
DOI: 10.4018/IJRQEH.289178

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

﻿
Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

1

The Novel Multi-Layered Approach
to Enhance the Sorting Performance
of Healthcare Analysis
Ashish Seth, INHA University, South Korea

 https://orcid.org/0000-0003-1580-897X

ABSTRACT

Emergence of big data in today’s world leads to new challenges for sorting strategies to analyze
the data in a better way. For most of the analyzing technique, sorting is considered as an implicit
attribute of the technique used. The availability of huge data has changed the way data is analyzed
across industries. Healthcare is one of the notable areas where data analytics is making big changes.
An efficient analysis has the potential to reduce costs of treatment and improve the quality of life in
general. Healthcare industries are collecting massive amounts of data and look for the best strategies
to use these numbers. This research proposes a novel non-comparison-based approach to sort a large
data that can further be utilized by any big data analytical technique for various analyses.

Keywords
Analysis, Non-Comparison Sorting, Radix-Sort, Space-Complexity, Time-Complexity

INTRODUCTION

For any effective analysis, the efficient sorting technique is required implicitly. In the contemporary
world computational speed is the essentially important. Any computing device should be as fast as
possible. However, how can we reach the high speed of the computing devices? Due to presence of
rational algorithms it is achieved. As a result, the creation of an ideal, or as close to it as possible
algorithm is essential, Seth.A. et.al (2021).

Sorting is a fundamental and well-studied problem that has been studied extensively. Sorting
algorithm is an algorithm that puts elements of a list in a certain order. It has started to come up in
the late 19th century. Initially, these methods were created only for numbers. Subsequently, sorting
algorithms were adapted for other data types. There exists lot of sorting algorithms in terms of
computational complexity. The performance of any algorithms depends on several factors that must
be taken in consideration such as time complexity, stability, memory space, Kharabsheh. K.S. et.al
(2013). To compare various sorting strategies, Goodrich M. et. al. (2010) and Sipser M. (1996)

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creative-
commons.org/license/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original

work and original publication source are properly credited.

https://orcid.org/0000-0003-1580-897X

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

2

mentioned several factors that must be taken into consideration, primarily time complexity; the time
complexity refers to the amount of time taken by an algorithm to produce result.

When it comes to Strings, all comparative algorithms give large time complexity. Therefore, a
non-comparative algorithm could be a nice approach to consider for sorting strings. Radix sort is a
non-comparative sorting algorithm which avoids comparison by creating and distributing elements
into buckets according to their radix. This sorting method allows to sort large chunks of data using fair
complexity. According to radix sort a unique bucket for every letter is created. Thus, if the language is
English, 27 buckets are created only for letters and time complexity equals to O(27n). However, what if
the task is to sort a sentence with words (strings) which contains symbols like dots, commas or spaces?
Every symbol would require a new bucket and the complexity would increase drastically. In our work we
have proposed an improved algorithm with a new technique to reduce both time and space complexity.

The idea is to sort strings interpreting each character as ASCII. This becomes a two-layer
radix sorting, which offers an opportunity to apply sorting several layers, recurrently with less time
complexity. Since all letters and symbols are in the range of three-digit numbers by ASCII the time
complexity will be constant. Consequently, with 10 buckets needed for every digit the time complexity
equals to 30 * O(n) regardless of the language, the length of the sentence and appeared symbols.

Using this Radix sort as a counting method, can solve this problem in such a way that large
chunks of any data (including strings) are sorted by the most rational algorithm. The algorithm is
implemented in java and php languages and will be discussed in later sections.

LIMITATIONS OF AN EXISTING APPROACH

With general radix sort approach, the problem is that algorithm must examine every element of
every item being sorted. On the other hand, comparison-based sorts techniques skip a fair number of
sub-elements (digits, characters, etc.). Non-comparison based sorting algorithms make assumptions
about the input. To ensure linear time complexity input elements are expected within a range of
constant length whereas in comparison based methods no such assumption about the input is desired.
Moreover, non-comparison based methods adds extra memory cost and lacking in generality of the
input. Other behavior of comparison-based method is that they need to call a comparator on input
elements a whole bunch of times and this makes them inherently slower.

