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ABSTRACT

Retrieving keywords in a text has been attracting researchers for a long time as it forms a base 
for many natural language applications like information retrieval, text summarization, document 
categorization, etc. A text is a collection of words that represent the theme of the text naturally and 
to bring the naturalism under certain rules is itself a challenging task. In the present paper, the author 
evaluate different spatial distribution-based keyword extraction methods available in the literature on 
three standard scientific texts. The author choose the first few high-frequency words for evaluation 
to reduce the complexity as all the methods are somehow based on frequency. The author find that 
the methods are not providing good results particularly in the case of the first few retrieved words. 
Thus, the author propose a new measure based on frequency, inverse document frequency, variance, 
and Tsallis entropy. Evaluation of different methods is done on the basis of precision, recall, and 
F-measure. Results show that the proposed method provides improved results.

Keywords
Inverse Document Frequency, Keyword Extraction, Spatial Distribution, Term Frequency, Tsallis Entropy, 
Variance

1. INTRODUCTION

A text is a collection of words. A major part of the text is covered with function words that are necessary 
to make a sentence meaningful and grammatically correct. The author finds many other words in the 
text related to the theme of the topic. These words carry important information about the text and 
this information is useful in many tasks like information retrieval, natural language processing, text 
summarization, document categorization, etc. These words can be described as keywords. Thus, the 
automatic extraction of keywords is an important research direction in the field of text mining. The 
process of extracting keywords is to find the words that are sufficiently informative to represent the 
text. It is a challenging task to define a generalized rule for every text as different texts may have 
different linguistic features. To uncover these challenges, researchers have been making continuous 
efforts to establish the relationship among linguistic features, laws of Mathematics and Physics. The 
keyword extraction methods can be categorized under three broad categories: linguistics, machine 
learning, and statistical methods. In linguistics methods, the main focus is to observe syntactic, 
semantic aspects of words, morphological features, and linguistic relationships among words like 
synonym, hypernym, hyponym, etc. In machine learning methods, first, the learning algorithm is 
trained using a tagged training set and then its performance is evaluated through a tagged test set. 
The weighting of words in a text plays an important role in information retrieval. Initially, weighting 
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schemes are defined in the term of the frequency of words in a text. Term frequency (tf) and inverse 
document frequency (idf) were the weighting schemes firstly used for the weighting of words.

Luhn (1958) introduced an early idea of the importance of words in a text by analyzing Zip’s 
analysis of the word’s frequency in a text. Since then, a number of approaches for measuring 
the importance of words in a text appeared in the literature. The details of weighting schemes in 
information retrieval can be found in the books of Dominich (2008) and Manning and Schütze (1999). 
Earlier methods were based on the frequency of words in a text, later on, many other aspects were 
considered by different researchers. Turney (2000) performed a supervised learning approach for 
keyword extraction. The standard deviation of the distance between successive occurrences of a word 
is considered as a parameter to extract keywords by Ortuño et al. (2002). In their work, they found that 
the relevant words have greater standard deviation as their spatial distribution is more inhomogeneous 
in comparison to irrelevant words. Hulth (2003) suggested a keyword extraction method based on 
linguistics knowledge like syntactic features. A study on the fractal structure of the text can be found 
in Andres et al. (2010) and Andres et al. (2011). Yang et al. (2013) used Shannon’s entropy difference 
between the intrinsic and extrinsic modes for determining the relevance of words in a text. Najafi and 
Darooneh (2015) used the concept of fractal dimension for keyword extraction. Jamaati and Namaati 
and Mehri (2018) used Tsallis entropy for ranking of the relevance of terms taking advantage of the 
spatial correlation length. Mehri et al. (2019) used distorted entropy for word ranking.

