performance analysis and
an impact in cryptographic applications of different techniques. Many techniques exist to generate
random binary bit sequences. Still, the author chooses only the methods passing the lightweight
cryptographic criteria from NIST and constraint device applicability criteria from EPC global. Section
‘A’ presents some works based on the use of linear feedback shift register, section ‘B’ presents the
works on genetic programming. Random number generation also uses the concept of digital circuit
artifacts; section ‘C’ shows the work related to digital circuit artifacts. Section ‘D’ presents the works
based on mathematical operations and generalized feedback shift registers.

PRNGs Based on Polynomial Fitted LFSR
Melia-Segui et al., in 2011, performed an attack on the work of Che et al. scheme by exploring some
vulnerability. Only a little knowledge about the LFSR parameter was sufficient for the successful attack
on Che et al. (Melià-Seguí et al., 2011). The authors claimed to attack with only 250 bits. In their
presented work, authors mask the linearity of the LFSR by using the TRNG bits, unlike the feedback
output used in Che et al. They used eight different polynomials for regeneration. The proposed PRNG
of Melia-Segui et al. requires a Gate Count of 761. The gate size is nearly half of the work of Peris
et al., i.e., 1566. They tested their generated bit sequences on NIST for randomness and found them
within the specified range (Melia-Segui et al., 2010).

In 2013, Melia-Segui et al. next proposed some improvements to their previous work (Melià-
Seguí et al., 2013). Here they used a set of accurate random sources for selecting the polynomials in
a non-linear fashion. At the next level, they perform a logical operation on generated sequences from
LFSR before using it as finally made random numbers. They showed a table that contains LFSR sizes
varying from 16 bits to 64 bits. The minimum required gate size for their design was 439.1 only. The
gate size was approximately 60% of their previous work.

In the same year, Kalikinkal Mandal et al. suggested the use of a mathematical function WG
transformation for the generation of random numbers using Non-linear Feedback Shift Registers
(Mandal et al., 2016). Although it contains a high degree of accurate calculations, it is suitable for the
IoT application, which requires high security. Their design, Warbler, passed all the tests contained in
the NIST test suite. The GE of Warbler was approximately 760. The gate requirement was doubled
in comparison to Melia-Segui’s new work.

In 2015, Jiagang Chen et al. presented their work in IEEE Trustcom (Chen et al., 2015). The
authors reviewed the work of Che et al. and suggested an improved lightweight PRNG for low-cost
RFID tags. They first proposed an attack on J3Gen and highlighted some weaknesses. Using the same
set of polynomials as in J3Gen, they suggested the use of three-bit input from TRNG for polynomial
selection. They claimed it to output an entirely random sequence with 50% chances of occurrence
for both bits. In the same work, they proposed a second method in which they divide the polynomials
into two parts, the first set contains three polynomials, and the second contains five polynomials. The
authors designed two separate polynomials for these sets. Programmers perform XOR operation on

International Journal of System Dynamics Applications
Volume 11 • Issue 2

4

the outputs of these two polynomials before generating the final random sequences. After that, the
programmer tested for randomness over NIST. They claim it to be more secure than J3Gen, but the
authors found nothing about their GE usage.

PRNGs Based on Genetic Programming
Koza, in 1991, worked on producing a sequence of random binary digits (Koza, 1991). It creates the
figures by converting a series of consecutive integers by using genetic programming. Concerning
that particular measure, it exceeded the performance of the other randomizers. For fitness function,
Koza uses the Shannon entropy for information, and they developed the code that accepts the series
of integers and outputs a random binary digit sequence.

Marco Tomassini et al., in 1999, applied cellular automata (CA) for generating the pseudo
random sequences (Tomassini et al., 1999). They focused on cellular automata, which can produce
high-quality random numbers rapidly, and it is better in terms of hardware implementation. They
verified CA using an extended battery of tests. Marco Tomassini et al. claimed that non-uniform
CAs are better than uniform CAs without time spacing. It is the fastest method of producing random
numbers. The strength is the RNG of choice, though they are somewhat inferior to linear congruential
and lagged-Fibonacci ones, the quality of the random number sequences produced is quite high and
is sufficient for many applications.

Philip Leonard et al. used Shannon’s theory of information as to their fitness function and
started using single node genetic programming for generating high entropy RNGs in 2015 (Leonard
& Jackson, 2015). They claimed it to be six times faster and two times more efficient than Koza’s
model. They found that single node genetic programming produces better results than standard genetic
programming. The code written for this method is more than five times smaller than the systems
written with standard genetic programming. The NIST suite of randomness shows that the generated
sequences are having properties similar to PRNGs.

In 2016 Stjepan Picek et al. coined the term “Cartesian genetic programming” for the first time.
In their design, they used a Deterministic Random Number Generator (Picek et al., 2019). They
identified some applications where true randomness was not needed. Like in masking, they are just
covering the data to protect them from side-channel attacks. Authors used some fitness functions
for their genetic programming to generate the bit sequences that behave like PRNGs. They claimed
that their fitness function produces fast random digits, and also this method is not dependable on
costly hardware.

Chlumecky et al., in 2017, described the methodology and software for the optimization of
rainfall-runoff modeling using a genetic algorithm (GA) with a newly prepared concept of a random
number generator (HRNG), which is the core of the optimization (Chlumecký et al., 2017). The GA
estimates model parameters using evolutionary principles, which require a quality number generator.
The new HRNG generates random numbers based on hydrological information, and it provides
better numbers compared to pure software generators. They also focused on improving the internal
structure of the GA. HRNG provides a stable trend in the output quality of the model, despite various
configurations of the GA. Hence the HRNG speeds up the calibration of the model and offers an
improvement of rainfall-runoff modeling.

Cem et al., in 2018, produced PRNG with genetic programming methods using entropy calculation
as the fitness function (Kösemen et al., 2018). It satisfies the requirements of the NIST and EPCGen2
standards. Various works generated PRNGs with different GP and fitness methods, but very few of
them can practically pass the lightweight criteria, like WISP passive RFID tags. The PRNG made by
them is tested on real hardware and analyzed in terms of resource and time consumption.

PRNGs Based on Digital Circuit Artifacts
In 2003, Michael Epstein et al. suggested a new way of generating random numbers (Epstein et al.,
2003). They used digital circuits. Some circuits are unstable oscillators, while some exhibit meta-

International Journal of System Dynamics Applications
Volume 11 • Issue 2

5

stability. Using nine distinct designs, they prepare a prototype and test it over a breadboard. They
succeed in finding the randomness in obtained sequences. They were not that much as successful
as Diehard Suite is concerned, yet they output considerable random sequences. This generator, as
claimed by the author, is stable in the term of operating voltage.