It is needless to remind that, in information technology science, sorting algorithms are considered
to be one of the essential and most used techniques that puts elements of a list in certain correct order.
There is various methods and types are available to apply them in different kind of situations. As an
example, we can consider Comparison and Non- Comparison types of sorting. Particularly, if we
take a look at Non-Comparison sorting, we can release that there are different types of techniques
available to use, such as Counting sort, Bucket Sort, Radix Sort and etc.

Figure 1. Bucket sort example

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

3

Operating principle of Radix sort is related to Bucket sort, which makes N iteration called passes
for every digit of the maximum number from right to left direction using 10 buckets, from 0 to 9, as
a result of digit range.

ALGORITHM FOR RADIX SORT

Step 1: Find the largest number in Array as LARGE
Step 2: [INITIALIZE] SET NOP = Number of digits in LARGE
Step 3: SET PASS = 0
Step 4: Repeat Step 5 while PASS <= NOP-1
Step 5: SET I= and INITIALIZE buckets
Step 6: Repeat Steps 7 to 9 while I<N-1
Step 7: SET DIGIT = digit at PASS’th place in A[I]
Step 8: Add A[I] to the bucket numbered DIGIT
Step 9: INCEREMENT bucket count for bucket numbered DIGIT
 [END OF LOOP]
Step 10: Collect the numbers in the bucket
 [END OF LOOP]
Step 11: END

Radix sort allows to make sorting on array of characters, particularly on String data types. To
achieve this goal, Radix will use 27 buckets to sort strings containing only characters, and at least
40 buckets to sort a string containing alphanumeric characters rather than usual 10 buckets to sort
only numbers. As we can see, this will lead to more Space complexity compared to simple numbers.
Even if in this algorithm there is no any limitations or gap, the main task and challenge for us is to
reduce the number of used buckets to 10 for string sorting using characters with alphanumeric and
keep algorithm in the fast way as it is in contrast to Comparison algorithms.

Figure 2. Radix sort example

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

4

PROPOSED ALGORITHM

MultiLayerRadixSort(string, delimiter){
 input = array = splitString(string, delimiter); size = getMaxSize(array);
 for(key in array){
 array[k] = normalizeStrings(array[k]);// Make strings
 equal in length
 array[k] = mapCharsToASCII(array[k]);// Make an Array
 of ASCII codes
 }
 indices = extractIndices(array); for(i=0; i<size; i++){
 iterationLetters = extractLetter(array, i);
 indices = radixSort(iterationLetters, indices);
 }
 array = [];      // Flush temp array
 for(i=0; i<sizeOf(indices); i++){
 array[i] = input[indices[i]];      // Form a sorted array
 }
 return formString(array, delimiter);
}

radixSort(lettersArray, indices){
 exp = floor(log10(max($array))) + 1;
 for (i = 0; i < exp; i++) {
 buckets = [];
 for (k in indices){
 bucket = floor(lettersArray[indices[k]]/ pow(10,i)) %
 10; enqueue(buckets[bucket], indices[k]);
 }
 indices = [];

 for(k = 0; k < 10; k++){
 if(buckets[k] != NULL){
 enqueue(indices, buckets[k]);
 }
 }
 }
}

Algorithm Implementation Using Java
In order to achieve our goal for reducing the number of buckets in string sorting with Radix Sort,
we have made different researchers and tests and finally find out the solution. The first version of
solution is implemented using Java programming language, which is as follows:

public class Main {

 /**
 *Find the maximum number in given array
 *@param arr given array to search from
 *@return max number from array

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

5

 */
 private static int findMax(int[] arr) {
 int max = arr[0];
 for (int i: arr)
if (i > max)
max = i;
 return max;
 }

 /**
 *Getting the digit from number at any position in
 right to left ordering
 *
 *@param num      the given number
 *@param digitPos position of digit required to be cut
 *@return required digit at [digitPos] position
 */
 private static int getDigitAt(int num, int digitPos) {
 return (int) ((num / Math.pow(10, digitPos)) % 10);
 }