In addition to the spatial distribution based techniques, a number of other different approaches 
have been utilized for keyword extraction with applications in various fields. Florescu and Caragea 
(2017) suggested a graph-based unsupervised approach for extracting keyphrases from online texts. 
Wang and Zhang (2017) utilized the recurrent neural network method for extracting keywords from 
reviews of online products. Horita et al.(2016) used morphological analysis tools for the extraction 
of keywords for linking them to related Wikipedia articles. Lahiri et al. (2017) used supervised and 
unsupervised learning methods for extracting keywords from emails to explore the topics in the 
mails and avoiding excessive information. Thushara et al. (2019) provided a comparative study of 
unsupervised methods Position Rank, TextRank, Rapid automatic keyword extraction (RAKE) for 
keypharse extraction. Ying et al. (2017) proposed a graph based method for keypharse extraction 
considering important sentences in mind and word-sentence relationships. Rabby et al. (2018) proposed 
a domain independent tree based extraction method for keyphrases. Sterckx (2018) applied different 
supervised and unsupervised keyphrase extraction techniques including opinions about documents to 
increase efficiency. A detailed discussion on keyword extraction methods and issues like ‘keyness’ 
can be seen in the work of Firoozeh et al. (2020).

1.1 Standard Deviation Using Spatial Distribution

Ortuño et al. (2002) suggested the statistical analysis of the spatial distribution of words in a text to 
overcome the dependency on the frequency of words. They calculated the standard deviation of the 
distribution of successive occurrences of a word. The method can summarized as follows: Let the 
number of words in a text is n .and let the occurrence of a word w .be denoted by a time sequence 
L t t
w f
= …{ }1

, , . where f .is the frequency of the word w .in the text. Let d t ti i i� ��1 .denotes 

the distance between two successive appearances (waiting time) of the word w .at ith .place.
The average distance is given by

µ =
−

=
−

−=
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and the standard deviation is given by	
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To remove the dependence on frequency, they proposed ˆ /σ σ µ= .as the measure to calculate 
the relevance of a word.

Zhou and Slater (2003) suggested an improvement in the above model by adding boundary 
conditions to the time sequence, that is, L t t t t

w f f
= …{ }+0 1 1

, , , , . where t
0

1� � .and t n
f+ =1

. 

The revised average distance is ˆ /µ = +( ) +( )n f1 1 .and the revised standard deviation is
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and modified normalized standard-deviation is 
�σ σ µ=

2
/ .̂ .

They defined that arrival time ti .is a cluster point if d t
i( ) <� �µ̂ . where d t

i( ) .is the average 
separation at arrival ti .given as
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They further defined a local cluster index
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and suggested a new metric weighted measure of the number of cluster points given as

Γ w
f

t
i

f

i( ) =
=
∑
1

1

� ( )γ .	 (6)

A word w
1

. is more relevant than w2 .if Γ Γw w
1 2( ) > ( ) .

1.2 Degree of Fractality (DF)
A text can be considered as an arrangement of words in one dimension array. The spatial pattern 
of occurrence of a word forms a fractal dimension Najafi and Darooneh (2015). In their work, they 
enhanced the concept of fractal dimension of words and defined degree of fractality of words for 
extracting content word in a text. Utilizing the box-counting method, the text is divided into boxes of 
different sizes and the number of filled boxes, the boxes in which a particular word under consideration 
appears, is counted. They further calculated the number of filled boxes in a shuffled version of the text 
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and defined the degree of fractality as the sum of ratios of the number of filled boxes in the original 
version and shuffled version for different box sizes.

Let s .is the box size and N .is the text length, then the number of boxes N N ss = / . A box 
is said to be filled if the word under consideration appears in the box. For a word w . the number of 
filled boxes is denoted by N s wb , ,� � .which can be obtained from the given text and the box size. 
The number of  f i l led boxes in the shuff led version of  the text  is  def ined as

�N s w
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. where f .is the frequency of the word w . The degree of 

fractality is defined as
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The higher degree of fractality shows the importance of a word in the text.

