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ABSTRACT

The classification of data streams has become a significant and active research area. The principal 
characteristics of data streams are a large amount of arrival data, the high speed and rate of its arrival, 
and the change of their nature and distribution over time. Hoeffding tree is a method to, incrementally, 
build decision trees. Since its proposition in the literature, it has become one of the most popular 
tools of data stream classification. Several improvements have since emerged. Hoeffding anytime tree 
was recently introduced and is considered one of the most promising algorithms. It offers a higher 
accuracy compared to the Hoeffding tree in most scenarios, at a small additional computational cost. 
In this work, the authors contribute by proposing three improvements to the Hoeffding anytime tree. 
The improvements are tested on known benchmark datasets. The experimental results show that two 
of the proposed variants make better usage of Hoeffding anytime tree’s properties. They learn faster 
while providing the same desired accuracy.
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INTRODUCTION

Social networks, mobile applications, and IoT produce an avalanche of data on a large scale and 
in an unpredictable way. Digital data explosion has forced researchers to find new ways to analyze 
and exploit the world, to manage new scalability issues about the capture, storage, analysis, and 
representation of data.

One interesting characteristic of these data is the big flows generated, arriving sequentially and 
at high speed. The analysis has to take place in real-time to handle these flows. A data stream is a 
real-time, continuous, and orderly sequence of elements. It is impossible to control the order in which 
data arrives, nor to locally store a stream in its entirety because the instances arrive at a high rate 
leading to a massive volume of data or even infinite (Rutkowski et al., 2020).

Data Stream Mining, or the exploration of data streams, is currently a very active field of 
research and is developing rapidly (Amudha et al., 2021, Bahri et al., 2021). Predictive analytics 
on data streams plays a primary role in modern data analytics. Data is streaming in and needs to be 
analyzed in real-time to make a future decision. One of the most common data mining methods for 
prediction is classification. The purpose of classification is to build a function, called a classifier, 
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based on the data provided for training, which associates each element of data with a label, and then 
uses the classifier to classify (or predict) new unlabeled data. A spam filter is a good example where 
we want to predict if new emails are considered spam or not.

The decision tree is a data mining tool commonly used in data classification tasks. In the data 
stream field, The Hoeffding tree (HT) (Domingos and Hulten, 2000) is currently considered as the 
main decision tree. It is an incremental decision tree induction algorithm that is capable of learning 
from massive data streams. Hoeffding trees exploit the fact that a small sample can often be enough 
to choose an optimal splitting attribute. The approach was applied to different problems, such as 
(Choudhury (2020), Deepa et al. (2020), and Soe et al. (2020)).

Several researchers have been interested and are still interested in improving the Hoeffding tree 
algorithm according to various criteria (accuracy, execution time, memory usage, etc.). In this paper, 
the authors propose to explore the most recent related works on the Hoeffding tree algorithm. They 
are particularly interested in the Hoeffding AnyTime Tree algorithm (HATT) (Manapragada et al., 
2018), which is considered the latest most promising algorithm in the literature. HATT attempts to 
select and perform a division as soon as it is confident enough that the division is useful. Then unlike 
HT, it will revisit that decision after some examples when a potential better division is available.

In this work, the authors intend to further enhance the performances of the HATT algorithm by 
proposing three improvements, which better exploit the ability to revise decisions. The authors test 
their variants through several experiments. The results show a precision very close to the original 
algorithm while considerably reducing the additional processing time.

The remainder of this paper proceeds as follows. It first introduces some basic concepts related 
to this work, more precisely, data stream characteristics and decision trees. The authors then present 
the Hoeffding Tree algorithm and its implementation, namely, Very Fast Decision Tree (VFDT). 
They discuss in the related work section the most relevant improvements of VFDT. The paper also 
presents some variants of the Hoeffding criteria. In the contribution section, the authors propose three 
improvements to the Hoeffding Anytime Tree. They then discuss their experimental results. Finally, 
they conclude and present some potential future works.

