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ABSTRACT

Antenna design often requires dealing with multiple constraints in the requirements, and the designs 
can be modeled as constrained optimization problems (COPs). However, the constraints are usually 
very strange, and then the feasible solutions are hard to find. At the same time, the robustness for 
antenna design is an important consideration as well. To solve the above issues, the combination of 
differential evolution algorithm (DE) and 3D-printing technique is presented to design a new crooked-
wire antenna. In the design process, DE is adopted to handle the constraints since DE is simple and 
efficient in finding feasible solutions. The objective of the modeled COP, which is the sum of variance 
of the gain, axial ratio, and VSWR over the frequency band, is used to enhance the robustness of 
the antenna and widen the frequency band without additional computational cost. The precision of 
fabricating the antenna is ensured by using 3D-printing. The design of the NASA LADEE satellite 
antenna is chosen as an example to verify the method of this paper. Experimental results show that 
the performance of the evolved antenna meets the design requirements.
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INTRodUCTIoN

A great increase of computational resources to deal with science and engineering problems has 
happened in the last thirty years. The progress has led to the rapidly development of many advanced 
numerical algorithms (Arianos et al., 2012). As a kind of the global optimization search method, 
evolutionary computation methods have been widely applied in the variety of fields, such as Artificial 
Intelligence (Wang, 2015; Thabit, 2019), engineering (Bilbao, 2015; Yu, 2019), bioinformatics (Pei, 
Zhou, Chen, Liu, &Wang, 2015), economics (Kim, 2015; Miralles-Pechuán, 2018), and so on. In 
addition, the further improvement in computational power for the future will strengthen the role of 
efficient numerical methods for handing complex problems, especially the nonlinear optimization 
problem.

Since the early 1990s, evolutionary optimization methods had been widely applied to 
electromagnetics (Weile & Michielssen, 1997). With the development of artificial intelligence for 
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decades, evolutionary algorithms (EAs) such as genetic algorithms (GAs) (Altshuler, 1997; Rogers, 
2002; Kerkhoff, 2007), differential evolutions (DEs) (Zheng, 2017; Goudos, 2017), particle swarm 
optimizations (PSOs) (Jarufe, 2018; Wu, 2019), evolution strategies (ESs) (BouDaher & Hoorfar, 
2015), and other evolutionary optimization techniques, are widely employed to deal with antenna 
design problems. Wire antenna designs were optimized by using GAs in papers (Altshuler, 1997; 
Smith, 2019). A quadrifilar helical antenna was designed in (Lohn, Kraus & Linden, 2002) where 
a co-evolutionary GA was applied to optimize the gain and size of the quadrifilar helical antenna. 
The group further designed an X-Band antennas for NASA’s Space Technology 5 Mission (Hornby, 
Lohn & Linden, 2011). In this research, two EAs were used: the first used a vector of real-valued 
parameters and the second used a tree-structured generative representation for constructing the 
antenna, and experimental results show that the proposed method is effective. In paper (Yang 
&Adams, 2016), a systematic method was presented to the shape optimization of compact, single-
aperture MIMO antennas based on characteristic modes and GA. A new approach of controlling 
antenna radiation power pattern were introduced based on both GA and newly technology 3-D 
printing of special dielectric materials (Wu, Abdelrahman, Liang, Yu, & Xin, 2017). Dynamic and 
multi-objective techniques are integrated into EAs to deal with antenna array problems with many 
local optima (Jiao, Zeng, Alkasassbeh, & Li, 2017). The paper (Ma, Yang, Chen, Qu, & Hu, 2019) 
proposed an effective optimization approach for the pattern synthesis of 4-D irregular arrays based 
on the maximum-entropy model and DE. The above researches all deal with the two challenges. The 
feasible solutions of antenna design problem are hard to be found, because the design constraints are 
very strange. In addition, the precision of fabricating the antenna maybe can not guarantee. However, 
the outcomes were very satisfactorily.

To overcome the difficulties of multiple design constraints and the precision of fabricating for 
the antenna design, the combination of DE and 3D printing would be used to obtained the antenna 
which meets the needs of design requirements. Based on our previous work (Ye et al., 2017), a 
crooked wire antenna is designed in this paper. The wire antenna design is modeled as a COP. The 
geometric structure of the antenna is mainly composed of a crooked wire for radiation, a coaxial feed 
line and a metal cup for reflection. The constraints are handled by using DE (Storn & Price, 1997). 
The fitness of the antenna during the design process is simulated and evaluated with Ansoft HFSS. 
The robustness of the antenna is enhanced by constructing the objective as the sum of variance of the 
gain, axial ratio, and VSWR over the frequency band (Hu et al., 2019). The precision of fabricating 
the antenna is increased by using 3D-printing. The NASA LADEE antenna (Lohn, Linden, Blevins, 
Greenling, &Allard, 2015) is chosen as an example to verify the method of this paper. The performance 
parameter of the fabricated antenna such as antenna gain is measurand and compared with the results 
of the simulated antenna by Ansoft HFSS. The experiment results show that the optimal crooked wire 
antenna by the proposed method in this work satisfies the needs of design requirements.