In 2008, Ihor Vasyltsov et al. presented a fast digital TRNG based on a meta-stable ring oscillators
(Vasyltsov et al., 2008). Jitter based generation was conventional, but this one works for ring oscillator.
Its design needed only a digital component. In reasonable condition, they achieved the throughput
as high as 140 Mbits/sec, but with some compensation, they managed it to nearly 50 Mbits/sec. The
authors claimed to pass FIPS 140-1/2 test, AIS.31 Class P1 / P2 test, and NIST STS test.

In 2010, Wu et al. presented four low-cost circuits using different hardware components (Wu
& O’Neill, 2010). They implement XOR gate, lookup table, and multiplexer & inverter on FPGA
(field-programmable gate array), and they passed Diehard and NIST test suites. Fourth circuit is
using four transistors to generate 80 MB sequences for the Diehard test and 1 GB sequences for the
NIST test suite. It passes all the tests but one. The authors claim that their cost is less than the other
existing PRNG of this type.

PRNGs Based on the Generalized Feedback Shift Register
In 1992, Matsumoto and Kurita presented their work on a twisted GFSR generator. They found
drawbacks in Lewis and Payne PRNG (Matsumoto & Kurita, 1992). Lewis and Payne have a time-
complex initialization scheme, poor weight distribution, large working area, and a short period of
the sequence. Author generated compact-sized mutually independent PRNGs for the simulation in
an extensive distributed system named Twisted PRNG that solves every above-stated problem.

In 1994, the authors presented the Part-2 of the above generator (Matsumoto & Kurita, 1994).
The author detected a problem in TGFSR. There was a defect in ‘k-distribution’ for ‘k’ more extensive
than the order of recurrence. In this study, they came out with a better k-distribution property. They
tested the tempering by using weight distribution tests. They divide the generated sequences into
pieces conforming binomial distribution and then compare these empirical distributions with the
goodness-of-fit test of the hypothesis. They performed the chi-square statistic on the courses grouped
in each category. Using Kolmogorov-Smirnov statistics, they measure the difference between their
distribution and chi-square distribution.

In 1998, Matsumoto et al. proposed a Mersenne Twister named MT19937 (Matsumoto &
Nishimura, 1998). It provides a period of 219937-1, having 623-dimensional equidistribution with
the generated sequence of 32-bit length and performs its operation on 624 words of the working
area only. The author achieved the computational complexity to be the square of the degree of a
polynomial. They used C language for their design and tested their sequences on the Diehard suite.
Carrying on his work on Generalized Feedback Shift Registers (GFSR) author introduced the concept
of the incomplete array and inversive-decimation method.

Marsaglia, in 2003, termed XOR-shift RNG (Marsaglia, 2003). It consists of consecutive bitwise
XOR and shifts operations using seeds. The author claimed that this method could generate high-
speed and reliable random bit sequences. The speed of this algorithm family is proven, but some
later studies invalidate the reliability claim. The author talked about a simple manipulation (XOR a
word with its shifted version). The authors claimed it to produce bits at a speed of 200 million per
second. Also, they passed the new diehard battery test except for the binary rank test. Brunt in 2004
has shown some similarity between Marsaglia’s XOR-shift RNG and linear feedback shift registers.

Sebastiano Vigna, in 2016, performed some experimental exploration on Marsaglia’s XOR-shift
generator and proposed XOR-shift* RNG (Vigna, 2016). They replaced the GF2 operation with a
constant value. The generated sequences have periods of 21024-1and 24096-1. It requires only eight
logical operations, one addition and one multiplication by a constant. They used the concept of weight
to find if a polynomial is dense or sparse.

International Journal of System Dynamics Applications
Volume 11 • Issue 2

6

Also, in separate work in 2016, only they talked about the XSadd (64-bit shift) generator and
pointed out some fault in it (Vigna, 2017). They performed some further scrambling on Marsaglia’s
XOR-shift generator and proposed their work that covers the weaknesses of XSadd and terms it as
XOR-shift128+ and claimed it to pass the strongest BigCrush suite of TestU1. The XOR-shift128+
generates the random sequences of 64 bits. They claimed it to be the fastest full-period generator
of that time. They specially mention its uses in the javascript engine of Firefox, Safari, and Google.
The authors also talked about XOR-shift128*, XOR-shift1024+, and XOR-shift1024*. This variant,
XOR-shift128+, performed with only three-shift, four XORs, and one ADD operation.

In 2017, Umut et al. presented their work on PRNG (Çabuk et al., 2017). They follow Marsaglia’s
work on XOR shift RNGs. The authors generated three generators. All are abridged versions of
XOR-shift+. They made some random scrambling to the original XOR-shift+ and produced a better
version named XOR-shiftR+. Authors claimed that their best variant of XOR-shiftR+ is suitable for
lightweight applications in terms of randomness and power utilization. They contended that hardware
sources of randomness might depend on some environmental conditions so they may be affected,
and hence there will be a question mark over their security. They are not much concerned about the
space, but of security, and for the same, they reportedly passed every test of randomness.

PRoPoSED PUBLIC KEy PRoToCoL

The central ‘key’ management authority will look after all the generation and distribution of keys to
the authorized devices in an IoT environment. Figure 1, communication between authorized devices,
illustrates the process.

A sender having its identification as Sid will send a message to authority that he wants to
communicate with a device having an ID Rid, Message 1. The admin will then generate a new key,
Knew, and will send this new key to the sender and receiver both by using Message 2 and Message
3, respectively. The receiver device will then confirm the Sid from authority by sending Message 4.
Authority will acknowledge to the receiver if the Sid received from the receiver node will be the same
as sent by an admin previously, Message 5. After receiving the acknowledgment from an authority, the
receiver node will send a response to the sender node, Massage 6. After receiving the response from
the receiver node, the sender will send its encrypted message, CT, to the sender by using Message 7.

Figure 1. Communication between authorized devices

International Journal of System Dynamics Applications
Volume 11 • Issue 2

7

The authorized devices in a cluster can communicate with each other by getting the key from
the central ‘key’ distributing authority. First, the sender node tells the admin about his willingness
to talk to the receiver node. Authority then produces separate keys for the sender node and receiver
node. The receiver node generates a public key from the received key from authority and sends it to
the sender node. The sender node uses this key for further communication.

Table 1 shows the complete process of the proposed public-key protocol. Authors are preventing
every message from the adversary by encrypting them with the public key of the intended receiver.

HIERARCHICAL CLUSTERING

Authors use the concept of hierarchical clustering in their said cryptographic environment. In the
said smart city environment, the author dedicated different authenticators to different clusters. For
example, the city administrator home will take care of the communication between devices that fall
under the smart home cluster. The grain level of the hierarchy is the different sensors in a separate
home (Elfouly et al., 2017). The regime of communication between devices falls in different groups
is shown in figure 2, the hierarchy of communication between devices falls in different clusters. The
mechanisms inside a smart home boundary will form one cluster.