BASIC CONCEPTS

Data Stream
Data streams are continuous and ordered sequences of data elements that can potentially grow into 
infinity (Rutkowski et al., 2020). There are three main characteristics of data streams that make the 
classic Data Mining algorithms inapplicable to them.

1. The amount of data that has arrived (and will arrive) is immense, even potentially infinite. As 
a result, it is impossible to store it entirely. Even if it is possible to stock everything, it would be 
unfeasible to go over this data more than once for further processing.

2. The speed and rate of arrival of this data are high: This implies that each item must be processed 
in real-time, for a limited time, then immediately move on to the next example.

3. Obsolete data: The nature and distribution of data can change over time, so old data can quickly 
become useless (sometimes harmful) for a current model. This phenomenon is called Concept 
Derivation, or Concept Drift.

From there, we can draw four requirements in the handling of data streams: (1) Each example 
or item must be considered and processed only once (at most). (2) A suitable algorithm must be fast 
enough to update the model or ignore some instances if the flow rate is too high compared to the 
computational capacity of the machines. (3) The algorithm must be able to store the information 
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learned about the processed items in a compact form or a summarized overview, and (4) The algorithm 
must be available to predict (classify) at any time.

Several researchers in the processing of data streams limit themselves to the two characteristics: 
the size and the rate of arrival of the data, and design their algorithms for Big Data. However, the 
most significant difference with static data is in the third characteristic, which is Concept Drift, and 
must often be taken into account in any non-trivial learning model.

Concept Drift
The majority of machine learning algorithms assume that the data is stationary. In other words, the 
statistical properties that the model is trying to predict do not change over time. This assumption 
is unfortunately not respected by the majority of data sources today. Therefore, models trained 
traditionally drift little by little, and their performance degrades over time. This phenomenon of 
evolving data is called Concept Drift, or Conceptual Drift (Lu and al., 2018). We can address the 
concept drift differently: Treat the model as static (ignore the change); re-train, periodically, the 
model from zero; Update periodically if the algorithm is incremental; Use weighted data where new 
entries are more important than old ones; Learn the change once detected or process the drift during 
the data preparation phase.

Decision Trees
A decision tree is a predictive model used to represent classification and regression (Oded and Lior, 
2014). A decision tree is built from a dataset, where each record has several attributes (numeric or 
nominal/categorical type). The model consists of dividing the space of these data into regions through 
divisions on the data attributes.

The process of building a decision tree is called induction. An inductor is an algorithm that takes 
a dataset as input and an automatically constructed decision tree as its output. Inducing an optimal 
tree turns out to be an NP-Difficult problem (Hancock et al., 1996). Therefore, heuristic methods 
are needed to solve this problem.

There are different approaches to forming a decision tree. The most widely used is the Top-Down 
approach, based on recursive divisions of the training dataset according to different criteria and 
algorithms such as ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), and CART (Breiman et al., 1984). 
In this approach, each iteration selects an optimal division (starting with the root node). Each node 
subdivides the training set into separate smaller subsets until no splitting is possible or that a stop 
criterion is satisfied. The splitting criteria are determined based on the decision tree algorithm used 
and are generally greedy and local. Each induction algorithm uses a well-defined division criterion.

Division criteria: There are several criteria characterized by a measure used or by their origin 
(from Information Theory, Distance, etc.). Each induction algorithm uses a well-defined division 
criterion. This section will focus on those based on impurity that is most common in the literature. 
The purpose of division in a decision tree is to create more homogeneous subgroups, in other words, 
purer groups.

The profit of a division on an attribute a
i
 is defined by the reduction of the impurity after the 

partition of the instances of the training set (S ) according to the values of a
i
, relatively to the impurity 

of the set S .