1.3 Jensen- Shannon Divergence
Jensen-Shannon Divergence (JSD) (Endres & Schindelin 2003, Ôsterreicher & Vajda 2003) is the 
measure of (dis)similarity between two probability distributions. Mehri et al. (2015) utilized JSD for 
extracting keywords in a text. They defined a spatial distribution of words in a text by applying box-
counting method. Let L  be the length of the text. The text is partitioned into boxes of equal size. 
Let Nl .denotes the number of boxes with size l . N L ll � � �/ . where x� � .represents the integral 

part of x .and n wl � � .denotes the number of boxes that contain the word w . The spatial probability

� (P w ) of a word w .is defined as P w� � � . n w Nl l� � / . They considered the spatial distribution 

of a word w .in two ways; one in the original text P w p w p wl� � � � � � � �� �1
, , .and another in 

the shuffled version of the text Q w q w q wl� � � � � � � �� �1
, , .when the text is partitioned with box 

size l. .The value of q wl � � .is calculated theoretically with the help of frequency f w� � .of the 
word w .in the text without getting a randomly shuffled version of the text as
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Finally JSD is defined as
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where m w
p w q w

i
i i� � � � � � � �

2
.

1.4 Tsallis Entropy
Entropy is the measure of disorder or uncertainty in the physical system. Shannon (1948) defined a 
formal measure of entropy known as Shannon entropy. Further, Renyi (1970) and Tsallis et al. (1998) 
proposed generalized entropy. Maszczyk and Duch (2008) compared the three entropies Shannon, 
Renyi and Tsallis used in decision trees. Let the probability distribution P p p p

n
= …{ }1 2

, , ,  contains 
the occurrence probabilities of all microstates. The non-additive entropy established by Tsallis et al. 
(1998) is given by
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where q . a real number, is non-extensivity parameter for the physical system that represents long-
range interactions. Tsallis entropy attains it maximum value for homogeneous distribution, that is 
p n
i
= 1/ . and the maximum Tsallis entropy S

q
Max . is given by

�S P
q

n
q
Max q( ) =

−
−( )−1

1
1 1 ..	 (11)

Jamaati and Mehri (2018) suggested the use of Tsallis entropy for extracting keywords. They 
considered the spatial probability distribution of a word w .that appears n

w
.times in the text as 

P w p p p
nw

( ) = …{ }1 2
, , , . The probability p w

i ( ) .is calculated as p w d w N
i i( ) = ( )/ . where d w

i ( )    
is the distance between ith .and i

th
+( )1 .occurrence of the word w .and N . is the length of the text. 

They found the difference

D S w S w
q
Max

q
= ( )− ( ) .	 (12)

between maximum Tsallis entropy and the actual Tsallis entropy of a word. They argued that the 
higher difference shows more relevance.

1.5 Distorted Entropy
Mehri et al. (2019) suggested the application of distorted entropy in word ranking. In their work, they 
defined distorted probability and distorted entropy as follows: Let Ω .be a non empty set and  .be 
a collection of subsets of Ω. .A set function v .on (Ω, )  is called a distorted probability if there 
exists a probability measure  .on (Ω, ) .and a non decreasing function f f: , , ,0 1 0 1 0 0



 →



 ( ) = .and 

f 1 1( ) = .such that

v A f o A A( ) = ( )( ) ∀ ∈� � ���� .�  .	 (13)

The distorted entropy of v .is defined as
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In their calculations, they observed that the performance of the methods depends on distorted 
parameter α .the F-measure reached its global maximum at α αDE DE

1 2
4 5 0 9( ) = ( ) =. , . .and 

α DE
3

0 1( ) = . . Higher values of distorted entropy show the presence of keywords.
The present work adopts a little different approach for evaluating different methods and extracting 

keywords in a text. The previous methods consider all the words in the text, the author considers the first 
few high-frequency words to reduce the complexity of the methods. The author first evaluate different 
keyword extraction methods for different standard texts and check the performances of these methods 
using precision, recall, and F-measure by comparing the results with the given list of keywords. The 
author then proposes a new method for keyword extraction based on frequency, inverse document 
frequency, variance and Tsallis entropy to define the new measure. Function words/ stop words are 
excluded and singular and plural forms of a word given in keyword are also considered as keywords.

