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ABSTRACT

Decision makers are exposed to an increasing amount of information. Algorithms can help people 
make better data-driven decisions. Previous research has focused on both companies’ orientation 
towards analytics use and the required skills of individual decision makers. However, each individual 
can make either analytically based or intuitive decisions. The authors investigated the characteristics 
that influence the likelihood of making analytical decisions, focusing on both analytical orientation 
and capabilities of individuals. They conducted a survey using 462 business students as proxies for 
decision makers and used partial least squares path modeling to show that analytical capabilities and 
analytical orientation influence each other and affect analytical decision-making, thereby impacting 
decision quality and decision regret. The findings suggest that when implementing business analytics 
solutions, companies should focus on the development not only of technological capabilities and 
individuals’ skills but also of individuals’ analytical orientation.
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INTRODUCTION

Effective analysis and utilization of big data is a key factor for success in many business and service 
domains (Shukla & Mathur, 2020). In a context of scarce resources and profound change in customer 
needs, companies and individuals are faced with an abundance of decision possibilities (Kreuzer, 
Röglinger, & Rupprecht, 2020). Recommendation engines, filtering systems, prioritization and 
personalization algorithms have been tried to help individuals make better decisions and reduce their 
indecisiveness. Business analytics (BA) are increasingly being adopted in practice and emerging as an 
urgent challenge to improve personal and company performance, as evidence-based decision-making 
seems both desirable and rational (Beer, 2017; Holsapple, Lee-Post, & Pakath, 2014; Power, Cyphert, 
& Roth, 2019). Companies want to become more data-driven, specifically by taking advantage of 
real-time BA (Ain, Vaia, DeLone, & Waheed, 2019; Beer, 2017). BA provide a framework to exploit 
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the synergies among fields such as data mining, quantitative methods, operations research, decision 
support system in a more practical format (Acharjya, Mitra, & Roy, 2019).

The interest of both academics and executives in investigating decision-making processes is 
longstanding (Ireland & Miller, 2004). The decision-making process needs to be better understood 
for organizations to create value from the use of BA (Sharma, Mithas, & Kankanhalli, 2014). The 
skillful use of BA by individual employees along with a culture of data-driven decision-making has 
the potential to radically improve companies’ performance (Frisk & Bannister, 2017). The rise of 
smart manufacturing, the core idea behind the fourth industrial revolution (Industry 4.0), is generating 
more and more data that requires analysis. Recent advancements of several information technologies 
and manufacturing technologies, such as Internet of Things (IoT), big data, artificial intelligent (AI), 
cloud computing, cyber-physical systems, digital twins, among others, have leveraged the development 
and use of business analytics capabilities and an orientation to make decisions based on such data by 
individuals and organizations (Dhamija, Bedi, & Gupta, 2020; Jagatheesaperumal, Rahouti, Ahmad, 
Al-Fuqaha, & Guizani, 2021; My, 2021; Rowlands & Milligan, 2021; Sahu, Sahu, & Sahu, 2020).

Information is recognized to play a key role by enhancing and providing insights to improve 
decision-makers’ performance (Tang & Liao, 2021). There are two main ways for an individual to 
process information, one being considered intuitive, natural, automatic and experiential and the other 
logical-conceptual, analytical-rational, explicit, systematic and intentional. Analytical orientation is 
characterized by an individual’s thinking that is oriented by data, reason and logical connections. 
The experiential or intuitive orientation, in turn, can be characterized as more holistic, experiential, 
dissociative, oriented to immediate actions and emotional (Epstein, Pacini, Denes-Raj, & Heier, 
1996; Tversky & Kahneman, 1983). Some of the past research argued that much of cognition occurs 
automatically outside of consciousness and in the realm of intuition (Agor, 1986; Sadler-Smith & 
Shefy, 2004).