For a discrete attribute a
i
, the set S  can be partitioned into Q  disjoint sets S

q
i
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for a binary tree). A general formula for the reduction of impurity is therefore defined as (Rutkowski 
et al., 2020):
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Where:

•	  ∆Φ a S
i
,( ) : the reduction value of the impurity of S after a division on a

i
.

•	  φ : the used measure of impurity.
•	  y : the attribute (variable) to predict.
•	  S

q
i : a subset of S  which will be a branch of the node to be divided on the attribute a

i

The best known and most widely used criteria based on impurity are the Gini Index and the 
Information Gain.

Gini index: The Gini index measures the divergence between the distributions of attributes. It 
is mainly used in the CART algorithm (Breiman et al., 1984).
Gini y S p
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We can define a criterion for an attribute a
i
 as follows:

GiniGain a S Gini y S
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Information Gain: It is a criterion based on impurity that uses the measure of entropy (derived 
from information theory). It was introduced in the ID3 algorithm (Quinlan, 1986). The more random a 
variable, the higher the entropy. For example, uniformly distributed variables have the highest entropy.

InformationGain a S Entropy y S
S

S
Entropy y S
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, . log .( ) = −
∈ ( )∑ 2

We will therefore seek to maximize the gain of information since a greater gain implies a greater 
reduction of impurity, and hence a more interesting division.

Misclassification Error: Another measure of impurity rarely mentioned in the literature is the 
Misclassification Error, a very simple measure given by the following equation:
ME y S max p S

c dom y c
i

i
,( ) = − ( ){ }

∈ ( )
1

This measure has the same properties as the other impurity measures, one can therefore use it 
in a test of impurity.

MEGain a S ME y S
S

S
ME y S

i q

Q q
i

q
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In building a decision tree, the goal is to minimize the error rate of classification in each node. 
So, it would be intuitive to use this measure. However, this measure is not sensitive enough when 
the number of elements is too small. The difference between the impurity between parent and child 
nodes can be 0, and the tree construction will stagnate. That does not apply to entropy and Gini index, 
thanks to the strict convexity of these functions.
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HOEFFDING TREE

The Hoeffding Tree Algorithm (HT) is a decision tree learning method designed for classifying large 
data streams. The authors have proved in Domingos and Hulten (2000) that the resulting tree of this 
algorithm will converge to the same tree if the stream was stored and processed by a classical algorithm.

Much like conventional algorithms, ideally, it will need to determine the division of a node based 
on the entire data set. In streaming data, the data arrives continuously. The division is then determined 
by the impurity measures estimation (or depending on the used criterion). Of course, this estimate 
cannot be 100% sure. However, it should be as close as possible. That implies that the number of 
elements to be considered in the stream must be large enough to determine, with satisfaction, the 
validity of the division.

The authors proposed a new criterion based on the Hoeffding inequality (Hoeffding Bound) to 
determine if the number of examples seen is large enough to divide. The Hoeffding inequality ensures 
that an attribute chosen by applying a division on this sample would be the same as the one chosen 
from the entire set by a classical algorithm.

Operating principle: The algorithm incrementally builds a tree, gathering in the leaves enough 
information to be able to designate at a given moment the best attribute to transform these leaves into 
nodes. So, given a data stream, the former of the data will determine the root test. Then, the following 
examples will be passed to the corresponding leaves and used to designate the appropriate attributes 
there, and so on recursively. Each leaf, therefore, keeps a trace of the statistics of the stream examples 
which reached it. It determines the two best attributes according to the division criterion (Gini index 
as an example). A data structure called sufficient statistics stores the needed information. Sufficient 
statistics is a three-dimensional structure containing the number of data elements for each class and 
each attribute value (or each numeric interval in the case of numeric attributes).

Hoeffding limit: Domingos and Hulten (2000) have proposed a generic strategy for faster machine 
learning. The approach uses the Hoeffding limit (Hoeffding Bound) to find the minimum number 
of instances required in a sample to assert, with a degree of trust, an assumption on the whole data.