The organization of the paper is as follows: In Section 2, different methods of keyword extraction 
for three standard texts are evaluated. In Section 3, a relevance measure is proposed based on frequency, 
inverse document frequency, variance and Tsallis entropy and a comparative evaluation of different 
methods is conducted Finally, Section 4 concludes the works.

2. EVALUATION OF DIFFERENT METHODS

In this section, the author evaluates the methods of keyword extraction discussed in section 1. For 
this purpose, three standard scientific texts are chosen at random from https://github.com/zelandiya/
keyword-extraction-datasets (text no. 11415952 (T1), 10984465 (T2), 10984466(T3)). Keywords for 
each text are given. The texts are converted into plain texts by removing all punctuations marks, 
numbers, etc. All the words are converted into lower case and function/stop words like articles, 
propositions, helping verbs, etc are excluded. One or two-letter words are not considered. The words 
are arranged according to their frequency ( f ) from highest to lowest and rank is assigned in the 
same order. The author considers the first 15 top-ranked words having a frequency greater than 2. 
Text 1, Text 2, and Text 3 have 17, 20 and 28 such words respectively. Table 1 shows the different 
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15 top-ranked words having a frequency greater than 2 in T1, T2, and T3. The author then applies 
the various methods discussed in section 1 to the top ranked words in each text. For evaluation purpose, 
the basic measures Precision, Recall and F measure (Manning and Schütze 1999) are used. Let Ret 
and Rel denote the set of retrieved and relevant words for a text, then the three measures are defined 
as follows:

Precision (P) =
∩Rel Ret

Ret

   
. Recall (R) = 

Rel Ret

Rel

   ∩
. and F = 

2PR
P R+

.	

F-measure combines Precision and Recall. It is the harmonic mean of the two measures, thus 
F-measure can be used to compare different methods.

Table 2 shows the top 10 ranked words in three texts according to the values of σ̂ . The number 
of keywords are 24, 11, and 28 in Text1, Text 2 and Text 3 respectively. From Table 2, if we observe 
first five words, then we see that only 1 word is extracted as keyword in Text 1 and no words are 
extracted from Text 2 and Text 3, thus providing 20%, 0%, 0% precision for Text1, Text 2, and Text 
3 respectively and 4%, 0%, 0% recall for Text 1, Text 2, and Text 3 respectively. If we consider Top 
10 words, then one word is extracted as keyword in every text. Thus, providing 10%, 10%, 10% 
precision for Text1, Text 2, and Text 3 respectively and 4%, 9%, 4% recall for Text 1, Text 2, and 
Text 3 respectively. Similarly we can calculate the Precision, Recall and F-measure for each of the 
method.

The values of Γ .for different words in three texts are given in Table 3. Table 4 shows the top 10 
ranked words in three texts according to the values of degree of fractality (DF). Table 5 shows the 
top 10 ranked words in three texts according to the values of Jensen- Shannon Divergence (JSD). 
Table 6 and 7 show the top 10 ranked words in three texts according to the values of Tsallis entropy(TE) 
and distorted entropy (DE) . Keywords are highlighted in these tables.

The values of Precision, Recall and F-measure for different methods and different texts are shown 
in Table 8 and Table 9 based on the top five and top 10 retrieved words respectively. From Table 8, 
we observe that only TE and DE values for Text 1 are non zero, showing the variability in results for 
different texts and low performance of Γ  , DF, and JSD. From Table 9, we observe that the 
performances of TE and DE are higher than other methods but these measures do not provide good 
results for the chosen standard scientific texts. In general, the performances of these measures is not 
good in the case of selecting words from the top five words, however, if we consider top 10 words, 
then a slight improvement is shown yet there may be a chance of further improvement.