 /**
 *Sorting each pass of RadixSort
 *
 *@param arr      The array that passed to method
 *@param passLevel number of pass level in terms of
 10^i from right to left,
 *(ex. 127, to get 2 -> passLevel=1, because
 (arr[i]/10^passLevel)%10
 */
 private static int[] sortByBucket(int[] arr, int passLevel) {
 int[] finalArr = new int[arr.length],
 count = new int[10];
 Arrays.fill(count, 0);
 for (int num: arr) {
 count[getDigitAt(num, passLevel)]++;
 }
 for (int i = 1; i < count.length; i++) count[i] +=
 count[i - 1];
 for (int i = arr.length - 1; i >= 0; i--) {
 int finalIndex = --count[getDigitAt(arr[i],
 passLevel)]; finalArr[finalIndex] = arr[i];
 }
 return finalArr;
 }

 /**
 *Radix sort algorithm
 *
 *@param wordList given array to be sorted

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

6

 */
 private static int[] radixSort(List<List<Integer>> wordList) {
 int wordsCount = wordList.size();
 int[] wordsSize = new int[wordsCount];
 for (int i = 0; i < wordsCount; i++)
 wordsSize[i] = wordList.get(i).size();
 int maxLengthWord = findMax(wordsSize);
 int[][] filteredOrder = new int[2][wordsCount];
 for (int i = 0; i < wordList.size(); i++)
 filteredOrder[0][i] = i;
 for (int i = maxLengthWord - 1; i >= 0; i--) {
 int[] mask = new int[wordsCount], filteredMask; int k =0;
 for (int j : filteredOrder[0]) {
 int num = 0;
 if (wordList.get(j).size() > i)
 num = wordList.get(j).get(i);
 mask[k++] = num;
 }
 int maxLetter = findMax(mask);
 int maxLetterLength = (int)(Math.log10(maxLetter) + 1);
 filteredMask = mask;
 filteredOrder[1] = mask;
 for (int j = 0; j < maxLetterLength; j++)
 filteredMask = sortByBucket(filteredMask, j);
 filteredOrder[0] = sortedIndexes(filteredOrder,filteredMask);
 }
 return filteredOrder[0];
}

private static int[] sortedIndexes(int[][] initialArray, int[]
sortedArray) {
 int[] sortedIndexes = new int[initialArray[0].length];
 for (int i = 0; i < sortedArray.length; i++) {
 for (int j = 0; j < initialArray[1].length; j++) {
 if (sortedArray[i]==initialArray[1][j]&&initialArray[1]
 [j]!=-1) { sortedIndexes[i] = initialArray[0][j];
 initialArray[1][j] = -1;
 break;
 }
 }
 }
 return sortedIndexes;
}
/**
 *Print the given array
 *
 *@param arr input array
 */
private static void printArray(List<List<Integer>> arr) {
 for (List<Integer> word: arr) {

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

7

 for (Integer letter: word) {
 System.out.print((char)((int)letter)); //printing each
 letter of word
 }
 System.out.print(” “); //space between words
 }
}

public static void main(String[] args) {
 String str = “Student Learning Assignment, Multi-layer Radix
 Sort”.trim();
 int wordsCount = (str.length() - str.replace(” “,
 “”).length()) + 1; List<List<Integer>> wordList = new
 ArrayList<>(wordsCount);
 str += “ “; //make sure at the end we have space to cut the last word
 StringBuilder tmpStr = new StringBuilder(str);
 while (tmpStr.toString().contains(” “)) {
 int firstWordAt = tmpStr.indexOf(” “);
 String firstWord = tmpStr.substring(0, firstWordAt);
 List<Integer> word = new ArrayList<>();
 for (int j = 0; j < firstWord.length(); j++) word.
 add((int) firstWord.charAt(j));
 wordList.add(word); tmpStr.delete(0, firstWordAt + 1);
 }
 System.out.println(”Before Sort”);
 printArray(wordList);

 int[] filteredOrder = radixSort(wordList); System.out.
 println(”\nAfter Sort”);
 for (int i : filteredOrder) {
 for (Integer letter : wordList.get(i)) System.out.
 print((char)((int)letter)); //printing each letter of word
 System.out.print(” “); //space between words
 }
 }
}

Figure 3. Sorting of characters string using Radix Sort with 10 buckets

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

8

Working of Proposed Algorithm
Structure of algorithm divided into five local methods for sorting itself and one for printing array:
findMax, getDigitAt, sortByBucket, radixSort, sortedIndexes and printArray respectively. The main
concept of algorithm is, to make sorting of string characters in terms of ASCII code and process it
as simple number using 10 buckets but in Multi-Layer manner.