Let ∆g S
i ( )  be the division measure for the ith  attribute calculated for a sample of data S , 

collected in the considered decision tree leaf and let n S=  the number of data elements in S . The 
idea is to formulate an inequality in the following general form:
∆ ∆g S g S n

i j( )− ( ) > ( )ε δ,
If i  and j  denote indices of the current best attribute and the second-best attribute respectively 

(having the best value of ∆g S( ) ), then the inequality should guarantee, if satisfied, that with a 
probability of at least 1− δ  ( δ  chosen arbitrarily) the inequality is satisfied for the whole set of data.

The value of ε δn,( )  will be denoted ε  and called the confidence interval. Several forms of the 
function ε δn,( )  have been proposed in subsequent research. The first one presented by Domingos 
and Hulten (2000) is the Hoeffding inequality and can be used as a division criterion in the generalized 
Hoeffding Tree algorithm.

Hoeffding inequality: The Hoeffding inequality, proposed by Hoeffding (1963), says that for 
each random variable Z  with an extent R , the real mean of Z  (noted Z ) does not deviate from 
the observed mean Ẑ  more than a value ε . This assumption is subject to an error rate of δ :

Z Z− <ˆ ε , with ε δ=
R

n

2 1

2

. ln( )
	

Where, n  is the number of observed instances.
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This inequality poses two preconditions:

1. 	 The random variable must be identically distributed and most likely bounded (since its range is 
used in the calculation).

2. 	 The observations of the variable must be independent.

In the majority of algorithms using the Hoeffding limit principle, the variable Z  is the value 
returned by the function that measures the profit of a division. By choosing a value δ , the Hoeffding 
inequality will state whether the number of instances seen (n ) so far is sufficient to choose the best 
attribute.

VFDT

Very Fast Decision Tree (VFDT) is the implementation of the Hoeffding Tree algorithm, also 
proposed by Domingos and Hulten (2000). This implementation is a kind of system that introduces 
several parameters and practical improvements for real cases, especially those related to memory. 
The authors present in the following the most important parameters:

Initialization: VFDT can be initialized by a decision tree produced by a classical algorithm 
(such as C4.5). The model is trained on a sample of already available data. The tree can be entered 
as is or pruned to contain only the nodes that VFDT would have accepted, given the number of 
examples they contain.

Memory: VFDT can be set with a limit on usable memory, which is the only hardware hurdle of 
this algorithm. When the maximum available memory of VFDT is reached, the less promising leaves 
are deactivated to make a place for new ones. The algorithm can reactivate leaves if they become 
more promising than the currently active leaves.

The δ  parameter: Also called split confidence, this is a user-chosen value. 1- δ  denotes the 
desired probability to choose the correct attribute at each point in the tree. This parameter is usually 
fixed to a small value since a high probability (close to 1) of accuracy is desired. In the literature, the 
default value for this parameter is 10 -7.

The n
min

 parameter: It is computationally expensive to evaluate the information gain of the 
attributes after each training example. Since a single example will have little influence on the 
calculation results, it is reasonable to wait for more ones before re-evaluating. The n

min
 parameter 

also called grace period, dictates how many examples, since the last evaluation, must be seen in a 
leaf before a division attempt. This parameter allows to speed up the calculation without harming the 
precision. In the literature, the default value for this parameter is 200.

The Ä parameter: A situation may arise where one cannot choose the best attribute between 
two or more competing ones. If they are also equal and superior to some of the other split options, 
waiting too long to decide between them can do more harm than good to the precision of the tree. 
This situation can slow down tree growth. As a solution, the parameter τ  was introduced by Domingos 
and Hulten (2000), also called the Tie-Breaking parameter. If the Hoeffding limit ( ε ) is small enough 
(less than τ ), the node is immediately split on the current best attribute, regardless of how close the 
second-best attribute is. In the literature, the default value for this parameter is 0.05.

RELATED WORK

VFDT Improvements
The VFDT algorithm has been the subject of several studies that have proposed extensions or variations 
of the original approach. We focus in this section on the most recent one.