After Section 1, the remaining of this paper is organized as follows: The related work about the 
way to the model of the COP for the antenna design and the DE algorithm is formulated in Section 2. 
The detail of the modeled COP for the wire antenna design is presented in Section 3, which includes 
antenna design requirements, antenna structure, objective function, and constrained function. Then, 
the COP for the wire antenna design is deal with by the proposed DE, and the optimal wire antenna 
is fabricated by using 3D-printing next. Simulated results are compared with the referred literature, 
and the differences between them are analyzed and discussed in Section 4. Finally, the summaries 
of this paper are drawn in Section 5.

ReLATed woRK

Antenna design often needs to meet multiple constraints from design requirements. Therefore, antenna 
design problems are usually modeled as COPs, and then DEs are used to find the global optimal 
solution. In this section, a formulation of the COP and a DE for antenna design will be introduced.
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Constrained optimization Problem (CoP)
Without loss of generality, the COP usually has an objective function, some constraints, and a suitable 
search space. The COP can be written as in Equation (1).

min
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where f x( )  is the objective function,  g x( )  are the vector of the constraints, x  is antenna design 

variables, X  is the solution space, 


l  and u  are the lower and upper boundary of the solution space, 
n is the number of antenna design variables, m is the number of the constraints.

For the optimizers convenient to tailor the COP formulation, we normalize the solution space, 
that is,X = 
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If there are equality constraintsh x( ) = 0 in the COP, the equality constraints will be converted in 

the inequality constraints, that is, h x( ) − ≤e 0 , e is very small positive number, such as 0.0001. 
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feasible; otherwise x is said to be infeasible. The feasible set S
F

consists of all feasible solutions 
of the COP, as shown in Equation (3). 
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Where P 0( ) is the initial population in the EA. If there is max{ } , , , ,...,G x i m
i

( ) ≤ =1 1 2 3 , 
defining max{ } .G x

i

( ) = 1  Note the constraint violation value defined in Equation (5) is actually a 
normalized one.

differential evolution (de)
In this paper, the DE algorithm (Storn & Price, 1997) would be applied to deal with the above COP. 
In paper (Price et al., 2005), many different schemes were provided for DE, in this work, the DE 
strategy (DE/rand/1/bin) is employed which is presented as follow in Algorithm1.

By comparing the objective value and constraint value of one solution, a better solution is 
obtained. For ∀ ∈





a b X, :

(1)  If two solutions are both of feasible, the one which has smaller objective is better;
(2)  If one solution is feasible, another is infeasible. Then the feasible solution is better than the 

infeasible one;
(3)  If two solutions are both of infeasible, the one which has smaller constraint violation value is 

better.

Algorithm 1. differential evolution algorithm
Algorithm 1. DE/rand/1/bin 

1. Generate the initial population P x x x
NP

= { }  

1 2,
,..., , NP is the 

population size; 
2. Evaluate the objective value and constraint values of each 
individual in P;
3. while the halting criterion is not satisfied do:
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Select rndomly a b c i¹ ¹ ¹
  j rand n
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NP

= { }  

1 2,
,..., .



International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

5

FoRmULATINg ANTeNNA deSIgN AS CoP

In the stage of modeling the antenna design problem as a COP, there are three steps, namely the 
determination of the solution space, the construction of the objective function, and the establishment 
of constraint functions.

Antenna Requirements
The LADEE antenna (Lohn, Linden, Blevins, Greenling, & Allard, 2015) is used, and the design 
requirements are shown in Table 1.

According to the experience of antenna design, each section of wire is neither too short (provisions 
not smaller than 1/10 of the wavelength) or too long (no longer than half a wavelength), the angle of 
two adjacent wires cannot be too narrow, otherwise it maybe lead to instability in electromagnetic 
computing software (angle of not less than 20 degrees), combined with the requirements, evolutionary 
design requirements to consider the constraints as follows in Table 2.

Representation of the Antenna Structure
The overall structure of the selected LADEE wire antenna is shown in Figure 1.

Table 1. Antenna requirements.