Rational behavior has a central place in decision-making theory and practice (Papadakis & 
Barwise, 1997). Despite the existence of several seminal studies on rationality in decision-making 
processes (Dean & Sharfman, 1993; Eisenhardt & Zbaracki, 1992; Simon, 1979), the relationship 
between rationality and decision performance needs more clarification (Božič & Dimovski, 2019). 
Further, analysis in Ain et al. (2019) showed that human factors have largely been ignored in BA 
studies, which are mainly limited to either organizational or information systems–related factors. The 
research has not sufficiently covered all relevant levels of analysis, as there is a dearth of research on 
effective BA use (Trieu, 2017). Moreover, no studies have directly addressed the effects of analytical 
orientation and analytical capabilities on both decision quality and regret about a decision. In summary, 
there is no consolidated knowledge yet about the BA value creation process (Božič & Dimovski, 2019).

The aim of this paper is to empirically investigate analytical capabilities and analytical orientation 
as components of analytical decision-making (using an analytical approach) by individuals. We 
also investigate whether such decision-making has positive effects on the quality of decisions made 
by individuals as well as on the reduction of decision regret. We use a sample of 462 business 
administration students to test our proposed model.

The paper is divided into six sections, including this introduction. The second section presents 
the theoretical framework, which exposes the associations between analytical capabilities, analytical 
orientation, decision regret and decision quality. The hypotheses are presented in the third section of 
the manuscript, and the research method follows in the fourth section. The fifth section presents the 
results, followed by the research limitations and further research topics.

THEORETICAL FRAMEwORK

BA is defined as the use of data to make sounder, more evidence‐based business decisions enabled by 
IT-based tools (e.g., data warehouses, online analytical processing [OLAP] and statistical, visualization 
and data mining tools) (Seddon, Constantinidis, Tamm, & Dod, 2017). BA is a holistic approach 
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to managing, processing and analyzing the various data-related dimensions (Fosso Wamba, Ngai, 
Riggins, & Akter, 2017). The approach, seen as a combination of people’s analytical capabilities 
and analytical orientation that drives processes and the use of multiple information technologies 
for accessing and treating large amounts of structured and unstructured data, is aimed at generating 
descriptive, predictive and prescriptive models (Akter, Wamba, Gunasekaran, Dubey, & Childe, 2016; 
Chen, Chiang, & Storey, 2012; Jamehshooran, Shaharoun, & Haron, 2015).

BA requires a set of technologies, advanced analytical tools and methodologies. However, a 
fundamental part of the effectiveness of BA depends on the abilities of individuals to extract, store, 
integrate, transform and disseminate relevant data as well as to inform others or use that information 
to support decision-making processes. The success of BA projects requires not only infrastructure, 
knowledge and tools for dealing with data but also an understanding of how BA translates to better 
decision-making (Barton & Court, 2012; Chae & Olson, 2013; T. H. Davenport, 2013; T. H. Davenport 
& Patil, 2012; Kiron, Prentice, & Ferguson, 2014).

In general, BA capabilities are considered as a new type of organizational capability (W. Y. 
C. Wang & Wang, 2020) and are described through at least three perspectives, those being the 
organizational (managerial analytical approach), physical (IT infrastructure) and human (skills and 
knowledge) perspectives. Regarding the specific human dimension, certain works (Akter et al., 2016; 
Gupta & George, 2016) emphasize the technical skills and proficiency of individuals with modeling 
tools or expertise in data management. Popovic et al. (2012) identified the skills of the individual 
in producing and exploring different tools and techniques. Therefore, any description of a firm’s 
analytical capabilities will involve a human approach in addition to managerial and technological 
dimensions (Barton & Court, 2012; T. H. Davenport & Patil, 2012; Kiron et al., 2014).

Most previous research (Holsapple et al., 2014; Mello & Stank, 2005; Noble, Sinha, & Kumar, 
2002) has either explicitly or implicitly studied analytical orientation/capabilities at the organizational 
level. An additional research stream has examined the skills needed for business analysts and identified 
skills such as domain knowledge, organization, communication, information management, machine 
learning, statistics, mathematics, computing and operations research and structured data management 
(Akhtar, Frynas, Mellahi, & Ullah, 2019; Cegielski & Jones-Farmer, 2016; Dubey & Gunasekaran, 
2015; Verma, Yurov, Lane, & Yurova, 2019).