International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

7

Bifet and Gavaldà (2009) present the Hoeffding Adaptive Tree (HAT). This approach constructs 
alternative subtrees when a drop-in performance is observed on a branch. If the alternative subtree 
achieves more satisfactory accuracy, it can replace the original one. The HAT uses an error estimator 
at each node. It determines whether the prediction error due to recent examples is significantly greater 
than the prediction error of a longer historical run. That can detect a concept drift.

Several research studies have aimed to optimize others criteria on data stream classification 
using decision trees. In Da Costa et al. (2018), the authors propose Strict VFDT (SVFDT). SVFDT 
is a novel algorithm that minimizes unnecessary tree growth, substantially reducing memory usage 
and keeping competitive predictive performance. The experiment results showed that the proposed 
algorithm obtained similar predictive performance and significantly reduced processing time and 
memory use. In García-Martín et al. (2021), the authors propose a new method to reduce the energy 
consumption of the VFDT algorithm with only minor effects on accuracy. The experiments show a 
real impact on energy consumption.

Several works, such as Jia (2020) and Ducange et al. (2021), introduce the concept of fuzzy 
logic to make VFDT more robust to noisy and vague data. Their experimental results show that the 
proposed approaches can effectively improve the accuracy of stream data classification, especially 
in the case of concept drift.

The most recent and significant improvement of VFDT is, without a doubt, the Hoeffding 
Anytime Tree algorithm (HATT). In Manapragada et al. (2018), the authors present the HATT’s 
implementation, the Extremely Fast Decision Tree (EFDT). EFDT learns faster about data streams 
(compared to VFDT) while ensuring convergence to the same tree built on static data. It attempts to 
select and perform a division as soon as it has sufficient confidence in its usefulness. Then unlike HT, 
it will revisit that decision after some examples when a potential better division is available. HATT’s 
strategy is more statistically efficient, learning faster from a stationary distribution while naturally 
handling the concept of drifting. It can replace the Hoeffding tree algorithm in most scenarios at a 
low resource cost.

Different works have taken advantage of the speed and efficiency of EFDT to solve classification 
problems in various fields, such as (Khine et al. (2020), Benllarch et al. (2021), Khairi et al. (2021)).

In this paper, the authors propose to improve the HATT algorithm for more efficiency by varying 
the criteria and the Hoeffding limit.

Hoeffding Criteria Variants
The correct use of the Hoeffding inequality is critical since a false division (especially for nodes close 
to the root) can seriously affect the performance of a classification model (Matuszyk et al., 2013). 
Due to its satisfactory results in practice, HAT is a meaningful step in this field. It is the basis of a 
large number of research and algorithms that have followed it. However, several researchers have 
pointed out some inaccuracies in Hoeffding’s algorithm. The most important one is that the Hoeffding 
inequality is only correct for linear sums of random variables. We cannot express, for example, the 
information gain and the Gini index under this form. Hence, there is no theoretical justification to 
use the inequality of Hoeffding for these two criteria (Rutkowski et al., 2013). Attempts to replace 
or improve the Hoeffding limit started very quickly. In this paper, the authors will only focus on the 
more recent ones and those that have correctly demonstrated the flaws of this algorithm.

In Rutkowski et al. (2013), the authors recommend using the McDiarmid inequality. It is a 
generalization of Hoeffding’s inequality, applicable for non-linear functions like entropy and the 
Gini index. However, this also leads to less precise estimates and, consequently, a higher number of 
instances to be observed to reach the desired level of confidence.