Table 1. Proposed public-key protocol

Message Number Communicating Devices Encryption Technique

Message 1 A → S {A, B, T1}_pkS

Message 2 S → A {Knew, T1, T2}_pkA

Message 3 S → B { Knew, A, T2}_pkB

Message 4 B → S { A, T2, T3}_pkS

Message 5 S → B {ACK, T3}_pkB

Message 6 B → A {ACK, T4}_pkA

Message 7 A → B {CT, T4}_pkB

Figure 2. The hierarchy of communication between devices falls in different cluster

International Journal of System Dynamics Applications
Volume 11 • Issue 2

8

Every cluster will have one cluster head. Every device inside a group will be allowed to
communicate with the cluster head only. The cluster head will then forward the message to the sink
node if required. At the sink level, again, there will be a cluster and a cluster head. The cluster head
of the sink node will transfer the information to the administrator node on the requirement. This
arrangement will save the network from unnecessary flooding. The responsibility of the cluster head
will be given to different sensors inside a cluster periodically, keeping in mind the load balancing
factor of constraint devices.

PRoPoSED METHoD

The cryptographic system is responsible for encrypting a plain text message using a cryptographic key
to generate a ciphertext message. The sender encrypts the plain text, and then transmits ciphertext on
the channel. The receiver generates the plain text from this ciphertext by performing decryption using
the same key used during encryption. In the proposed scheme, the authors unify different modules to
get the entire process. The proposed scheme consists of four modules. The first module, named Binary
Bit Sequence Generator (BiBiSeG), generates a file of cryptographically secure binary bit sequences
containing more than one billion bits. At every identification request it will generate a shuffled
instance of that file. The second module, named Random Key Generation (RandKeyGen), creates
the public key of variable lengths (128/256/512/1024) for communicating devices (authentication
center, a sink node, cluster head, sensors). The KeyConversion module will convert the keys in their
free version for mutual authentication. The EncDec modules use the cryptographic key received after
mutual authentication for encryption or decryption purposes.

BiBiSeG - Module1
This module is programmed to work in such a way that it takes a very small integer (24/26/28/30/32)
as input and generates a very long, more than one billion bits, and cryptographically secure binary bit
sequence. This module will be run only for one time at the city administrator side. For different city
administrators, programmers can choose distinct integers among 24, 26, 28, 30, and 32. This module
also contains a submodule, FileShuffle. Algorithm 1 is the pseudo-code for the BiBiSeG module.

Algorithm1: BiBiSeG

Input: Integer among 24, 26, 28, 30, 32
Output: Tested sequence of more than one billion binary bits
d = int 24/26/28/30/32
X = len(d)
Y = Different binary strings of X
for each string
 Z0 = count of zeros
 Z1 = count of ones
 S = Z0 - Z1
if S = = 0
Y= [(Z[p:p+3]) for p in range(0, len(Z), 3)]
for each block
 if [000] & [111] not in Y
return Y

The authors obtain different instances of this binary key bit sequences by using the FileShuffle
algorithm on the file generated by the BiBiSeG algorithm. Algorithm 2 is the pseudo-code for the
FileShuffle module.

International Journal of System Dynamics Applications
Volume 11 • Issue 2

9

Algorithm2: FileShuffle

Input: File from BiBiSeG
Output: Shuffled files
f = open(file_path,’r’)
data = f.read()
paragraphs = data.split(‘\n’)
random.shuffle(paragraphs)
output = open(output_file_path,’w’)

Administrators store the files generated by executing this module in its storage. A new file will
be provided to the device at every new identification request.

RandKeyGen - Module2
This module randomly selects a binary key bit sequence of the desired length (128/526/512/1024) by
using two pointers. Whenever a node requests a key to establish a connection, the authentication center
responds to the node with a cryptographically secure key, Knew. The second module will work on
the stored files to select a random binary bit sequence each time a new communication is requested.

Algorithm3: RandKeyGen

Input: Folder containing ten files
Output: Knew
For i in range[0,10]
 Select rand(i)
For j in range[0,10000000]
 Select rand(j)
d=128/526/512/1024
Knew = string[j+0:j+d]

Author termed the proposed key generation processor suitable for the constraint devices because,
in the said process, programmers need only two variables for positioning of the curser. Whenever
the authentication center is requested, the first variable will choose the file in constant time O(1).
Then the second variable will select a starting point in constant time O(1). Overall it will take O(2)
for this process to perform its task. Figure 3, proposed key generation method, depicts the working
of the proposed key generation method.

KeyConversion - Module3
The authentication center sends the generated key to the registered devices. Devices can use the
public key of the authentication center for further communication. Algorithm 4 shows the process
of converting a 128-bit binary key into its free version.

Algorithm4: KeyConversion

Input: binary key of the desired length (say 128 bit)
Output: Kpub
d ← 128 bit string
d1 ← first 64 bit string
d2 ← next 64 bit string
d1’ ← circular left shift(d1, r)

International Journal of System Dynamics Applications
Volume 11 • Issue 2

10

d2’ ← circular right shift(d2, r)
d3 ← d2’.d1’
Kpub ← hex(d3)

Here ‘r’ can be chosen randomly [1, 64]. The receiver of this key should have to use (r’ = 64-r)
in place of ‘r’ to get the exact key for communication.

EncDec - Module4
In this work, the authors are presenting a new cryptographic environment to be used by constraint
devices under the IoT environment. Authors are using a local dictionary for converting the
sensor’s message into a binary bit sequence. For the encryption, the authors are using the variable
(128/256/512/1024) keying mechanism. Whenever the system runs the encryption code, it will get
the key of the same length as of plain text. In this module, the authors XORed the plain text with
the cryptographic key to get the cipher text. On the receiver end, the receiving node only needs to
run the same algorithm using the same cryptographic key for understanding the original plain text.
Algorithm 5 shows the process for encryption and decryption.

Algorithm5: EncDec

Input: Received text message
Output: Converted text message
RT ← Received text message
RTbin ← (128/256/512/1024) bit long binary sequence
v = length(PTbin)
K1 ← v bit long binary sequence
CTbin = RTbin XOR K1
CTbin ← v bit long binary sequence
CT ← Converted text message

Figure 3. Proposed key generation method

International Journal of System Dynamics Applications
Volume 11 • Issue 2

11

IMPLEMENTATIoN

In the said IoT environment, different clusters will have different dedicated administrators. For
example, City Administration Home (CAH) for the group made by Smart Homes, City Administration
Banking (CAB) for the clusters made by Smart Banks, etc. Every time a new device enters the group,
the administrator first gets it registered. After registration, the device will get some keys for future
communications. Section ‘A’ describes the process for device registration. An authentication server
or third party will generate and issue a random nonce for mutual authentication between the devices
that want to communicate at a time. Section ‘B’ describes the process of mutual authentication. Part
‘C’ presents the means for converting a key into its free version. Every device should follow the
protocol presented in section ‘D’ strictly for secure information transmission.