In this sense, within a firm context, analytical capabilities and analytical orientation can affect 
positively the quality of decisions for several reasons: both conditions may lead individuals to leverage 
their knowledge about the variables of a certain problem, or to access the required inputs for the 
decision, or even a greater ability in recognizing relevant associations between the variables involved 
in the decision (Côrte-Real, Oliveira, & Ruivo, 2017; Ghasemaghaei, Ebrahimi, & Hassanein, 2018; 
Lee, 2001; Raghunathan, 1999).

We argue that while analytical capabilities and analytical orientation are both extremely important, 
the knowledge gained on the subject is still insufficient. Every individual possesses a certain level 
of tool expertise and personal inclinations that influence how he or she is inclined to use available 
data when making decisions (Khanra, Dhir, & Mäntymäki, 2020). Therefore, the definition and 
measurement of individual analytical orientation and analytical capabilities are crucial to better 
understand the human dimension of BA.

All this means that studying individual analytical orientation is of the utmost importance. To 
enable its investigation, we conceptualize an individual’s analytical orientation by following the 
definition of a firm’s orientation, which has been considered as an overall problem-solving approach 
to strategic decision-making (Morgan & Strong, 1998); as a compromise to search deeper for the 
roots of problems and to make good use of appropriate management systems, such as information 
and control systems (Venkatraman, 1989); and as a trait of an analytics-focused organization, which 
channels its resources into BA initiatives that foster the firm’s ability to collect, analyze and act on 
data (T. H. Davenport, 2013, 2014).
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When facing complex problems with considerable impacts on their lives, individuals can turn 
to an analytical thinking pattern of processing information, using analytical tools and techniques, 
seeking as much data as possible and employing a reasoning process before taking a proper action. 
In this sense, both analytical orientation and analytical skills are required to take advantage of the 
available information to reach better decisions.

RESEARCH HyPOTHESES

Although concepts such as analytics capability and analytics technology have been used in prior 
studies, the elements of these concepts are still unclear (Krishnamoorthi & Mathew, 2018). BA 
capability is a multidimensional construct formed by capturing the functionalities of BA systems and 
continued from data extraction and data analysis to visualization and reporting (Y. Wang & Byrd, 
2017). Thus, analytical decision-making is considered in our study as a combination of individuals’ 
analytical orientation and capabilities due to the tendency of individuals to follow normative rational 
principles in their decision-making processes (Ceschi, Demerouti, Sartori, & Weller, 2017; Geisler 
& Allwood, 2018).

Tools and technique capabilities (TTC) include tools that support traditional ad hoc queries, 
inferential statistics, predictive analytics, simulation and optimization, thus supporting descriptive, 
diagnostic, predictive and prescriptive analytics (Acito & Khatri, 2014). Analytical tools are a 
fundamental part of any BA system (Sun, Strang, & Firmin, 2017), as a wide array of BA tools must 
be available to decision-makers (Wixom, Yen, & Relich, 2013).

While data scientists undoubtedly need strong statistical and mathematical skills, they also 
need IT skills—notably an ability to program (e.g., R) and an ability to manipulate data (e.g., SQL) 
(Vidgen, Shaw, & Grant, 2017)—to develop higher analytical capabilities (Acito & Khatri, 2014). 
Thus, individual IT competencies—namely, IT-related skills, IT knowledge and utilization ability—are 
crucial for analytical capabilities (Ain et al., 2019).

This leads to our first hypothesis:

H1: Tools and techniques are a constituent of analytical capabilities.

Although technology is important, it represents only one of many challenges that individuals must 
address if they are to become data-driven (Vidgen et al., 2017). Personal biases and emotional processes 
(both conscious and unconscious) affect the processing of cognitive and emotional responses (Xu et 
al., 2020). Human subjectivity may also affect data preparation, algorithm design, and interpretation 
of the outputs (Khanra et al., 2020). There is a fundamental structure to data-analytic thinking and to 
basic principles of causal analysis, along with particular areas where intuition, creativity, common 
sense and knowledge of a particular application must be understood (Provost & Fawcett, 2013). 
Individuals can benefit more from BA by using both inductive and deductive reasoning (Erevelles, 
Fukawa, & Swayne, 2016). Thus, the exploration of users’ perception is important (Ain et al., 2019).

This leads to our second hypothesis:

H2: Inductive and deductive reasoning are constituents of analytical capabilities.