In order to search a new method that can provide good results for scientific texts also based on 
the frequency or spatial distribution, the author considers various different measures and different 
possible combinations of these methods. Since every measure has its own characteristic, thus if we 
can combine different approaches, then we can accumulate different characteristic and the method can 
perform well. After going through various experiments, the author finds that the measures ‘frequency’, 
‘inverse document frequency’, ‘variance’ and ‘Tsallis entropy’ work very well if applied in a certain 
way as a combination of these measures provides a holistic information for being a keyword. In the 
next section, the author proposes a method based on these measures and compare the results of the 
proposed method with the other methods.

3. RELEVANCE MEASURE

In this section, the author defines a relevance measure to find the relevance of the words in a text. 
After going through various measures, the author considers frequency, Idf .and variance (Var ) 
and Tsallis entropy to define the new measure through a different approach of applying these measures. 
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The author divides the text into small equal parts called boxes. Weighting of words through mean, 
inverse document frequency, and variance has almost no effect on the length of boxes (Bisht and 
Dhami 2008). The author chooses box length 25 for calculations. The last box may not contain exactly 
25 words. The author checks the frequency of a word in each box and count the number of boxes that 
contain the word. Let fw .denotes the frequency of the word w  in a text, N  denotes the total number 
of boxes, Nw  denotes the number of boxes in which the word w  appears and L  denotes the text 

length. Then, N L
=
25

  where 
L
25

 is the ceiling function. Mean, inverse document frequency and 

variance are calculated as follows:

Table 1. Top ranked words in three texts

Text 1 (11415952)

Word f Rank Word f Rank Word f Rank

angina 190 1 disease 61 7 study 29 12

Men 97 2 ischemic 44 8 possible 27 13

Pain 87 3 risk 42 9 infarction 26 14

heart 73 4 questionnaire 38 10 table 26 14

chest 72 5 event 30 11 myocardial 24 15

percent 62 6 symptoms 29

Text 2(10984465)

Word f Rank Word f Rank Word f Rank

software 56 1 speech 36 7 study 21 13

error 54 2 percent 34 8 word 20 14

recognition 53 3 vocabulary 33 9 three 20 14

medical 45 4 ibm 28 10 participants 17 15

Rate 40 5 each 25 11 general 17 15

dictation 37 6 dragon 22 12 scoring 17 15

package 37 6 number 22

Text 3(10984466)

Word f Rank Word f Rank Word f Rank

computer 101 1 perceived 16 10 specific 10 14

students 40 2 opinions 16 10 examinees 9 15

experience 35 3 study 15 11 administration 9 15

medical 33 4 between 15 11 feel 9 15

usmle 31 5 content 12 12 year 9 15

percent 26 6 paper 12 12 literature 9 15

based 21 7 scale 12 12 expertise 9 15

preparedness 20 8 school 11 13 used 9 15

Cbt 19 9 gender 11

variables 19 9 tests 10
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Nw
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�
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f M

N
i

N

i
=

−( )
=∑� 1

2

,	 (16)

where fi .is the frequency of word w .in ith .box.
The author calculates these values for different high-frequency words in a text. Since these 

measures have different ranges, the author normalizes mean and variance values to get the values in 
same range. For normalization, each value of a measure is divided by the maximum value of the 
measure in the list of different words so that we get the normalized values in the interval [0, 1]. Let 
M̂ w( ) .denotes the normalized value of mean. Since Idf .is already in the range [0, 1], thus we need 

Table 2. Value of Æσ  for ten top ranked words in three texts

Sr. 
No.