Device Registration
The smart city administrator will keep a record of every sensor under its administration. A
sensor will be able to send or receive signals after successful registration only. In a smart city
network, every resident and device will have their identification. For example Home ID, School
ID, Hospital ID, Bank ID, etc., Resident ID, Doctor ID, Manager ID, Teacher ID, etc., Fan ID,
Light ID, Air Conditioner ID, Fridge ID, etc., Patient ID, Shopkeeper ID, Student ID, Customer
ID, etc. The smart city administration will give different permissions to different devices at
different levels (Guma et al., 2018; Nasution et al., 2018). The capacity of storage, sensing,
and transmission will be as per their need. For example, S0, the sink node of a smart home,
will have permission to send or receive signals to or from the city administration. S0 will have
much permission because it is representing the entire network of a home. S1 is only serving a
floor in a smart home network so that it will have lesser capacities, likewise for others. Figure 4,
visualization of different sensors in a smart home network, depicts the visualization of different
sensors in an intelligent home network.

The smart city administration will make different clusters for different service types. Each group
will have its cluster head. Devices inside the cluster will be allowed to communicate with the cluster
head only. Remember that machines inside a cluster will have a different dictionary for encryption
and decryption purposes.

Also, each cluster will have different methods for encryption and decryption. These methods will
add an extra level of security for device communication. Written below is the allowed communication
in a group. A considerable number of sensor devices exist in an IoT environment. The concept of the
clustering reduces the communication overhead. The authors use the idea of the sink node/cluster
head for the same purpose.

Figure 4. Visualization of different sensors in a smart home network

International Journal of System Dynamics Applications
Volume 11 • Issue 2

12

Floor 1 communication will be like:

{S2, S3, S4} → S1
S1 → {S2, S3, S4}

Floor 2 communication will be like:

{S5, S7} → S6
S6 → {S5, S7}

Floor 3 communication will be like:

S8 → S9
S9 → S8

S0, the sink node, is the primary sensor device of this smart home network. Only S0 will be
allowed to communicate with the outside world. All the cluster heads from different floors will interact
with this node. Below is the communication of a cluster head with the sink node of the environment.

Smart home communication will be like:

{S1, S6, S9} → S0
S0 → {S1, S6, S9}

Each time a new device is detected, it will get registered by the city administrator. After successful
registration, the city administration will provide it the public key of authenticating authority [Kpub-ac]
along with a device private key [Kdevice] for communication. A new sensor device will register to
the City IoT network by providing the details about its Device ID, Cluster name, Environment name.
For Example, S2, Floor1, A Smart Home [S0].

[Device ID, Cluster name, Environment name]
New sensor device → Authentication Centre

The authentication center will then provide it with a registration number containing an
authentication center’s public key and another key that should be used by the device as its private key.

Kpub-ac, Kdevice
Authentication Centre → New sensor device

Mutual Authentication
Devices will then generate their public key by using the received private key and circulate it to the
network for future communications by other tools. When a device wants to communicate with another
device in the system, it will first ask the authentication center for a new key, Knew, for encryption
and decryption.

E(Kpub-ac, (D1, D2, T1))
D1 → Authentication Centre

International Journal of System Dynamics Applications
Volume 11 • Issue 2

13

The device that wants to establish a connection will send its device id along with the receiver’s
id and a timestamp encrypted with the public key of the mutual authenticator. The authentication
center will then generate a new key, Knew, and send it to D1 and D2 both.

E(Kpub-d1, (Knew, T1, T2))
Authentication Centre → D1
E(Kpub-d2, (Knew, Sid, T2))
Authentication Centre → D2

With this, D1 and D2 will get a new key for encryption and decryption purposes. D2 will know
that D1 wants to connect.

D2 will now connect with the authentication center to ensure that the received sender id, Sid,
is correct.

E(Kpub-ac, (Sid, T2, T3))
D2 → Authentication Centre

The authentication center will match the Sid, and T2 received from D2 with the one sent by the
authentication center. The authentication center will acknowledge D2 only after a match; otherwise,
it will remain silent.

E(Kpub-d2, (ACK, T3))
Authentication Centre → D2

D2 will then send an acknowledgment message to D1 using the public key of D1.

E(Kpub-d1, (ACK, T4))
D2 → D1

D1 will convert its plain text using Knew and send it to D2 using the public key of D2.

E(Kpub-d2, (CT, T4))
D1 → D2

Upon receiving this CT, the D2 will convert it to PT by using Knew. These processes register
the devices in the network, and also they are mutually authenticated before going to initiate any
communication. Upon receiving a communication request from any of the ‘devices’ under the city
administrator range, it will execute the ‘key’ generation process, RandKeyGen module. The following
method describes ‘key’ management and public-key protocol.

EXPERIMENTAL SETUP AND RESULTS

The hardware setup for this work is Intel® Xeon® Silver 4114 CPU @2.20GHZ 2.19 GHz (2
processors) having a 64-bit operating system and x64 based processor on Windows 10 Pro. Spyder
(an open-source, cross-platform integrated development environment for scientific programming
in the Python language) under Anaconda distribution (a Python data science platform) is used for
programming.

International Journal of System Dynamics Applications
Volume 11 • Issue 2

14

The test on the proposed environment is conducted for the same plain text for ten different
instances, and every time it produces different ciphertexts. NIST examined the RandKeyGen module
for randomness and its uses as a cryptographic key, and found the output sequence generated from
the RandKeyGen module suitable to be used as a cryptographic key. Table 2 shows the ciphertext
created for each instance using different keys for the same plain text.

In the said cryptographic environment, variable-length keying is used so that an outsider could
not be able to learn the user pattern of the bit sequence. The codes were tested also for the substantial
input, and different keys, they noted the time taken by encryption and decryption methods. The example
text taken is of 1255 characters. Table 3 gives the obtained values. A graphic presented in figure 5
clearly shows that the time taken for encryption is almost linear, but the time taken for decryption is
varying and does not form any linear pattern. Randomly it takes sometimes more time and sometimes
less time for decryption. The design of decryption time is twisted.