There are different complementary conceptualizations of rationality in the literature. It has been 
seen as a systematic process for reaching carefully thought-out goals (Schwenk, 1995), as a behavior 
understandable within a given frame of reference (Butler, 2002), and as a decision process involving 
the collection of information relevant to a decision and the reliance upon analysis of that information 
in making a choice (Dean & Sharfman, 1996). In summary, rationality can be considered as an explicit 
(formal), systematic and analytical approach to decision-making (Khatri, 1994).
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From these considerations, we argue that analytical decision-making is a combination of both 
analytical orientation and analytical capabilities. We thus base the next three hypotheses on this 
understanding.

With scarce resources and profound change in customer needs (Kreuzer et al., 2020), companies 
and individuals are faced with an abundance of decision possibilities and uncertainty about how to 
decide and, therefore, react. For the aims of this research, we rely on IPT (Information Processing 
Theory) (Galbraith, 1973, 1974, 2014). Regarding IPT, “the greater the uncertainty of the task, the 
greater the amount of information that has to be processed between decision-makers during the 
execution of a task” (Galbraith, 1974, p. 28). Based on IPT, we propose that professionals need strong 
quantitative and analytical skills to understand and respond to current environmental challenges; thus, 
the development of data analysis skills is crucial (Bravo et al., 2016). Following IPT, we assume that 
an individual’s analytical capabilities can modify the way he or she perceives and reacts to events. In 
this sense, it is not the data per se that affect the individual’s judgment or behavior in decision-making, 
but the individual’s ability to access and process relevant data into useful information necessary for 
decision-making. This leads to the third hypothesis:

H3: Analytical capabilities positively affect analytical decision-making.

An analytical decision-making culture is crucial to improving the use of information (Popovič et 
al., 2012). With greater computational information processing capacity and an analytical approach, 
BA can extend humans’ cognition while augmenting but not replacing human contributions (Jarrahi, 
2018). Finally, an analytical decision-making orientation transmits positive effects to use data and 
facts systematically and analyze them for decision-making tasks (Kulkarni, Robles-Flores, & Popovič, 
2017). This leads to the fourth hypothesis:

H4: Analytical orientation positively affects analytical decision-making.

While we argue that analytical capabilities and analytical orientation are two distinct constructs, 
there are obviously correlations between them. It is important to study how orientations influence 
performance differently when leveraged through capabilities (Sinkovics & Roath, 2004), and the 
correlation of capabilities and orientations (Demirkan & Delen, 2013) needs to be understood much 
better.

This leads to the fifth hypothesis:

H5: Analytical capabilities and analytical orientation are correlated.

The core purpose of BA is to support decision-making (Holsapple et al., 2014; P. Trkman, 
McCormack, de Oliveira, Ladeira, & Oliveira, 2010). It is thus crucial to study how BA facilitate 
data-driven decision-making (Cao, Duan, & Li, 2015), as one of the main benefits of BA is better 
decision-making (Wixom et al., 2013). The first and foremost effect of BA should be on decision 
quality (Sharma et al., 2014). This leads to the sixth hypothesis:

H6: Analytical decision-making positively impacts decision quality.

In general, there is a lack of research on how analytical decision-making, confidence and 
uncertainty are related. It is known that when making decisions, individuals anticipate regret and try 
to avoid it (Buchanan, Summerville, Lehmann, & Reb, 2016), but it is also important to consider that 
the inherent uncertainty within BA tools can lead to a lack of confidence in the resulting decisions 
made thereof (Hariri, Fredericks, & Bowers, 2019; Khanra et al., 2020). Previous studies on the 
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effect of analytical decision-making on decision regret had conflicting results. On the one hand, 
it can be expected that people who spend energy, time or money to make analytical decisions may 
experience dissatisfaction or regret later (Moyano-Díaz, Martínez-Molina, & Ponce, 2014). Further, 
BA decision-making can introduce uncertainties additional to those inherent in the data and result 
in impaired decision-making, with human biases influencing the awareness of such uncertainties 
(Sacha, Senaratne, Kwon, Ellis, & Keim, 2016).