Text 1 Text 2 Text 3

Word σ̂ Word σ̂ Word σ̂
1 percent 2.21 percent 2.46 percent 2.94

2 symptoms 2.17 scoring 2.23 scale 2.45

3 methods 2.11 participants 2.00 tests 2.15

4 abstract 1.91 rate 1.91 paper 2.04

5 Chest 1.76 ibm 1.71 preparedness 1.81

6 Table 1.76 medical 1.59 examinees 1.76

7 subsequent 1.69 word 1.59 variables 1.51

8 British 1.62 vocabulary 1.56 students 1.49

9 variability 1.62 dragon 1.55 based 1.41

10 Heart 1.61 each 1.40 used 1.39

Table 3. Value of Γ  .or ten top ranked words in three texts

Sr. No.
Text 1 Text 2 Text 3

Word Γ Word Γ Word Γ

1 percent 0.57 percent 0.59 percent 0.73

2 Table 0.55 scoring 0.57 examinees 0.68

3 abstract 0.51 participants 0.53 tests 0.58

4 event 0.49 word 0.45 paper 0.57

5 methods 0.48 ibm 0.45 scale 0.56

6 possible 0.46 vocabulary 0.44 feel 0.51

7 myocardial 0.45 dragon 0.44 preparedness 0.48

8 Risk 0.44 rate 0.44 based 0.47

9 chest 0.44 number 0.43 variables 0.40

10 variability 0.43 medical 0.40 students 0.37
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not normalize Idf . Hence, Idf w Idf� ( ) = . Inverse document frequency provides zero weight to a 
word if it appears in all boxes and the highest weight to the word which appears in only one box, 
while mean provides the highest weight to the word with highest frequency, thus we define a new 
measure called frequency weight ( f

w
. of a word w  which is the harmonic mean of M̂ w( )  and 

Idf w�( ) .
Functions words are spread across the document in a symmetric way as they are always 

accompanied with keywords, thus function words have low variability in comparison to keywords. 
The author takes variance of a word w  Var w( )  as a second measure. In order to make the range of 
variance values in the interval [0,1], variance is also normalized using the previous method. Let 
Var w� ( ) .denotes the normalized variance. The author defines the normalized variance as the variability 

Table 4. Value of df or ten top ranked words in three texts

Sr. No.
Text 1 Text 2 Text 3

Word df Word df Word df

1 Table 75.00 participants 111.50 examinees 400.96

2 percent 44.63 percent 96.85 percent 217.72

3 methods 40.65 ibm 62.29 tests 120.23

4 persistent -7.03 scoring 48.95 paper 97.47

5 symptoms -42.21 dragon 47.67 feel 87.48

6 subsequent -47.15 number 32.35 scale 81.23

7 Event -47.96 vocabulary 6.88 variables 18.03

8 persistence -91.21 general -3.00 gender 0.72

9 myocardial -105.83 rate -12.07 expertise -9.48

10 ischemic -111.59 word -42.21 administration -64.79

Table 5. Value of JSD measure for ten top ranked words in three texts

Sr. 
No.

Text 1 Text 2 Text 3

Word JSD Word JSD Word JSD

1 methods 44.51 participants 38.16 examinees 93.22

2 Table 42.97 scoring 32.79 percent 47.54

3 subsequent 34.16 percent 28.78 tests 37.97

4 persistent 33.01 dragon 23.62 scale 34.12

5 percent 29.75 ibm 23.34 feel 33.96

6 symptoms 27.85 number 21.23 paper 33.43

7 Event 26.30 general 19.12 expertise 19.05

8 persistence 26.21 word 16.92 gender 17.38

9 variability 24.40 vocabulary 15.90 variables 16.76

10 abstract 23.36 rate 13.30 used 13.75
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Table 6. Value of TE measure or ten top ranked words in three texts

Sr. 
No.