In their paper, Matuszyk et al. (2013) propose, among other things, a correction of the Hoeffding 
limit. The limit ε  should be double that given by the Hoeffding inequality to guarantee the desired 
property. Thus, to guarantee (with an error rate δ ) that the best attribute observed in the sample is 
the same as the one observed from the whole set, the limit of Hoeffding becomes:



International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

8

∆ ∆g S g S n
i j( )− ( ) > ( )2. ,ε δ

Besides, they propose a new criterion (AccuracyGain) based on a linear measure similar to the 
Misclassification Error. They express that measure as a sum of independent variables. They solve the 
problem cited with the Hoeffding limit. The experimental results show that the number of incorrect 
decisions is significantly smaller by using the double limit. However, the set of examples to see is 
much greater than the original limit.

Rutkowski et al. (2015) propose a new criterion based on the Misclassification Error measure. 
The characterization of this measure is that we can write it as a sum of independent variables, and 
therefore is considered linear. Thus, it solves the incorrect use of the Hoeffding limit cited in Rutkowski 
et al. (2013). In this work, the Hoeffding limit obtained by the Hoeffding inequality is equivalent to 
that obtained by the McDiarmid inequality.

The experimental results have shown satisfactory prediction accuracy, particularly in the early 
stages of tree construction. The algorithm learns faster at the start of training compared to other 
measures. That is because the Hoeffding limit of this measure is relatively smaller. However, towards 
the advanced stages of learning, the algorithm begins to slow down or even stagnate (due to its non-
convexity). In the same paper, another hybrid criterion was proposed. It combines the misclassification 
error with the Gini index. The approach benefits from the speed of the misclassification error at the 
start of learning while avoiding stagnation towards advanced stages. Numerical simulations comparing 
a Hoeffding tree with the Gini index, another with the Misclassification Error, and a third with this 
hybrid criterion have shown a satisfactory performance of the hybrid criterion for a small additional 
computational cost.

CONTRIBUTION: IMPROVEMENT OF EFDT

The proposal in Manapragada et al. (2018) claims to be statistically more efficient than the original 
Hoeffding tree algorithm, further pushing the potential of Hoeffding Trees in a new direction. It 
would be interesting to revisit the various previous improvements of the basic algorithm and try to 
adapt them to HATT.

In this work, the authors propose three improvements to the EFDT algorithm (the HATT 
implementation). They resume in the following the main of their three propositions:

1. 	 Misclassification Error: The application of the Misclassification Error has given satisfactory 
results for the HT algorithm. Experimenting with its effects on the HATT algorithm would be 
interesting since both (HATT and Misclassification Error) have an impact on the learning speed 
of the decision tree.

2. 	 Hybrid Criterion: The authors propose to combine the Gini Index and the Misclassification 
error. That fills the weakness of the latter during the advanced phases of the learning.

3. 	 Variations of the Hoeffding inequality: the HATT algorithm uses the same Hoeffding inequality 
proposed by Domingos and Hulten (2000). It is then interesting to vary the Hoeffding limit on 
HATT. With the EFDT algorithm, it will not be interesting to test the proposition of Matuszyk 
et al. (2013) (Double the confidence interval) since the division decisions will be re-explored. 
Thus, the decision errors with the Hoeffding limit will be caught up in future revisions.

The authors propose, in this work, to use half of the confidence interval. Although this is not 
justified, and that this inequality can induce more bad decisions, numerical simulations show that 
this variant is even better than the original Hoeffding tree (Rutkowski et al., 2020). We can also count 
on HATT’s ability to re-explore its decisions to afford divisions that do not guarantee the desired 
properties and replace them if it found a better one.



International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

9

To validate their results, the authors reproduce the experimental results of the authors of HATT 
(comparison between EFDT and VFDT). Then, they test their propositions using the same scenarios.

EXPERIMENTS AND RESULTS

Datasets
For their experiments, the authors chose to use the same datasets used by Manapragada et al. (2018). 
That would make it possible to directly visualize the impact of their improvements on the original 
EFDT algorithm. It also ensures that the choice of data sets conforms to those commonly used in 
the literature. Manapragada et al. (2018) compared the two algorithms on all UCI datasets (Dua and 
Graff, 2017) with more than 200,000 instances, having a clear prediction target, requiring no word 
processing, and containing no missing values. With these UCI data, in addition to the Airlines dataset 
proposed by MOA (Bifet et al., 2010), the authors have a total of 8 quite diverse reference datasets 
to use, described in table 1.

