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ABSTRACT

This paper aims to assess the dimensional deviation of fused deposition modeling (FDM) processed 
ABS and ULTRAT parts using a new geometrical model that can evaluate three types of dimensional 
deviation: along the z-axis, along external and internal dimensions, and through diameters. The 
methodology involves a step-by-step procedure wherein after establishing the experimental plan 
and manufacturing the specimens, the measurements taken are analyzed via grey relational analysis 
(GRA) to find out the optimal combination of parameters leading to the minimum deviation in all 
dimensions of parts for both materials. Statistical techniques such as analysis of variance (ANOVA) 
and signal to noise (S/N) ratio were also used. Subsequently, a confirmation test was carried out to 
validate the results obtained. The findings of the ANOVA and the S/N ratio were in good concordance 
with those of GRA.
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INTRODUCTION

Since the emergence of the first AM process, Stereolithography (SLA) in the late 1980s, additive 
manufacturing (AM) technology has been the subject of several studies with numerous patents 
accepted, and new processes widely commercialized (Levy & Schindel, n.d.). Hence, the AM 
market has grown rapidly and generated revenue of more than USD 1 billion for manufacturers of 
AM machines and service providers (Wohlers Associates, 2011). Guo and Leu (Guo & Leu, 2013) 
explained that this evolution is due to the varying opportunities offered by the AM compared to 
other manufacturing processes in terms of the exploitation of geometric complexity, the use of new 
classes of materials (e.g. functionally gradient materials), the widespread of new, open-architecture 
controllers for AM machines, and embedding of components during the fabrication process, etc. But 
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despite these advantages, the use of AM is still limited due to defects in surface finish as well as low 
dimensional and geometrical accuracy which hamper their suitability for net shape manufacturing 
(Insaf Bahnini et al., 2020). The large divergence between design requirements and manufactured 
parts’ specifications is on account of (i) non-consideration of the physical phenomena involved during 
the manufacturing process early in the design phase (Boyard, 2015), coupled with (ii) difficulties of 
upstream prediction of the manufactured parts’ quality (Huang, 2018).

Consequently, the proposed method in this paper aims to characterize the capability of FDM 
process in terms of dimensional accuracy of parts manufactured using two materials; Acrylonitrile 
Butadiene Styrene (ABS) and ULTRAT (a specific material developed by Zortrax; the constructor of 
Zortrax m200 machine). The diversity in material usage will not only assist in adjusting the process 
parameters along with defining optimal combination resulting in high-quality end parts, but will also 
help in highlighting the tolerances that the machine is likely to reach. The paper is, therefore, divided 
as follows: Section 2 provides the concerned literature review; Section 3 discusses the materials 
and methods, including the step-by-step process adopted for the proposed methodology and the 
experimental procedure; Section 4 presents and discusses the statistical analysis and the validation 
of test results; and finally, Section 5 concludes the article.

LITERATURE REVIEW

Many researchers have tried to improve the characteristics of AM end parts in terms of dimensional 
accuracy, surface roughness, and mechanical properties. In relation to mechanical properties, the 
optimal combination of process parameters was obtained to maximize the compressive strength 
of FDM-built drilling grids by Zaman et al. (Zaman et al., 2018) using Taguchi’s Design of 
Experiments (DOE). Domingo-Espin et al. (Domingo-Espin et al., 2014) studied the influence of 
number of contours, raster-to-raster air gap, and nozzle diameter on the mechanical behavior of 
FDM-produced Poly carbonate (PC) parts. The authors tested the samples under dynamic loading 
at specified conditions of amplitude, frequency and temperature. Moreover, Torres et al. (Torres et 
al., 2016) constructed a set of experiments to study the tensile and fracture properties of FDM-built 
Polylactic acid (PLA) components. With respect to surface roughness, Boschetto and Bottini (Alberto 
Boschetto & Bottini, 2016) developed a novel formulation to predict dimensional deviations of parts 
fabricated by FDM when subjected to variations in layer thickness and deposition angle. Chen and 
Zhao (Chen & Zhao, 2016) optimized printing saturation, layer thickness, drying time, and heater 
power ratio to enhance dimensional accuracy and surface quality for parts manufactured by binder 
jetting process. A robust model was also developed by Vahabli and Rahmati (Vahabli & Rahmati, 
2017) to estimate the distribution of surface roughness in FDM parts according to the floated design 
criteria. Furthermore, regarding dimensional accuracy, Sood et al. (Sood et al., 2009) investigated 
the dimensional deviation through the length, width and height of a FDM processed prismatic part 
using Taguchi method combined with the GRA. The authors defined the optimal combination of the 
chosen process parameters levels. Górski et al. (Górski et al., 2013) also studied the effect of part 
orientation on the repeatability and dimensional accuracy of manufactured parts when the geometry 
was defined by PN-EN ISO 527 standard. The study concluded that the orientation along the x- and 
y-axis influenced both the accuracy and the repeatability of fabricated parts. However, it did not define 
a specific orientation to consider since it is not easy to meet all requirements in terms of accuracy, 
repeatability, strength, etc., by modifying only the orientation. The authors subsequently developed an 
Artificial Neural Network (ANN) model to foresee accurately the end parts’ characteristics. Noriega 
et al. (Noriega et al., 2013) studied the influence of dimensions of CAD model on the accuracy of 
end-parts’ dimensions by developing an ANN model to redesign a test part shaped as a regular prism 
having a hollow square cross-section. The distance between parallel faces was optimized in this case 
by treating the internal and external geometries separately. The authors realized that the error in 
manufacturing part was reduced by 30% for internal dimensions and 50% for external dimensions. 
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However, this approach, again, did not consider any of the other process/machine parameters. Also, 
while developing the predictive model, all the parts’ geometry (external and internal) should have 
been taken into account for more precise results, instead of treating them separately, which is not 
suitable for real applications.