Text 1 Text 2 Text 3

Word TE Word TE Word TE

1 Percent 2.44 percent 2.25 percent 2.82

2 Table 1.74 participants 1.69 examinees 1.98

3 methods 1.73 scoring 1.69 scale 1.57

4 Chest 1.61 vocabulary 1.50 preparedness 1.44

5 abstract 1.48 rate 1.41 paper 1.32

6 possible 1.43 dictation 1.39 tests 1.30

7 Event 1.35 word 1.37 feel 1.19

8 Pain 1.35 ibm 1.35 based 1.09

9 Heart 1.33 medical 1.35 variables 1.08

10 questionnaire 1.32 number 1.33 students 1.03

Table 7. Value of DE measure or ten top ranked words in three texts

Sr. No.
Text 1 Text 2 Text 3

Word DE Word DE Word DE

1 symptoms 0.012 participants 0.029 feel 0.049

2 subsequent 0.012 scoring 0.022 scale 0.040

3 british 0.012 number 0.014 tests 0.036

4 abstract 0.011 dragon 0.007 paper 0.033

5 Pain 0.010 error 0.006 percent 0.031

6 Chest 0.010 general 0.006 examinees 0.024

7 Table 0.010 medical 0.006 used 0.020

8 methods 0.010 software 0.006 expertise 0.018

9 angina 0.009 ibm 0.005 literature 0.014

10 Heart 0.008 recognition 0.005 preparedness 0.014

Table 8. Precision, Recall and F- measure (in %) of different methods in first 5 words

Method
Text 1 Text 2 Text 3

P R F P R F P R F

σ̂ 20 4 7 0 0 0 0 0 0

Γ 0 0 0 0 0 0 0 0 0

DF 0 0 0 0 0 0 0 0 0

JSD 0 0 0 0 0 0 0 0 0

TE 20 4 7 0 0 0 0 0 0

DE 20 4 7 0 0 0 0 0 0
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weight (v
w

) of a word w . The author assumes that both the measures are equal important for 
calculating the relevance of a word, thus weight T( ) .of a word w .is defined as the sum of frequency 
weight and variability weight, that is, T w f v

w w( ) = + . Since entropy contains the amount of 
information a variable contains, Tsallis entropy difference D( ) .as given by equation (12) is used to 
know the amount of information a word contained for being a keyword. The author proposes the 
relevance of a word as the weight raised to the power of Tsallis entropy difference, that is,

Rel w TD( ) = 	 (17)

as it gives more strength to weight and provides the total amount of information a word contained 
for being relevant.

The method can be summarized as follows:

1. 	 Arrange the words in the text in descending order of their frequencies and assign rank accordingly.
2. 	 Select top 15 ranked words for processing.

3. 	 Calculate text length L .and number of boxes N L
=
25

.

4. 	 For a word w . find the frequency f
i
.in each ith  .ox and the number of boxes  N

w
.in which the 

word w .appears

5. 	 Calculate M w
f

N
w( ) = . Idf w N

N
w

( ) =










log .and Var w

f M

N
i

N

i( ) =
−( )

=∑� 1

2

.

6. 	 Calculate M̂ w
M w

Max M w
i

( ) = ( )
( )( )

. Idf w Idf w� ( ) = ( ) . and Var w
Var w

MaxVar w
i

� ( ) = ( )
( ) 

.

7. 	 Calculate f
M w Idf w

M w Idf w
w
=

( ) ( )
( )+ ( )( )

2. .ˆ

ˆ

�

�
.and v Var w

w
= ( )� .

8. 	 Calculate T w f v
w w( ) = + .

9. 	 Calculate D .
10. 	Calculate Rel w TD( ) = ..

Table 9. Precision, Recall and F- measure (in %) of different methods in first 10 words

Method
Text 1 Text 2 Text 3

P R F P R F P R F

σ̂ 10 4 6 10 9 10 10 4 5

Γ 30 13 18 10 9 10 10 4 5

DF 20 8 12 0 0 0 0 0 0

JSD 0 0 0 0 0 0 0 0 0

TE 30 13 18 10 9 10 10 4 5

DE 30 13 18 20 18 19 0 0 0
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11. 	Arrange the words in decreasing order of their Rel .values and assign ranks.

The proposed method is the amalgamation of different measures frequency weight, variability 
weight and Entropy weight. Since frequency weight and inverse frequency weight are inversely 
proportional, thus the author has defined the harmonic mean of M̂ w( ) .and Idf w� ( ) .to get frequency 
weight which gives the weight due to frequency. Variability is another important aspect to measure 
relevance for being keyword, thus the author has taken variability weight as another weight. The sum 
of these two weights provides complete information regarding importance due to frequency and 
variability. Further, as Entropy provides the information contained by a variable for being a content 
word, thus raising the weight due to frequency and variability up to the powers of entropy gives 
additional strength to describe total information contained by a word and hence the relevance of a 
word. Since previous methods are based on some particular aspects and proposed method considers 
different aspects, thus provides a better measure than the previous methods. The proposed method 
of extracting keywords is applied to the three scientific texts. Table 10 shows the values of the relevance 
measure for the three texts.