Parameter Requirement(s)

Frequency 2200MHz - 2290MHz

Polarization mode Right-Handed Circular polarization (RHCP)

Input impedance 50 Ohm

VSWR £  2

Gain pattern range ³  9 dB, 0 3600 0£ £j , − ≤ ≤20 200 0q

Size Diameter £  229mm, height £  127mm

Table 2. Evolutionary Design Requirements to Consider the Constraints

Gain ³  9 dB, 0 3600 0£ £j , − ≤ ≤20 200 0q

Length of each piece of wire (L) l l/ /10 2£ £L

Adjacent angles a ³ 200
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The LADEE wire antenna is mainly composed of seven crooked wire antenna, coaxial feed, and 
a metal cup for reflection.

The structure of wire: the crooked-wire consists of seven segments which stays in a cubic with 
size of 14.0cm * 14.0cm *10.0cm.

To sum up, the solution space of the LADEE wire antenna structure variables is shown in Table 3.
As can be seen from Table 3, the 19 variables determine the geometric structure model of LADEE 

wire antenna. The solution(x) is shown in Equation (6).
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The solution space (X) for the LADEE wire antenna is Equation (7) and Table 3.
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Figure 1. LADEE wire antenna optimization model

Table 3. the Solution Space of LADEE Wire Antenna Structure Variables.

Parameters range (mm)

z0 [3, 12]

x1 [-70, 70]

y1 [-70, 70]

z1 [0, 100]

x2 [-70, 70]

y2 [-70, 70]

z2 [0, 100]

Table 3 continued on next page
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oBJeCTIve FUNCTIoN

According to literature (Hu et al., 2019), the objective function of the modeled COP in this paper is 
the sum of the variance of the antenna gain, axis ratio, and VSWR over the frequency band, which 
can increase the robustness of the antenna design. The robustness of the antenna can be enhanced 
according to the performance characteristics of the antenna optimization design without additional 
computational cost. The objective function is in Equation (8).

f x GVariance ARVariance VSWRVariance
( ) = + +( )∑ ∑ ( ) ( )ϕ θ ϕ θ ϕ θ, ,

 (8)

where ϕ θ,( ) is the location in the space spherical coordinate system, j  and q  are the azimuth 
and the elevation angles of the space spherical coordinate system, respectivelyϕθθ . Over the frequency 
band, GVariance

ϕ θ,( )  is the gain performance variance of the antenna at ϕ θ,( ) , ARVariance ϕ θ,( )  is 

the axial ratio performance variance ϕ θ,( ) , and VSWRVariance  is the VSWR performance variance.
In this work, the specific variances of gain, axis ratio, and VSWR over the frequency band for 

antenna performances are calculated as in Equation (9), Equation (10) and Equation (11).

GVariance Gain MeanG

MeanG
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, , , ,

,

( ) ( ) ( )

( )

= −( )∑
2

==
( )∑
( )

freq

freq
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len freq

ϕ θ, ,
 (9)

Parameters range (mm)

x3 [-70, 70]

y3 [-70, 70]

z3 [0, 100]

x4 [-70, 70]

y4 [-70, 70]

z4 [0, 100]

x5 [-70, 70]

y5 [-70, 70]

z5 [0, 100]

x6 [-70, 70]

y6 [-70, 70]

z6 [0, 100]

Table 3 continued
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ARVariance Axial MeanAR
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where Gain
freqϕ θ, ,( )  is antenna gain with a frequency of freq at ϕ θ,( ) , Axial freqϕ θ, ,( )  is the axial 

ratio of the antenna with a frequency of freq at ϕ θ,( ) , VSWRfreq  is the VSWR of the antenna with a 
frequency of freq at ϕ θ,( ) . Over the frequency band for the LADEE wire antenna, Len

freq
is the total 

number of frequency points, and freq is a frequency point.

Constraint Functions
Antenna optimization design usually has multiple constraint requirements. In this paper, the constraints 
of the LADEE wire antenna design include the antenna gain constraints, the axis ratio constraints, 
the VSWR constraints, and the geometric size constraints. Combining the Table 1 and Table 2, the 
details of the constraint functions are established in the following.

The gain constraint functions are in Equation (12).

gGain x RHCPGain freq
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o o o
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, ,
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≤ ≤ − ≤
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The axis ratio constraint functions are in Equation (13).

gAxial x Axial
freq freq

o o o
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The VSWR constraint functions are in Equation (14).
(14)

Before constructing the geometric size constraint functions, we firstly denote the ends of the seven 
segments of the crooked-wire as O (0, 0, 0),A z

0 0
0 0, ,( ) ,A x y z

1 1 1 1
, ,( ) , A x y z2 2 2 2

, ,( ) , 
A x y z

3 3 3 3
, ,( ) , 
A x y z

4 4 4 4
, ,( ) ,A x y z

5 5 5 5
, ,( ) ,A x y z

6 6 6 6
, ,( ) respectively. Next we construct the geometric size 

constraint functions as in Equation (15). 
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Constrained optimization Problem
Then a COP is formulated for the LADEE wire antenna design as in Equation (16).
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In next section, the DE is applied to deal with the modeled COP for the design of the LADEE 
wire antenna, and the corresponding results would be shown.