In main function we assume that we are given the string that is required to be sorted alphabetically
in ascending order. Firstly, we need to convert all the given string to ASCII code and store as simple
Integer numbers. For this, we will use List<List<Integer>> wordlist which initially has wordCount
empty elements. The concept of this structure is to store List of words which contains itself the list
of letters respectively, so we can sort every level as matrix entities. After that, using StringBuilder
and its pre-build methods, we cut the words, convert every letter to ASCII code as integer number
and add them to wordlist in format of list of letters inside the list of words. Before applying sorting
algorithm, we print the current array as how it is given and after that call radixSort(wordList) which
will return the array of sorted and ordered indexes of the given string to print it out in correct way.
Now, we look inside the main and core method – radixSort, there we find the number of words and
the maximum length of word from the given string. This maximum length is required because we
will make sorting from the right and take the last digits (letter) in normalized way from every row
of words as a sub array of numbers and pass them to sortByBucket algorithm which will return the
sorted list of the given last digits.

Example: If our wordlist contains list of ASCII words (row) where it has the list of letters (columns),
we pass to sortByBucket the sub array of [82,90,69] (last digit of every row):

[65,79,82] // AOR	
[65,77,90] // AMZ	
[65,77,69] // AME	

The result of sortByBucket is stored in filteredOrder two-dimensional array. filteredOrder[0]
contains the indexes of passed digits to sortByBucket and filteredOrder[1] contains the digits
themselves.

From above example: if [82,90,69] is passed, they are stored in filteredOrder[1] and their row
indexes are stored in filteredOrder[0] as [0,1,2] respectively for every digit. filteredMask contains
the sorted subarray from sortByBucket, such that [69,82,90].

When we have got the filteredMask,filteredOrder with its indexes, we pass them to sortedIndexes
method in order to sort the filteredOrder[0] (indexes of the digits) according to filteredMask and
keep its order.

From above example: if [69,82,90] was returned from sortByBucket to filteredMask and
filteredOrder[0] contained [0,1,2], after the sortedIndexes method, our filteredOrder[0] will keep
the order in terms of sorted digits, like: [2,1,0].

These steps will be repeatedly performed for all other digits in the given List of ASCII numbers.
As a result, at the final stage, our filteredOrder[0] will contain the final order for the given string in
alphabetically ascending order which is actually returned from radixSort method to the main function,
where final result is printed out.

PHP Module of Proposed Algorithm
The proposed algorithm consists of several parts, which are made as modules and may be substituted
if needed for the alternatives or removed if the input is already formatted. We have produced several
implementations of the algorithm in PHP and Java. PHP was used as a pseudocode to understand the
algorithm itself, read and analyze the code easily. Algorithm may be modified to be multi-layer, but

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

9

for investigation purposes, two layers are used. The example chosen to examine algorithm is sorting
words in a sentence using only ten buckets, which was achieved by interpreting the “string” as an
array of “characters”, which were mapped to the ASCII code.

For the sake of simplicity, let us consider the implementation in PHP. According the this, algorithm
structure may be divided into several parts:

•	 Normalizing the input
•	 Modifying indices
•	 Sorting via adapted Radix Sort approach

function multiLayerRadixSort(string $input): string
 {
 /** Input Normalization */
 $input = explode(‘ ‘, $input);      // [“INHA”,
 “University”, “In”, “Tashkent”]
 if(count($input) == 1)
 return $input[0];
 $size = getMaxSize($input);      // 10

 /** String to int mapping (ASCII codes) */
 $tempArray = array_map(function ($item) use ($size) {
 return mapStrToInt($item, $size);
 }, $input);
 $indices = array_keys($tempArray);

 /** Sorting an array */
 for ($i = $size - 1; $i >= 0; $i--) {
 $indices = radixSort($tempArray, $i, $indices);
 }
 /** Formatting the output */
 return implode(‘ ‘, array_map(function($item) use($input){
 return $input[$item];
 }, $indices));
 }

Let us consider as an example an input sentence “INHA University In Tashkent”. The first step
normalizes the input, what stands for the preparation of input “string” for the further manipulations.
First and foremost, using built-in explode function, which takes as parameters delimiter and the
string, we get an array of strings which were divided by the whitespace.