However, analytical decision-making can help specifically in detecting, anticipating and 
responding strategically, thus helping one realize opportunities and reduce regret (van Rijmenam, 
Erekhinskaya, Schweitzer, & Williams, 2019). Accordingly, the regret minimization paradigm has 
been attracting increased interest (Masiero, Yang, & Qiu, 2019). Decision makers are likely to strive 
to minimize anticipated regret by utilizing BA to recommend optimal solutions (Appelbaum, Kogan, 
Vasarhelyi, & Yan, 2017).

Moreover, especially in cases where individuals are not forced to use a particular BA tool but 
can work with experience-based BA tools, analytical decision-making should be beneficial for regret 
reduction (Viaene & Van den Bunder, 2011). This leads to our seventh and last hypothesis:

H7: Analytical decision-making reduces decision regret.

Based on these assumptions, the structural model that was tested in this research is presented 
in Figure 1.

MODEL SPECIFICATION AND OPERATIONALIZATION

The analytical capabilities (AC) were conceptualized as a second-order construct consisting of two 
first-order constructs: TTC (tools and technique capabilities), which are individuals’ technological 
skills, and IDR (inductive and deductive reasoning), which are individuals’ cognitive skills.

To assess capabilities related to analytical tools and techniques (TTC), we measured the 
respondents’ perceptions of how easy it would be to use tools to describe what is happening, predict 
what is going to happen and prescribe what should be done (Acito & Khatri, 2014; Chen et al., 2012; 
T. H.. Davenport, 2014; Delen & Demirkan, 2013; Holsapple et al., 2014). Moreover, we asked 
respondents to inform us how often they use modeling techniques to represent and solve problems 

Figure 1. Structural model proposed
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(Chen et al., 2012; Delen & Demirkan, 2013; Gorman & Klimberg, 2014; Holsapple et al., 2014; 
Lavalle, Lesser, Shockley, Hopkins, & Kruschwitz, 2011).

For inductive and deductive reasoning (IDR), we asked respondents how easy they thought it 
would be to use evidence/facts to recognize problems and find the right data, prepare it for analysis, 
exploit it, and make use of critical reasoning to support important decisions (Delen & Demirkan, 
2013; Demirkan & Delen, 2013; Gorman & Klimberg, 2014; Holsapple et al., 2014; Muehlen & 
Shapiro, 2010; Taylor, 2015).

We measured the analytical orientation (AO) construct by considering analytical thinking as a 
cognitive process (Evans, 2008) and used perceptual questions to measure how often, when making 
important decisions, the respondents use analytical models, consider data as important, analyze data 
and externally collect data and user reviews (Cosic, Shanks, & Maynard, 2012; Lavalle, Hopkins, 
Lesser, Shockley, & Kruschwitz, 2010).

Decision regret is the emotion experienced by an individual upon realizing or imagining that 
his or her current situation would have been better if he or she decided differently, and it signals an 
unfavorable evaluation of a decision (Pieters & Zeelenberg, 2007). To assess decision regret, we relied 
on decision justification theory, which postulates that the overall feeling of regret is a combination 
of two core components: one associated with comparative evaluation of the outcome (“I am often 
concerned about my important decisions after they are made”) and the other with the feeling of self-
blame for having made a poor choice (“I often must reverse course on an important decision because 
I was wrong”) (Connolly & Zeelenberg, 2002).

Finally, we used the self-reported assessment of decision quality (“I generally make good 
important decisions” and “I have confidence in my important decisions”).

Research Design
We tested the hypotheses through a survey that collected information on the perceptions of 
undergraduate students regarding the impact of BA use on both the quality of and regret over their 
decisions. Four hundred sixty-two business administration students from Slovenia and Brazil replied 
to the survey. The practice of using students is convenient and provides researchers with large, readily 
accessible pools of participants (Compeau, Marcolin, Kelley, & Higgins, 2012). This is especially 
true for business analytics field which poses many opportunities for the education sector (S. Wang 
& Wang, 2020). Further, we were interested in the general orientation and perception of individuals, 
so using a sample of similar individuals who had not yet been exposed to analytically based training 
was best. Similarly to Trkman et al. (2019), those students were good proxies for junior analysts. 
The described group of students was an appropriate approximation of real-world decision makers 
with respect to personality and education/knowledge, apart from them lacking the experience that 
real-world managers have (Strohhecker & Größler, 2013).