The environment uses different local dictionaries for different clusters for intra-cluster
communication between sensor nodes to the sink node. A node belonging to another group having
various local dictionaries will not be able to convert the binary sequence into the correct plain

Table 2. Obtained CT for the same PT “Acknowledgement” using different key

Key Ciphertext

Round 1 ⅞U⅖⅓y±≈①o⅘X⅙/⅟bc∞j◊

Round 2 j5∞|¥e)y②XG∑M①j>√+□

Round 3 TG~zÖΩ*5B#⅙$(⅜)>vb□

Round 4 ⅝6BF⅜@⅛)EH`!9R⅛”u?◊

Round 5 2%&fc±YQPaµ`Jπ [O⅕□

Round 6 s⅟V⅚#:>oG™sw⅚J*¥º □

Round 7]™vΩ£βOI$Skµ⅖£(zys□

Round 8 <wΩ`≈k0FQTT39D€¥O,◊

Round 9 ?LBL⅞SΩI@L?E{SYi±”□

Round 10 ±1{z<¥(m≈LNo⅗C8W⅙π□

Table 3. Encryption and decryption time obtained

Key Encryption Time(Seconds) Decryption time(Seconds)

Round 1 0.053750 0.191082

Round 2 0.055768 0.124015

Round 3 0.055801 0.178074

Round 4 0.057742 0.149185

Round 5 0.059996 0.162795

Round 6 0.060731 0.160295

Round 7 0.060734 0.199350

Round 8 0.061035 0.213029

Round 9 0.060734 0.206717

Round 10 0.060762 0.165269

International Journal of System Dynamics Applications
Volume 11 • Issue 2

15

text if it anyhow manages to get the ‘key’ bit sequence used to decrypt. Also, different padding
on the ‘key’ bit sequence will be used in different clusters to add an extra level of security. It is
assumed for the message length that it is not higher than 18 characters in the said IoT scenario.
For the communication between the sink node and cloud service provider, the global dictionary
will be used, such as ASCII or UNICODE. The encryption and decryption codes are tested for
various input lengths as well as for multiple ‘key’ inputs. Table 4 shows the obtained result.
The first five ‘key’ rounds convert TEMPERATURE: 30.0C, while the next five rounds of keys
convert PRESSURE: 101325Pa.

Figure 5. Comparison of encryption and decryption times

Table 4. Time taken by encryption and decryption for variable-length input

Proposed cryptographic environment

Sender node Receiver node

Key
round Ciphertext Encryption

time
Key

round Plain text Decryption
time

1 }M≠+e*:⅞h(NH⅛@H[.h◊ 0.046882
second 1 TEMPERATURE: 30.0C¸ 0.062441

second

2 wh@<}~β~⅖mddm!wP}=□ 0.06248 second 2 TEMPERATURE: 30.0C¸ 0.046851
second

3 AfXb+|¥ H⌐€x¥π<PRZ□ 0.062475
second 3 TEMPERATURE: 30.0C¸ 0.062486

second

4 (ipt⅟€,%N5①yXB∑FQ.◊ 0.062487
second 4 TEMPERATURE: 30.0C¸ 0.062477

second

5 l+Ω3w*9dIr√4j⅜ncw⅓□ 0.046878
second 5 TEMPERATURE: 30.0C¸ 0.062476

second

6 j+1}⅗√+y}≈Go①Z+⅝⅜u□ 0.060858
second 6 PRESSURE: 101325Pa¸ 0.062468

second

7 $≥P⅝⅝(6cKIP≡+≈;K92□ 0.046879
second 7 PRESSURE: 101325Pa¸ 0.062489

second

8 ?9}[AKf,G4√WT⅚①B$◊ 0.062478
second 8 PRESSURE: 101325Pa¸ 0.046869

second

9 <Ih0≤2<cHf②c±CDb∞(□ 0.062469
second 9 PRESSURE: 101325Pa¸ 0.062481

second

10 ∞4πI€&⅛84fmw;Snv⅔⅖□ 0.062435
second 10 PRESSURE: 101325Pa¸ 0.062475

second

International Journal of System Dynamics Applications
Volume 11 • Issue 2

16

SECURITy ANALySIS

In the proposed lightweight cryptographic environment, authors take care of the security
implementation from the very first stage. In the BiBiSeG module, programmers will have a choice
to select one input from available five integers (5 options). In the RandKeyGen module, from the
selected file containing more than 10000000 (ten million) digits, the program will randomly select
one number to start the counting of bits (5 x 10000000 = 50000000 choices). These key bit lengths
are also one of the four flavors (128/256/512/1024). So the total number of options will now be
(500000000 x 4 = 200000000 (200 million) choices).

The authors tested the keys generated from their proposed PRNG for the suitability of
cryptographic uses. The results obtained from the NIST test suite are shown in table 5. From the
obtained result, the authors concluded that their proposed method produces cryptographically secure
random numbers to be used as key in any cryptographic application.

Before sending its public key, the sender will apply the KeyConversion module. In this module,
the sender will have different options for shifting for different key lengths. The shifting will again
multiply with the number of choices that come in the previous phase. For a 128 bit key, there will
be 63 possible shiftings; for a 256-bit key, there will be 127 possible shiftings; for a 512-bit key,
there will be 255 possible shiftings; for 1024 bit key there will be 511 possible shiftings. This will
lead to (0.2 billion x 63 = 12.6) billion choices for 128 bit key generation, (0.2 billion x 127 = 25.4)
billion choices for 256 bit key generation, (0.2 billion x 255 = 51.0) billion choices for 128 bit key
generation, and (0.2 billion x 511 = 102.2) billion choices for 128 bit key generation.

Table 5. Minimum and Maximum p-value for every test of the NIST test suite (Gupta & Kumar, 2020)

Sr. No. Name of the Test p-value (min) p-value (max)

1 The Frequency (Monobit) Test 0.9991 1.0

2 Frequency Test within a Block 1.0 1.0

3 The Runs Test (128-bits) 0.000047 0.328642

4 Tests for the Longest-Run-of-Ones in a
Block (128-bits) 0.023101 0.644213

5 The Binary Matrix Rank Test
(38912-bits) 0.039305 0.652234

6 The Discrete Fourier Transform (Spectral)
Test (1000-bits) 0.009008 0.561657

7
The Non-overlapping Template Matching
Test
(1000-bits)

0.435523 0.999519

8 The Overlapping Template Matching Test 2.2101428860723744 e-138 2.2101428860724544 e-138

9 Maurer’s “Universal Statistical” Test 0.0 0.0

10 The Linear Complexity Test 0.0 0.0

11 The Serial Test 0.0,0.0 0.0,0.0

12 The Approximate Entropy Test 0.835171 0.999975

13 The Cumulative Sums (Cusums) Test 0.999934143993946,
0.999934143993946

0.9999999999999996,
0.9999999999999996

14 The Random Excursions Test [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0]

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0]

15 The Random Excursions Variant Test p = None p = None

International Journal of System Dynamics Applications
Volume 11 • Issue 2

17

A brute force attack will take 1,022,000 seconds if it takes one microsecond for implementing
one choice to break the secret key. One million twenty-two thousand seconds will lead to 17034
minutes, i.e., 284 full hours, i.e., 12 entire days. So breaking the security of the proposed lightweight
cryptographic system by using a brute force attack will have no meaning.