Settings and Environment
MOA (Massive Online Analysis) (Bifet et al., 2010) is an open-source framework for dealing with 
growing and massive data streams. It is linked to the WEKA (Waikato Environment for Knowledge 
Analysis) project presented in Bouckaert et al. (2010). WEKA provides a workspace containing 
comparison and visualization tools for different algorithms for data analysis, classification, and 
other machine learning technologies. MOA provides the same tools as WEKA but adapted for a 
continuous data stream environment, whose requirements are different from the traditional batch 
learning environment.

The experiments are run in a Jupyter environment under a UNIX system (Ubuntu 18.04). The 
authors use Python version 3.7 and MOA version 2020.07. The tests are carried out on a local 
machine with the following characteristics: Intel Core i7 8th gen CPU @ 2.20GHz and 16 GB of 
RAM. This machine was sufficient to successfully perform the majority of tests, even for large data 
sets. The authors use the same default parameters for variants of VFDT and EFDT. Table 2 specifies 
the evaluation parameters and algorithms.

To compare between the different variants, the authors chose the following metrics:

Table 1. Dataset’s characteristics
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- E (Error rate): value between 0 and 1, calculated by 1-AverageAccuracy. The authors chose 
accuracy since it was used in Manapragada et al. (2018).

- T (Processor time): execution time in seconds.
- S (Number of divisions): The number of divisions performed can be a good indicator of how 

fast a tree grows.

Experiment 1. EFDT McError
The first experiment consists of testing the performance of the Misclassification Error measure on 
the EFDT algorithm. According to the results of Rutkowski et al. (2015), measuring Misclassification 
Error allows the tree to grow faster at the start of training, requiring fewer items to divide. This 
property will speed up the EFDT algorithm to catch up when a decision is revised and changed. The 
authors compare in this experiment the original EFDT algorithm (EFDT InfoGain) with the EFDT 
McError algorithm, in addition to their equivalent on VFDT for reference.

The error rates of the McError are worse than the others (table 3 and figure 1). The reason is due 
to measurement stagnation (misclassification error property) in the advanced stages of learning. It 
can be further observed by the small number of divisions (S) in the case of the EFDT McError. The 
algorithm would block for a very long time in division attempts (costly in computing time) without 
(rarely) dividing. It is important to mention that the expected property is observed in VFDT McError, 
where the algorithm performs better in time and precision than VFDT InfoGain. This suggests that 
poor performance is only due to the possible blocking of the measurement. As previously mentioned, 
the McError metric typically crashes when the number of instances in leaves is very small or very 
out of balance, which will happen more often with EFDT because it starts new branches more often 
when it revisits a decision.

Experiment 2. Hybrid EFDT
The second experiment consists of testing the performance of the hybridization of the criterion based 
on the Misclassification Error with the Information Gain.

The results are presented in Figure 2 and detailed in Table 4. The Hybrid EFDT results are 
principally better compared to those of McError, in precision and in time. In some cases, the execution 
time is halved. The McError will often have more potential when used in combination with another 
metric (preventing it from blocking), be it in VFDT or EFDT. The experimental results show that the 

Table 2. Experiments settings
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Table 3. Results of the first experiment (Evaluation of the Misclassification Error)

Figure 1. Performance of the Misclassification Error on different datasets
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proposed Hybrid EFDT variant provides very satisfactory results: making it possible to compensate 
well for the computational cost introduced by the EFDT algorithm of Manapragada et al. (2018) 
while keeping very high precision similar to the latter.