For Slovenian and Brazilian students, we administered the survey at the start of computer labs 
where the students had to be present. This reduced the risks of non-response bias, which is an important 
concern in administering surveys with the Internet and via e-mail (Wells, Cavanaugh, Bouffard, & 
Nobles, 2012). Sufficient time was allocated for answering the set of questions. Participation was 
voluntary, and the students had the right to withdraw at any time. They did not receive course credits 
or other benefits for participation. The goals and hypotheses of the research were not explained to 
the participants to reduce the likelihood of biases.

We initially examined the data set for equivalence (i.e., to determine if students from different 
countries responded to questions in a similar fashion). Ignoring equivalence issues can lead to 
ambiguous or erroneous conclusions (Knoppen et al., 2015). To test configural, metric and scalar 
equivalence, the PLS-MGA test was conducted in accordance with the recommendations of Knoppen 
et al. (Knoppen et al., 2015), who argue that multigroup analysis (MGA) is the best approach to test 
equivalence. PLS-MGA, an extension of the original MGA method of Henseler et al. (2009), showed 
no equivalence problems between groups. Configural equivalence was checked, with all indicators 
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loading significantly on the same factors across groups. In a similar manner, a metric equivalence 
test showed no statistical differences between factor loadings across groups, with all p-values in the 
range of 0.05 to 0.95 (Sarstedt, Henseler, & Ringle, 2011).

RESULTS

Partial least squares path modelling (PLS-PM) (Sanchez, 2013) was used to evaluate the hypothetical 
model (Figure 1) with the R software (R Core Team, 2016). The PLS algorithm was chosen because 
it requires no assumptions about the data distribution (Hair, Hult, Ringle, & Sarstedt, 2017). As 
the questionnaire was based on a 5-point scale and ordinal scales with few scale points increase 
skewness and kurtosis, detection of normality was not relevant (Leung, 2011). Moreover, PLS results 
are considered good proxies for CB-SEM (which does require normality) results and are therefore 
deemed a good methodological alternative for theory testing when CB-SEM assumptions are violated 
(Hair et al., 2017). PLS-PM for R was chosen because it was the only path modelling tool that would 
allow users to set manifest variables as ordinal ones. We assessed model fit by using GoF, R2 and 
bootstrapping results for path coefficients.

In assessing the measurement models, we assumed all of them to be reflective on the basis of 
all manifest variables being related to outcomes in the presence of each respective construct. Internal 
consistency was checked by examining unidimensionality measures (Dillon-Goldstein’s rho). The rule 
of thumb for Dillon-Goldstein’s rho is to consider a block as unidimensional when values are larger 
than 0.7. The results showed that all constructs passed the unidimensionality test. Finally, we tested 
discriminant validity by examining cross-loading analysis and by the Fornell-Larcker criterion. Both 
tests indicated no problems with discriminant validity in the measurement models.

The model specification with 462 cases included seven latent variables and 19 manifest variables 
scaled as ordinal ones. The centroid-weighting scheme was used with a tolerance criticality of 1e-06. 
The model converged after 28 interactions.

The latent variables of analytical capabilities (AC) and analytical decision-making (ADM) were 
considered as high-order constructs—the former second-and the latter third-order—and were modelled 
by using the Repeated Indicators approach (Sanchez, 2013).

Assessment of the structural model was conducted by inspecting the results of each regression 
in the structural equations that follow:

Analytical Decision-Making (ADM) = 0.748*AC + 0.458*AO + Error (1)

Decision Quality = 0.255*ADM + Error (2)

Decision Regret = 0.223*ADM + Error (3)

The intercepts for all equations were not significant, and all beta values shown in the equations 
were found to be significant with a p-value < 0.001. Besides the results of the regression equations, 
we evaluated the quality of the structural model by examining the R2 determination coefficients, the 
redundancy index and the goodness-of-fit index (GoF = 0.4399). The structural model displayed a 
high goodness of fit and good quality scores, as shown in Table 1.