Delimiter can be any character by the choice of the user, what makes an algorithm
multipurpose. If the number of words, equals to one, the sentence is automatically sorted,
which is why it will be automatically returned. After this step our input looks like: [“INHA”,
“University”, “In”, “Tashkent”]

Next line invokes getMaxSize function, which simply returns maximum “string” size among all
the words in a sentence. Since word “University” has 10 letter in it, function returns 10.

function getMaxSize(array $input): int

 {
 return max(array_map(function ($item) {

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

10

 }, $input));
 return strlen((string)$item);
 }

String to int mapping block makes a certain manipulation on an array, where each word in mapped
to the array of integers corresponding to the ASCII code of a character. Function mapStrToInt is
presented below.

function mapStrToInt(string $input, int $size): array

 {
 $empty = array_fill(0, $size - strlen($input), 0);
 $input = array_map(function ($char) {
 return ord($char);
 }, str_split($input, 1));

 array_push($input, ...$empty);
 return $input;
 }

Function parameters are input string and the maximum size of the word in a sentence. Firstly, the
function creates and empty array and filled with zeros. Afterwards, by applying ord function to each
character it maps every word to an array of corresponding integers. Lastly, two arrays are combined
with each other, such that an array with zeros is in after the reasonable text. This technique allows
us to have all words of the same length without losing the weight of the characters. The tempArray
after this step may be depicted like:

[
 0 => [73, 78, 72, 65, 0, 0, 0, 0, 0, 0], // INHA	
 1 => [85, 110, 105, 118, 101, 114, 115, 105, 116, 121], // University	
 2 => [73, 110, 0, 0, 0, 0, 0, 0, 0, 0], // In	
 3 => [84, 97, 115, 104, 107, 101, 110, 116, 0, 0] // Tashkent	
]	

The next step is to save the indices of the modified word arrays, what later would allow us to
sort the sentence without sorting the characters inside the words. This may simply be made by the
array_keys function, which returns the keys of the tempArray, which are the indices of the words.

Afterwards, every word is processed by invoking radixSort method, which is described below.

function radixSort(array $input, int $levelIndex, array $indices): array

 {
 $array = array_map(function ($item) use ($levelIndex) {
 return $item[$levelIndex];
 }, $input);

 $exp = floor(log10(max($array))) + 1;
 return countingSort($array, $exp, $indices);
 }

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

11

The function takes input array, levelIndex and an array of indices as parameters and returns
modified indices as an output. levelIndex variable represents current letter processed, what allows to
produce an array of the current letters out of the whole input (all words in the sentence). The forwarding
step checks the maximum power of ten in the ASCII codes provided. The function returns indices
modified in the countingSort function (words stored by the current letter – levelIndex).

function counting(array $input, int $exp, array $indices): array

 {
 for ($i = 0; $i < $exp; $i++) {
 $buckets = [];

 foreach($indices as $index){
 $bucket = floor($input[$index] / pow(10, $i)) % 10;
 $buckets[$bucket] = $buckets[$bucket] ?? [];
 array_push($buckets[$bucket], $index);
 }

 $indices = [];
 for($k = 0; $k < 10; $k++){
 if(isset($buckets[$k])){
 array_push($indices,…$buckets[$k]);
 }
 }
 }
 return $indices;
}

The countingSort function takes input array, exponent and indices as an input and return
modified indices back to the radixSort and the mulitLayerRadixSort functions. The first step is
creation of empty buckets. Subsequently, we store indices in the buckets, where the keys of the buckets
array correspond to the result of modulus operation on the input digits. This step allows us to store
the position of the whole word, while sorting its letter. This is achieved by storing the index of the
word, but not the value of the character. Consequently, indices are flushed and refilled according
their position in the buckets. These steps are repeated until the numbers (ASCII codes) are stored.
This function returns indices sorted by the current letter.

The last step is storing the words in a sentence according to their updated indices.

 /** formatting the output */

 return implode(‘ ‘, array_map(function($item) use($input){
 return $input[$item];
}, $indices));

﻿
 The input and the output code with the actual I/O of the program are depicted below:

﻿
 $input = “INHA University In Tashkent”;
 $output = multiLayerRadixSort($input);﻿
 print_r(”Input:\n$input\nOutput:\n$output”);

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

12

Console Output

 Input:
 INHA University In Tashkent
 Output:
 INHA In Tashkent University

ANALYSIS OF PROPOSED ALGORITHM

The algorithm utilizes radix sort approach, which is not a comparison-based sorting algorithm.
Comparison based algorithms (Merge Sort, Heap Sort, Quick-Sort, etc) are O(n*log(n)). Counting
sort is a linear time sorting algorithm that sort in O(n+k) time when elements are in range from 1 to
k, what is used in the Radix sorting technique.