The authors also compared the time taken by their proposed encryption module with the time
taken by some other encryption modules and found their module takes less time than other state of
the art proposals. The obtained values are presented in table 6.

SECURITy CoUNTERMEASURES

According to the reference model of information assurance & security, the programmer should
consider every category of information starting from the first stage of the life cycle to ensure the
completeness of secure system design. The constant development life cycle consists of security
requirements engineering, security design, security countermeasures implementation, security
management & monitoring, and secure retirement of an information system. Researchers should
prioritize their security goals for proper risk analysis. The researcher presents information
taxonomy in four ways: sensitivity, location (controlled, partially controlled, uncontrolled), form
(paper, electronic, verbal), and state (creation, processing, storage, transmission, destruction).
Programmers should trace the security countermeasures at every stage of the life cycle of a
secure system design to preserve the consistency of the system. Security countermeasures
are of four forms, namely, organizational (strategy, procedures, audit, governance, policy),
technical (cryptography, authentication, authorization), legal (law, contracts, agreements), and
human-oriented (training, ethics, culture, motivation, education). Researchers should select the
right security countermeasures for cost-effectiveness and efficiency. The security goals can be
classified further as integrity, confidentiality, availability, privacy, non-repudiation, audit-ability,
authenticity & trustworthiness, and accountability (Ramadan, & Altamimi, 2017).

The presented security scheme is programmed, keeping all the threats in mind. It is replay attack
resistance; no device other than the recipient can get the message because the CT (in 7th message)
follows four time-stamps T1, T2, T3, and T4. The mechanism does the mutual authentication of
the communicating devices before information transmission by using the 6th message. The author
makes their cryptographic environment ‘server spoofing attack resistance’ by providing the public
key of the authentication server right at the time of registration of the devices. No one other than
the authenticating authority can read message 1. In the proposed cryptographic environment, the
authors address the ‘no time synchronization problem’ by providing different administrators to
different local clusters. The authentication server handles the session key generation, and it will be
valid for the current communication request only. The session will start from T2 and will end on T4.
The proposed cryptographic environment is having resistance from modifies attack as authors use

Table 6. Encryption time comparison table

Data
Size
(kb)

Encryption
Time (Parik,
Patidar, &
Sood, 2003)

Encryption
Time (Parik,
Patidar, &
Sood, 2005)

Encryption Time
(Kumar, Kumar,
Budhiraja, Das,
& Singh, 2016)

Encryption Time
(Kumar, Kumar,

Budhiraja, Das, &
Singh, 2016)

Encryption Time
(Proposed)

10 NA NA 0.071465 0.0329 0.046879

30 0.27 0.27 0.185454 0.0887 0.053750

90 1.03 0.79 0.568465 0.1932 0.059996

240 2.75 2.10 1.835408 0.5226 0.060762

*All times are in seconds.

International Journal of System Dynamics Applications
Volume 11 • Issue 2

18

the public key of the recipient for every message transmission. The local city administrator provides
local authentication to the devices that fall under a specific cluster.

The said environment is using the timestamp as well as the sender and receiver identity to
authenticate a communication for a session, so each time a new connection is requested, these
attributes will change. A trespasser cannot have any mapping for the current authentication with the
previous one. Hence authors claim their cryptographic environment stolen-verified attack resistance.
The responsibility of the cluster head will be on rotation. In every cluster, when a node is leaving,
or a new node is joining, the cluster head will change. With this arrangement, no device will be left
untouched. So the long persistent attack will not be feasible here. Table 7 provides corresponding
communication to different countermeasures of the threats.

CoNCLUSIoN AND FUTURE woRK

In this study, the authors proposed a new cryptographic environment suitable for low powered devices
of an IoT environment. A random binary bit sequence generator is programmed to generate the
cryptographic keys as per the NIST requirement. The use of different shuffled instances of binary bit
sequences added an extra level of security in the ‘key’ generation process. The keys will be used for
mutual authentication as well as for encryption and decryption. The concept of hierarchical clustering
is used for devices to limit their communication at a local level. Only useful and necessary information
will be allowed to transfer to the upper level of the hierarchy. In an IoT environment, devices are large
in number, so the programmer uses different authentication centers for load balancing. Authors also
presented security analysis and security countermeasures. The result shows that the proposed method
is highly suitable for low powered devices of an IoT environment.

Different devices in a cluster will send their data to the cluster head only, and the cluster head
will then forward these data to the upper layer if required. In this mechanism, the cluster heads will
have an extra burden. So a tool is necessary for the rotation of this cluster head from time to time.

Table 7. Countermeasures for different threats

Threats Countermeasures

Replay attack Message 7 follows T1, T2, T3, T4

Mutual authentication Message 6 follows Message 4 and Message 5

Server spoofing attack Message 1

No time synchronization problem Local clustering

Session key generation T2, T3, T4

Modifies attack Message 7

Local authentication Local clustering / Edge level

Stolen-verified attack Message 4

Long persistent attack Cluster head

International Journal of System Dynamics Applications
Volume 11 • Issue 2

19

REFERENCES

Auxilia, M., Raja, K., & Kannan, K. (2020). Cloud-Based Access Control Framework for Effective Role
Provisioning in Business Application. International Journal of System Dynamics Applications, 9(1), 63–80.
doi:10.4018/IJSDA.2020010104

Blum, L. (1986). Pseudo-random number generator. Academic Press.

Bussi, K., Dey, D., Biswas, M. K., & Dass, B. K. (2016). Neeva: A Lightweight Hash Function. IACR Cryptology
EPrint Archive, 2016, 42. Retrieved from http://dblp.uni-trier.de/db/journals/iacr/iacr2016.html#BussiDBD16

Çabuk, U. C., Aydin, Ö., & Dalkiliç, G. (2017). A random number generator for lightweight authentication
protocols: Xorshiftr. Turkish Journal of Electrical Engineering and Computer Sciences, 25(6), 4818–4828.
doi:10.3906/elk-1703-361

Che, W., Deng, H., Tan, W., & Wang, J. (2008). A random number generator for application in RFID tags.
Networked RFID Systems and Lightweight Cryptography: Raising Barriers to Product Counterfeiting, 279–287.
doi:10.1007/978-3-540-71641-9_16

Chen, J., Miyaj, A., Sato, H., & Su, C. (2015). Improved lightweight pseudo-random number generators for
the low-cost RFID tags. Proceedings - 14th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, TrustCom 2015, 1, 17–24. doi:10.1109/Trustcom.2015.352

Chlumecký, M., Buchtele, J., & Richta, K. (2017). Application of random number generators in genetic
algorithms to improve rainfall-runoff modelling. Journal of Hydrology (Amsterdam), 553, 350–355. doi:10.1016/j.
jhydrol.2017.08.025