Bootstrapping was used to obtain confidence intervals to evaluate the precision of the PLS 
parameter estimates. As all bootstrap intervals for the path coefficients were non-zero, we may 
confidently state that the path coefficients of the research model were significant at a 5% confidence 
level (Sanchez, 2013).
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The correlations between AC and AO and between DQ and DR were also computed. Pearson’s 
product-moment correlation between AC and AO was proven to be significant (p-value < 0.001), 
scoring 0.318.

Furthermore, Table 2 shows the direct and indirect effects of analytical orientation and analytical 
capabilities on decision quality and decision regret. The f2 effect shows whether the omitted construct 
has a substantive impact on the endogenous constructs.

The f2 effect analysis assesses the importance of the exogenous constructs to explain the 
endogenous constructs. The f2 values of 0.02, 0.15 and 0.35 respectively represent small, medium and 
large effects (Cohen, 1988) of the exogenous latent variable. Table 2 shows that while the inclusion of 
the analytical orientation construct helps improve the R2 of both the decision quality and the decision 

Table 1. Summary of model estimates

Construct R2 Block Mean Average Variance 
ExplainedCommunality Redundancy

AC 0.999 0.340 0.339 0.340

AO 0 0.397 0 0.397

AT 0.986 0.246 0.243 0.246

DQ 0.065 0.677 0.044 0.677

DR 0.050 0.461 0.023 0.461

Figure 2. Model with statistically significant coefficients (p-value < 0.05)

Table 2. f2 effects

R2 full

R2 without 
Analytical 

Capabilities

R2 without 
Analytical 

Orientation

f2 without 
Analytical 

Capabilities

f2 without 
Analytical 

Orientation

Decision Quality 0.0652 0.0447 0.0532 0.02192982 0.01283697

Decision Regret 0.0495 0.0629 0.0267 -0.0140978 0.02398738
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regret constructs, the analytical capabilities construct helps improve the decision quality’s R2 and 
decrease the decision regret’s R2.

Random Forest Regression, a type of bagged estimate based on decision tree models (Bruce & 
Bruce, 2017), was used to identify the most important variables influencing Decision Quality and 
Decision Regret. By having Decision Quality as the target, the Random Forest Regression model 
was estimated (500 trees, 8 variables per split, MSE 1.65, and %Variance explained of 4.24). By 
considering both Mean Decrease Accuracy and Gini measures, the most important measures were 
about how easy is to find the right data to support important decisions, followed by the abilities to 
use prescriptive tools and modeling techniques to represent and solve problems. By having Decision 
Regret as the target, the Random Forest Regression model was estimated (500 trees, 8 variables per 
split, MSE 0.09, and %Variance explained of 94.35). By considering both Mean Decrease Accuracy and 
Gini measures, the most important measures were about how easy is to make use of critical reasoning 
when making important decisions, followed by the orientation to make important decisions analyzing 
data, modeling techniques to represent problems, and exploit the right data to support important 
decisions. In general, it could be observed that Analytical Orientation is more important to Decision 
Regret than to Decision Quality. In this sense, to assure decision quality, analytical capabilities are 
of utmost importance. But, to avoid decision regret, analytical capabilities will not be as relevant 
without proper analytical orientation.

Such findings open a new and important avenue for investigation to understand the role of 
analytical capabilities in reducing decision regret. Our results suggest that while both analytical 
orientation and analytical capabilities can help explain decision quality, the former can be a necessary 
but not sufficient condition to explain regret. In other words, an analytically oriented decision, grounded 
by analytical capabilities, could be depicted as helping reduce decision regret. On the other hand, 
when analytical capabilities are not considered, a decision can be subject to stronger judgement by 
analytically oriented decision makers, causing regret to vary. In such terms, it can be assumed that 
when companies make any investment to improve decision quality and reduce decision regret, they 
should ensure proper analytical capabilities are in place and aligned with their analytical orientation.

DISCUSSION AND CONCLUSION

Many organizations today are attempting to increase the use of analytics in decision- making. Analytics 
has been shown to improve business performance in almost every economic segment, so there are 
incentives driving this effort. How do analytics involve individuals within the organization? What 
factors influence the use of analytical models? This research has attempted to define and test the 
factors involved in this process and to answer questions on how to help an organization effectively 
increase its analytical decision-making, which improves decision quality and reduces regret.