The Time Complexity of our algorithm is roughly O(32n), which is still a O(n), where n =
number of letters, so let us prove this:

•	 If the number of words in a sentence equals to 1, it is already sorted that is why is returned. This
action is performed to avoid O(n2) worst-case and get O(1) best-case running time.

•	 Getting the maximum size of the word in a sentence takes O(n) time to compare all the words.
•	 Mapping string to an array of ACII codes takes O(n) * O(1) running time, which equals to O(n)

time complexity.
•	 Radix sort takes O(n) * 3 * 10, where 3 is the number of iterations of the maximum exponent

of 10, what allows to use ASCII codes up to 999 and 10 stands for the number of bucket checks.
Therefore, we get O(n) complexity again.

•	 To conclude, the time complexity of an algorithm is:

O(n) + O(n) + 30 * O(n) = 32 O(n) = O(n)	

where n represent letters in a sentence.
The Space complexity of an algorithm is an O(n), where:

•	 10 – number of buckets;
•	 O(n) – number of indices (if all words consist of 1 letter);
•	 O(n) – temporary array for storing ASCII codes (this is an option, since all of the codes may be

stored in initial locations and later decomposed to the input);
•	 To conclude, the time complexity of an algorithm is:

10 + O(n) + O(n) + = 2 O(n) = O(n)	

where n represent letters in a sentence.

Table 1. Complexity of layered radix sort

Complexity Best-case
(one-word case) Worst- average- case

Time complexity O(1) O(n)

Space complexity O(1) O(n)

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

13

CONCLUSION

A non-comparative sorting algorithm avoids comparison by creating and distributing elements into
buckets according to their radix. Mostly data in databases are stored in varchar formats, and are used
to be linked or even selected, which takes time to be query processed. In order to improve complexity
and reduce space of memory our proposed algorithm made a sorting of strings with the method of
converting chars to ascii codes, which reduced number of buckets from 27 to 10 and most importantly,
time complexity is improved. This approach may be used for solving following real-life problems:

•	 Sorting of real text using any random delimiter. For instance, to sort the text by sentences user
can use this algorithm with delimiter “full stop”.

•	 Another example for this may be multidimensional array of products that are grouped by
categories. This algorithm offers an opportunity to sort this two level list in O(n) time.

•	 Finally, since ASCII includes all characters of all languages, this algorithm works regardless
of language.

International Journal of Reliable and Quality E-Healthcare
Volume 11 • Issue 3

14

Ashish Seth is a Consultant, Researcher and Teacher. He is a Professor at School of Global Converge Studies,
Inha University, Incheon, South Korea and is presently deputed at Inha University in Tashkent. He has more than
18 years of research and teaching experience. He worked at various universities in India and abroad at various
academic positions and responsibilities. He is senior member IEEE and ACM distinguished speaker. He is an
active member of International societies like IEEE, ACM, CSI, IACSIT, IAENG, etc. He is also serving as an editor,
reviewer for some journals. He finds interest in reading and writing articles on emerging technologies.

REFERENCES

Cook, C., & Kim, D. (2011). Best sorting algorithm for nearly sorted lists. ACM Communications, 23(11),
620–624. doi:10.1145/359024.359026

Goodrich, M., & Tamassia, R. (2010). Data Structures and Algorithms in Java. John Wiley & Sons.

Kharabsheh, K. S., AlTurani, I. M., & Zanoon, N. I. (2013). Review on Sorting Algorithms A Comparative
Study. International Journal of Computer Science and Security, 7(3).

Seth, A., & Seth, K. (2021). Optimal Composition of Services for Intelligent Systems using TOPSIS. International
Journal of Information Retrieval Research, 11(3), 49–64. doi:10.4018/IJIRR.2021070104

Sipser, M. (1996). Introduction to the Theory of Computation. Thomson.

http://dx.doi.org/10.1145/359024.359026
http://dx.doi.org/10.4018/IJIRR.2021070104