SoLvINg ANTeNNA deSIgN By de

Setting de Parameters
Using DE to deal with the LADEE wire antenna, the parameters are set in the following

(1)  Generations: T = 1000;
(2)  Population size: NP = 50;
(3)  Scale factor: F= 0.5;
(4)  Crossover rate: CR = 0.9.

Results and discussion

The optimal solution of antenna structure variables x
opt

 obtained by the DE algorithm is in the 
following

The simulated wire-structure is shown in Figure 2. The optimal solution x
opt

 satisfies all the 
constraints in Equation (16).
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As shown in Figure 2, the antenna structure is strange and very hard to fabricate by hand. To 
handle the fabrication difficulty, we fabricated the wire antenna by using 3D-printing technique since 
the 3D-printing nowadays is cheap enough to fabricate the strange antenna. The 3D-printed antenna 
is shown in Figure 3. The result have little different about axial ratio and gain at all angles of j , so 
we choose the case of j = 00  to show the results.

Figure 4 shows the VSWR of the obtained wire antenna in the frequency range. As can be seen 
from the Figure 4, the maximum of VSWR is 1.48 in the range of 2200MHz-2290MHz, much smaller 
than 2.0, which satisfies the needs of the design requirements for the wire antenna.

Figure 2. Prototype of the evolved antenna

Figure 3. 3D-printed prototype of the evolved antenna
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The simulated axial ratio of all angles (j ) is shown in Figure 5. The result of measurements 
and simulations at j = 00  can be seen in Figure 6, which show that the axial ratio of antenna prototype 
also matched with simulation. And the measurements are also basically the same as 6.6dB presented 
in the references (Lohn et al., 2015). Some of the data are about 10dB near q = −200  or 200 .

Figure 4. The VSWR of the obtained antenna ranges of 2200MHz-2290 MHz

Figure 5. The axial ratio of evolved antenna at the frequency point of 2245 MHz
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The simulated RHCP gain for the evolved wire antenna at the central frequency point of the 2245 
MHz is illustrated in Figure 7. In the antenna radiation range − ≤ ≤20 200 0q , 0 3600 0£ £j , wire 
antenna gain is more than 9.0 dB, and maximum achieves to 12.4 dB, which satisfies the desired 
antenna performance requirements. In addition, the 3-D polar plot of the RHCP gain of the obtained 
wire antenna is shown in Figure 8.

Figure 6. The axial ratio of the evolved antenna for j = 00

Figure 7. The RHCP gain results of LADEE evolved antennas at 2245MHz
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Simulated and measured elevation cuts at j = 00  for the antenna are shown in Figure 9, which 
match well and meet the performance requirements. While there are some differences between 
simulation result and measurement result at 2290MHz, which may be caused by the material of 3D 
printing of the Antenna prototype or problems in the process of measurements. So that needs further 
confirmation and research.

Figure 8. The 3-D polar plot of the RHCP gain at 2245MHz

Figure 9. Elevation plots for j = 00  for the evolved antenna
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From the above, the obtained wire antenna by DE and 3D-printing meets the needs of the designed 
requirements, i.e., antenna geometric size, antenna gain, axis ratio, and VSWR over the frequency band.

CoNCLUSIoN

This paper designs a new crooked-wire antenna by using DE algorithm and 3D-printing technique. 
The wire antenna design is modeled as a COP, in which the objective is the variance of antenna gain, 
axis ratio, and VSWR over the frequency band, and the constraints are the antenna geometric size, 
gain, axis ratio, and VSWR. Next, the DE algorithm is used to find the global optimal solution for 
the design. The main difference between the antenna design in this work and traditional evolutionary 
antenna design is that the construction of the objective function and the 3D-printing the antenna. The 
minimization of the objective can potentially enhance the robustness of the antenna and widen the 
frequency band without additional computational cost, and the precision of fabricating the antenna is 
ensured by using 3D-printing. The NASA LADEE satellite antenna design as an example is chosen to 
verify the effectiveness of the proposed method in this paper. The frequency of the LADEE obtained 
antenna is between 2200MHz and 2290MHz. The evolved antenna by the proposed method in this 
work is good to meet the design requirements, i.e., antenna geometric size, antenna gain, axis ratio, 
and VSWR over the frequency band. The measurements results of antenna prototype matched with 
simulations. This may provide a new design method for antennas.
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