Analytical capabilities and analytical orientation influence each other and both affect analytical 
decision-making. This research suggests that the more analytical capabilities people acquire, the more 
analytically oriented they become. They see the value and utility of using data and models to help 
in making decisions. Analytical capabilities seem to impact analytical decision-making more than 
analytical orientation, but they both have a positive impact. It would be reasonable to think that as a 
pathway for individuals to take greater advantage of analytical decision-making, one should invest 
in developing analytical capabilities, which would help develop a superior analytical orientation in 
the individual and leverage improved quality and reduced regret in decision-making.

Analytical capabilities have been shown to be made out of a balance of cognitive and technical 
capabilities (respectively, the dimensions of “inductive and deductive reasoning” and “tools and 
technologies”). Both dimensions are relevant to explaining the variability of model-dependent 
constructs. If an organization wants to improve its use of analytics, it obviously must train members 
in the tools and techniques to be used and in “reasoning” approaches.
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This research has shown that analytical capabilities and analytical orientation are both important 
factors in analytical decision-making and therefore impact decision quality and regret. In this sense, 
when an individual improves in one of those two constructs, the other construct will also be improved, 
and improvements in analytical decision-making will consequently deliver regret reduction and 
improved quality of outcomes.

This research has shown that an increase in analytical decision-making reduces regret. Under 
this condition, people are more confident in their decisions. With the availability of the smartphone 
and Internet access everywhere, people are becoming more capable and confident with using data in 
decisions, which will impact decision-making in organizations that are increasing the effective use 
of analytics. Reducing decision regret or increasing confidence in using data in decisions will help 
organizations become more analytically oriented and capable as well as improve the quality of their 
decisions. This progress will also have an impact on society in general by moving people toward 
analytical decision-making and better decisions.

Our study has limitations that constrain a broad generalization of its findings. We used students 
and not decision-making professionals as research subjects. However, our research is consistent 
considering the perspectives of the individuals. As good proxies for junior analysts, the students 
mitigated the impact of not studying decision-making professionals directly. Another limitation of 
our study is that we made use of non-validated questionnaires. We acknowledge that self-reported 
data to measure decision quality could be biased in various ways. Although the survey instrument met 
certain formal prerequisites, the use of interviews or experiments would be beneficial in future studies.

Further research should repeat the study with employees working on real business problems. 
Further constructs could be investigated to increase the explanatory power of the model. Another 
area of future research could be investigation of how training can influence analytical capabilities and 
orientation. This could also be studied at the firm level, recognizing how companies can implement 
a data-analytical culture, establish a data strategy and leverage their analytical capabilities over time.
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APPENDIX

Table 3. Questionnaire / Constructs

Tools & Technologies If you were required, how easy it would be to: Use tools (i.e. Excel, Power BI, Tableau) to 
describe what is happening

If you were required, how easy it would be to: Use tools (i.e. Excel, Power BI, Tableau) to 
predict what is going to happen

If you were required, how easy it would be to: Use tools (i.e. Excel, Power BI, Tableau) to 
prescribe what should be done

If you were required, how easy it would be to: Use modeling techniques (i.e. Excel templates, 
etc.) to represent problems

If you were required, how easy it would be to: Use modeling techniques (i.e. Excel templates, 
etc.) to solve problems

Inductive & Deductive 
Reasoning

If you were required, how easy it would be to: Find the right data to support your important 
decisions

If you were required, how easy it would be to: Prepare the right data to support your important 
decisions

If you were required, how easy it would be to: Exploit the right data to support your important 
decisions

If you were required, how easy it would be to: Make use of critical reasoning when making 
important decisions

If you were required, how easy it would be to: Use evidences/facts to recognize problems

Analytical Orientation I make important decisions by analyzing data.

I think that data is very important to my life.

I use analytical models (simple or complex) when making important decisions.

I often use “user reviews” (i.e. Yelp) when making an important decision.

I usually search for data when considering an important decision

Decision Quality I generally make good important decisions.

I have confidence in my important decisions.

Decision Regret I often must reverse course on an important decision because I was wrong

I am often concerned about my important decisions (hang over) after they are made.

Note: Analytical Capabilities and Analytical Decision Making were taken as high-order constructs.
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