The comparison of the results of the proposed method with previous methods shows that a 
significant improvement is achieved. Table 11 shows the comparison of the values of Precision, 
Recall and F measure between the proposed method and the maximum achieved values of any of 
the previous methods in the set X={ DF, JSD, TE, DE} denoted by Max(X). Figure 1 and Figure 2 
show the values of F measures for the proposed method and the maximum of any previous method. 
It is clear that the proposed method is superior to the other measures. The results shows that the 
proposed method provides improved results for each text, thus it provides consistent results also. 
Thus, the proposed method works well in comparison to previous methods particularly in retrieving 
first few top ranked words.

Table 10. Value of Relevance  or ten top ranked words in three texts

Sr. No.
Text 1 Text 2 Text 3

Word Rel Word Rel Word Rel

1 angina 1.14 percent 2.71 percent 2.47

2 percent 1.08 error 1.13 computer 0.94

3 chest 0.90 rate 1.12 specific 0.62

4 pain 0.90 vocabulary 1.08 content 0.59

5 men 0.64 medical 1.02 experience 0.57

6 heart 0.59 software 0.96 administration 0.55

7 reported 0.49 speech 0.85 students 0.52

8 disease 0.48 word 0.84 between 0.50

9 risk 0.46 each 0.74 usmle 0.49

10 ischemic 0.44 package 0.73 based 0.48
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4. CONCLUSION

In the present works, first, different keyword extraction techniques are evaluated on certain standard 
scientific texts and then a new keyword extraction technique is proposed based on some previous 
measures. The present work summarises the various keyword extraction techniques available in the 
literature, thus it provides a detailed description of various developments in the direction of keyword 
extraction. Experimental results proved that the previous methods were not working well in terms of 
finding keywords in the first few top-ranked words. Then, a relevance measure is defined based on 
frequency, inverse document frequency, variance, and Tsallis entropy. The proposed measure contains 
holistic information about the relevance of a word. The experimental results proved the superiority 

Table 11. Comparison of results between proposed and best of other methods

Up to top five words

Method
Text 1 Text 2 Text 3

P R F P R F P R F

Max(X) 20 4 7 0 0 0 0 0 0

Rel 60 13 21 20 9 13 20 4 6

Up to top 10 words

Method
Text 1 Text 2 Text 3

P R F P R F P R F

Max(X) 30 13 18 20 18 19 10 4 5

Rel 50 21 29 30 27 29 20 7 11

Figure 1. Comparison of F-Score (For top 5 words)
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of the proposed method over the existing methods. The previous methods considered all the words in 
the text while the author considered only a few high-frequency words, thus the complexity is reduced 
up to a great extent which is an additional advantage of the proposed measure.

In spite of the improvement in previous methods, keyword extraction itself is a challenging 
task, for example, in some of the texts keywords may not be a part of the text. In this situation, 
frequency or spatial distribution methods need some additional criteria to apply and this may be a 
future direction of work.

In spite of a number of researchers worked in the direction of keyword extraction but still, no 
method is perfect. For different texts, the result of a particular method may vary. A number of different 
factors may work for a particular kind of text. Firoozeh et al. (2020) discussed such issues in keyword 
extraction. Thus, it is interesting to know the results of different methods for some particular kinds 
of texts. This motivated the author to conduct research work in this direction. Here the objective is to 
provide a comparative evaluation of different spatial distribution based keyword extraction methods, 
particularly for scientific text. Some standard texts are available on the Web with the list of keywords. 
Thus, different methods can be evaluated for their performances with respect to the scientific texts. 
First, the author provides a brief discussion of each of these methods. The various existing methods 
are as follows:

Figure 2. Comparison of F-Score (For top 10 words)
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