Elfouly, F. H., Ramadan, R. A., Mahmoud, M. I., & Dessouky, M. I. (2017). Efficient Data Reporting in a
Multi-Object Tracking Using WSNs. International Journal of System Dynamics Applications, 6(1), 38–57.
doi:10.4018/IJSDA.2017010103

Epstein, M., Hars, L., Krasinski, R., Rosner, M., & Zheng, H. (2003). Design and Implementation of a True
Random Number Generator Based on Digital Circuit Artifacts. LNCS, 2779, 152–165. doi:10.1007/978-3-540-
45238-6_13

Gao, L., Ma, M., Shu, Y., & Wei, Y. (2014). An ultralightweight RFID authentication protocol with CRC and
permutation. Journal of Network and Computer Applications, 41(1), 37–46. doi:10.1016/j.jnca.2013.10.014

GS1. (2013). EPC TM Radio-Frequency Identity Protocols Generation-2 UHF RFID. Specification for RFID
Air Interface Protocol for Communications At. 10.1007/s40261-017-0531-2

Guma, I. P., Rwashana, A. S., & Oyo, B. (2018). Food Security Indicators for Subsistence Farmers Sustainability:
A System Dynamics Approach. International Journal of System Dynamics Applications, 7(1), 45–64. doi:10.4018/
IJSDA.2018010103

Gupta, D. N., & Kumar, R. (2019). Lightweight Cryptography : An IoT Perspective. International Journal of
Innovative Technology and Exploring Engineering, 8(8), 700–706. https://www.ijitee.org/download/volume-
8-issue-8/

Gupta, D. N., & Kumar, R. (2020). Generating Random Binary Bit Sequences for Secure Communications between
Constraint Devices under the IOT Environment. In INCET (pp. 1–6). doi:10.1109/INCET49848.2020.9154009

Gupta, D. N., Kumar, R., & Kumar, A. (2020). Efficient Encryption Techniques for Data Transmission Through
the Internet of Things Devices. In V. Jain, O. Kaiwartya, N. Singh, & R. S. Rao (Eds.), IoT and Cloud Computing
Advancements in Vehicular Ad-Hoc Networks (pp. 203–228). IGI Global. doi:10.4018/978-1-7998-2570-8.ch011

Kösemen, C., Dalkiliç, G., & Aydin, Ö. (2018). Genetic programming-based pseudorandom number generator for
wireless identification and sensing platform. Turkish Journal of Electrical Engineering and Computer Sciences,
26(5), 2500–2511. doi:10.3906/elk-1710-155

Koza, J. R. (1991). Evolving a computer program to generate random numbers using the genetic programming
paradigm. Proceedings of the Fourth International Conference on Genetic Algorithms, 37–44. Retrieved from
http://www.genetic-programming.com/jkpdf/icga1991.pdf

http://dx.doi.org/10.4018/IJSDA.2020010104
http://dblp.uni-trier.de/db/journals/iacr/iacr2016.html#BussiDBD16
http://dx.doi.org/10.3906/elk-1703-361
http://dx.doi.org/10.1007/978-3-540-71641-9_16
http://dx.doi.org/10.1109/Trustcom.2015.352
http://dx.doi.org/10.1016/j.jhydrol.2017.08.025
http://dx.doi.org/10.1016/j.jhydrol.2017.08.025
http://dx.doi.org/10.4018/IJSDA.2017010103
http://dx.doi.org/10.1007/978-3-540-45238-6_13
http://dx.doi.org/10.1007/978-3-540-45238-6_13
http://dx.doi.org/10.1016/j.jnca.2013.10.014
http://dx.doi.org/10.4018/IJSDA.2018010103
http://dx.doi.org/10.4018/IJSDA.2018010103
https://www.ijitee.org/download/volume-8-issue-8/
https://www.ijitee.org/download/volume-8-issue-8/
http://dx.doi.org/10.1109/INCET49848.2020.9154009
http://dx.doi.org/10.4018/978-1-7998-2570-8.ch011
http://dx.doi.org/10.3906/elk-1710-155
http://www.genetic-programming.com/jkpdf/icga1991.pdf

International Journal of System Dynamics Applications
Volume 11 • Issue 2

20

Kumar M., Kumar S., Budhiraja R., Das M. K., & Singh S. (2016). A cryptographic model based on logistic
map and a 3-D matrix. Journal of Information Security and Applications. 10.1016/j.jisa.2016.09.002

Kumar, M., Kumar, S., Budhiraja, R., Das, M. K., & Singh, S. (2016). Lightweight Data Security Model for IoT
Applications: A Dynamic Key Approach. IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData).

Leonard, P., & Jackson, D. (2015). Efficient evolution of high entropy RNGs using single node genetic
programming. GECCO 2015 - Proceedings of the 2015 Genetic and Evolutionary Computation Conference,
1071–1078. doi:10.1145/2739480.2754820

Mandal, K., Fan, X., & Gong, G. (2016). Warbler: A Lightweight Pseudorandom Number Generator for EPC C1
Gen2 Passive RFID Tags. International Journal of RFID Security and Cryptography, 2(2), 82–91. doi:10.20533/
ijrfidsc.2046.3715.2013.0011

Marsaglia, G. (2003). Xorshift RNGs. Journal of Statistical Software, 8(14), 1–6. doi:10.18637/jss.v008.i14

Matsumoto, M., & Kurita, Y. (1992). Twisted GFSR Generators. ACM Transactions on Modeling and Computer
Simulation, 2(3), 179–194. doi:10.1145/146382.146383

Matsumoto, M., & Kurita, Y. (1994). Twisted GFSR Generators II. ACM Transactions on Modeling and Computer
Simulation, 4(3), 254–266. doi:10.1145/189443.189445

Matsumoto, M., & Nishimura, T. (1998). Mersenne Twister: A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator. ACM Transactions on Modeling and Computer Simulation, 8(1), 3–30.
doi:10.1145/272991.272995

Melia-Segui, J., Garcia-Alfaro, J., & Herrera-Joancomarti, J. (2010). Analysis and improvement of a pseudorandom
number generator for EPC Gen2 tags. Lecture Notes in Computer Science, 6054, 34–46. doi:10.1007/978-3-
642-14992-4_4

Melià-Seguí, J., Garcia-Alfaro, J., & Herrera-Joancomartí, J. (2011). A practical implementation attack on weak
pseudorandom number generator designs for EPC Gen2 tags. Wireless Personal Communications, 59(1), 27–42.
doi:10.1007/s11277-010-0187-1

Melià-Seguí, J., Garcia-Alfaro, J., & Herrera-Joancomartí, J. (2013). J3Gen: A PRNG for low-cost passive RFID.
Sensors (Switzerland), 13(3), 3816–3830. doi:10.3390/s130303816 PMID:23519344