Experiment 3. Half Hoeffding EFDT
The last experiment consists of testing the performance of a different Hoeffding limit on EFDT. 
The confidence interval will be divided by 2, denoted Half Hoeffding. As mentioned, the authors 
believe that EFDT’s ability to revise its decisions means that it can afford to choose a potentially less 
efficient division first and then reconsider it if a better one occurs. That, rather than waiting for the 
level of confidence guaranteed by the Hoeffding inequality to divide. This variant will be denoted 
by EFDThe, followed by the name of the measure used: EFDThe InfoGain or EFDThe McError.

The results are presented in Figure 3 and detailed in Table 5. We observe in this experiment results 
that the precision between EFDT1e and EFDThe never differs by more than 0.005. However, in all 
cases, the execution time is much lower, sometimes falling to less than half of the first. The EFDTHe 
variant remains better than VFDTHe in precision in almost all cases. That leads to conclude that the 
Half Hoeffding criterion is much more efficient to use with EFDT because it makes the most of the 
ability of EFDT to revise its decisions.

Comparison EFDT With the Three Proposed Variants
Table 6 compares the three proposed variants between them and with the original EFDT. Thus, 
EFDTHe and Hybrid EFDT results are very similar. They significantly reduce the execution time of 
the original EFDT while maintaining the same satisfactory precision. In addition to confirming the 
results of Rutkowski et al. (2015) (Misclassification Error and Hybrid criterion) and Rutkowski et al. 
(2020) (Half Hoeffding) on the VFDT, the results of the 2nd and 3rd variant showed a considerable 
improvement in the speed of the EFDT. These improvements manage better compensation for the 
additional processing cost of the EFDT algorithm against VFDT while keeping a precision similar 
to that won by the EFDT.

CONCLUSION AND PERSPECTIVES

Many modern data sources generate data as a continuous stream at a very high frequency and in 
enormous or potentially infinite amounts. Storing or traditionally processing them is no longer feasible. 
Data Stream Mining is the processing of these data streams through several algorithms and methods 
to extract information, classify or predict decisions immediately and quickly while performing a 

Table 4. Results of the second experiment (Evaluation of the hybrid criterion)
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Figure 2. Performance of Misclassification/Gini hybridization on different datasets

Table 5. Results of the third experiment (Evaluation of Half Hoeffding)
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Figure 3. Performance of the Half Hoeffding criterion on different datasets

Table 6. Comparison between the 03 variants of the EFDT with the original one
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single pass on the instances of the stream. The Hoeffding tree algorithm is considered the basis of 
decision trees in the processing of data streams.

In this work, the authors went through the main extensions and variants of Hoeffding trees. More 
specifically, on the aspect of the inaccuracy of the Hoeffding criterion, that does not always guarantee 
the desired properties. One of the relevant variants of this algorithm is the Hoeffding Anytime Tree 
or HATT, whose idea is to divide as soon as possible then, unlike the original algorithm, to revisit 
the decisions later and divide if a better division occurs. HATT presents, often, more satisfactory 
experimental results for an additional cost in processing time. The authors used the HATT algorithm 
(and its EFDT implementation) by projecting the different variations brought to the Hoeffding trees. 
They ended up with two different variants, denoted Hybrid EFDT and EFDT Half Hoeffding. These 
improvements better exploit the ability of the EFDT to revise its decisions, allowing them to provide 
precision very close to the original EFDT while considerably reducing the additional processing time 
of the latter. These two variants can, potentially, be added to the options to consider for classification 
tasks or as valuable elements in an aggregation of models such as Random forests.

The results of the proposed variants show that the idea of the Hoeffding Anytime Tree has even 
more potential to exploit. For example, we can modify the algorithm to allow it to use a criterion 
in the re-evaluations of decisions different from that used during the first attempts. In the end, the 
authors saw in the various corrections proposed to the Hoeffding criterion that a mathematical 
justification does not necessarily mean a better result. The Hoeffding limits given by experimental 
results (Hoeffding inequality and Half Hoeffding) are, often, more attainable. That leads to thinking 
that the search for the optimal limit is still open.
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