Nasution, F. B., Bazin, N. E., Rosalyn, R., & Hasanuddin, H. (2018). Public Policymaking Framework Based
on System Dynamics and Big Data. International Journal of System Dynamics Applications, 7(4), 38–53.
doi:10.4018/IJSDA.2018100103

Naugle, A. B., Silva, A., & Aamir, M. (2017). Cooperation and Free Riding in Cyber Security Information-Sharing
Programs. International Journal of System Dynamics Applications, 6(2), 71–85. doi:10.4018/IJSDA.2017040104

Pareek, N. K., Patidar, V., & Sud, K. (2003). Discrete chaotic cryptography using external key. Physics Letters.
[Part A], 309(1), 75–82. doi:10.1016/S0375-9601(03)00122-1

Pareek, N. K., Patidar, V., & Sud, K. (2005). Cryptography using multiple one dimensional chaotic
maps. Communications in Nonlinear Science and Numerical Simulation, 10(7), 715–723. doi:10.1016/j.
cnsns.2004.03.006

Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J. M., & Ribagorda, A. (2009). LAMED - A PRNG
for EPC Class-1 Generation-2 RFID specification. Computer Standards & Interfaces, 31(1), 88–97. doi:10.1016/j.
csi.2007.11.013

Picek, S., Jakobovic, D., Knezevic, K., & Derek, A. (2019). C3PO: Cipher construction with cartesian genetic
programming. GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation
Conference Companion, 1625–1633. doi:10.1145/3319619.3326869

Poorghanad, A., Sadr, A., & Kashanipour, A. (2008). Generating high quality Pseudo Random Number using
evolutionary methods. Proceedings - 2008 International Conference on Computational Intelligence and Security,
CIS 2008, 1, 331–335. doi:10.1109/CIS.2008.220

http://dx.doi.org/10.20533/ijrfidsc.2046.3715.2013.0011
http://dx.doi.org/10.20533/ijrfidsc.2046.3715.2013.0011
http://dx.doi.org/10.18637/jss.v008.i14
http://dx.doi.org/10.1145/146382.146383
http://dx.doi.org/10.1145/189443.189445
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1007/978-3-642-14992-4_4
http://dx.doi.org/10.1007/978-3-642-14992-4_4
http://dx.doi.org/10.1007/s11277-010-0187-1
http://dx.doi.org/10.3390/s130303816
http://www.ncbi.nlm.nih.gov/pubmed/23519344
http://dx.doi.org/10.4018/IJSDA.2018100103
http://dx.doi.org/10.4018/IJSDA.2017040104
http://dx.doi.org/10.1016/S0375-9601(03)00122-1
http://dx.doi.org/10.1016/j.cnsns.2004.03.006
http://dx.doi.org/10.1016/j.cnsns.2004.03.006
http://dx.doi.org/10.1016/j.csi.2007.11.013
http://dx.doi.org/10.1016/j.csi.2007.11.013
http://dx.doi.org/10.1145/3319619.3326869
http://dx.doi.org/10.1109/CIS.2008.220

International Journal of System Dynamics Applications
Volume 11 • Issue 2

21

Ramadan, R. A., & Altamimi, A. B. (2017). Hierarchal Fuzzy Logic Controller and Internet of Things (IoT)
Information: Disease Spreading as a Test Case. International Journal of System Dynamics Applications, 6(3),
59–86. doi:10.4018/IJSDA.2017070104

Rukhin, A., Soto, J., & Nechvatal, J. (2010). SP800-22rev1a, (April), 131.

Salustowicz, R., & Schmidhuber, J. (1997). Probabilistic incremental program evolution. Evolutionary
Computation, 5(2), 123–141. doi:10.1162/evco.1997.5.2.123 PMID:10021756

Stipcevic, M., & Rogina, B. M. (2006). Quantum random number generator, 7. Retrieved from https://arxiv.
org/abs/quant-ph/0609043

Tomassini, M., Sipper, M., Zolla, M., & Perrenoud, M. (1999). Generating high-quality random numbers in
parallel by cellular automata. Future Generation Computer Systems, 16(2), 291–305. doi:10.1016/S0167-
739X(99)00053-9

Vasyltsov, I., Hambardzumyan, E., Kim, Y. S., & Karpinskyy, B. (2008). Fast digital TRNG based on metastable
ring oscillator. Lecture Notes in Computer Science, 5154, 164–180. doi:10.1007/978-3-540-85053-3_11

Vigna, S. (2016). An experimental exploration of Marsaglia’s xorshift Generators, Scrambled. ACM Transactions
on Mathematical Software, 42(4), 1–23. Advance online publication. doi:10.1145/2845077

Vigna, S. (2017). Further scramblings of Marsaglia’s xorshift generators. Journal of Computational and Applied
Mathematics, 315, 175–181. doi:10.1016/j.cam.2016.11.006

Wu, J., & O’Neill, M. (2010). Ultra-lightweight true random number generators. Electronics Letters, 46(14),
988. doi:10.1049/el.2010.0893

Deena Nath Gupta is a Research Scholar in the Department of Computer Science, Faculty of Natural Sciences,
Jamia Millia Islamia (Central University), New Delhi-110025, INDIA. He did his B. Tech. from ABES Engineering
College, Ghaziabad-201009, Uttar Pradesh, India, and M. Tech. from Galgotias College of Engineering and
Technology, Greater Noida, G. B. Nagar-201310, Uttar Pradesh, India. He has an excellent academic background
with a very sound educational and research experience. He has published various research papers in the
conferences of international/national repute. His research interests include Cyber Security, Sensor Security,
Network Security, Lightweight Cryptography, etc.

Rajendra Kumar is presently working as Professor in the Department of Computer Science, Faculty of Natural
Sciences, Jamia Millia Islamia (Central University), New Delhi-110025, INDIA. He has an excellent academic
background with a very sound educational and research experience. He has published various research papers
in the Journals and conferences of international/national repute. His research interests include Cyber Security,
Cloud Security and Privacy, Big Data Analytics, Data Mining, IoT, Software Security, Requirements Engineering,
Security Policies and Standards, Software Engineering, Access control, and Identity Management, Vulnerability
Assessment, etc.

http://dx.doi.org/10.4018/IJSDA.2017070104
http://dx.doi.org/10.1162/evco.1997.5.2.123
http://www.ncbi.nlm.nih.gov/pubmed/10021756
https://arxiv.org/abs/
https://arxiv.org/abs/
http://dx.doi.org/10.1016/S0167-739X(99)00053-9
http://dx.doi.org/10.1016/S0167-739X(99)00053-9
http://dx.doi.org/10.1007/978-3-540-85053-3_11
http://dx.doi.org/10.1145/2845077
http://dx.doi.org/10.1016/j.cam.2016.11.006
http://dx.doi.org/10.1049/el.2010.0893