In addition, for the profile of the deposited filament, Boschetto and Bottini (A. Boschetto & 
Bottini, 2014) developed a geometrical model based on the variation of the layer thickness and 
deposition angle. The idea was to know upstream the manufactured parts’ dimensions and to be 
sure of their functionality. A complex shape specimen was fabricated to perform the validation test 
to evaluate different deposition angles resulting in the predicted values being approximated to the 
experimental ones. Lieneke et al. (T. Lieneke et al., 2015) followed another approach to find out 
the tolerance intervals related to additively manufactured parts in normal manufacturing conditions. 
The authors considered geometrical, process and machine factors for the experiments and fabricated 
specimens. The measured deviations turned out to be not only different from one axis to another, but 
also the tolerances intervals established were formed by deviations derived from different axis/plans. 
Moreover, Galantucci et al. (Galantucci et al., 2015) compared the performances of two 3D printers; 
an open source and an industrial, considering dimensional accuracy. A simple prismatic specimen 
was fabricated by both printers to measure the deviation in length, width, and height. The authors 
concluded that the open-source printer demonstrated an acceptable performance. However, as same 
parameters were not used for both printers, the validity of this comparison can raise questions. Lieneke 
et al. (Tobias Lieneke et al., 2016) also conducted an experimental research to drive dimensional 
tolerances for four types of dimensions: internal, external, dimensions of various types, and distance 
dimensions. Different shapes of parts were manufactured in different positions and directions, and 
the deviation along each axis was defined. The authors concluded that the deviation along the z-axis 
was the most important, which can also be explained by the successive deposition of layers in that 
direction. This further approximates the nominal dimensions with the layer thickness value.

Considering the overarching aim of this research and the associated literature review, it is evident 
that several approaches and methodologies were established to investigate the dimensional accuracy 
in FDM processed parts. However, there exist research gaps which are given as follows:

1. 	 The geometries of the parts used in the tests are generally simple, containing one type of 
dimensions (internal or external) leading to the investigation of only one type among other types 
of dimensional accuracy.

2. 	 In all of the cited literature, the material type was fixed to only one material. It is suggested 
in this paper that the testing accuracy achieved using different materials could be considered 
as interchangeable, but, in reality, it would lead to different accuracy values as they are also 
influenced by the selected manufacturing parameters and their levels.

The proposed methodology is explained in the following section along with experimental 
procedure, and the obtained results, thereafter.

MATERIALS AND METHODS

Methodology
The aim of this paper is the investigation of the dimensional accuracy in FDM processed parts. To do 
so, a step-by-step procedure was adopted. Firstly, new specimen geometry was proposed to test the 
deviation of different types of dimensions, viz. along z-axis, external and internal dimensions, and 
through diameters. The specimens were then manufactured using two materials, ABS and ULTRAT, 
in order to conduct a comparative study of the achievable performances of the two materials. 
Controllable factors were then chosen, and the experimental plan was established using orthogonal 
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arrays of Taguchi. The statistical analyses using GRA combined with S/N ratio were further used to 
carry out the multi-optimization to determine the optimal combination of levels that can minimize 
the deviation along all part’s dimensions. ANOVA was also applied to determine the factors having 
the most/least effect on the deviation.

Equipment and Part Geometry
FDM process, developed by Stratasys and commercialized in 1991, is one of the most popular AM 
technologies (I. Bahnini et al., 2018). It follows laying of tracks of thermoplastic material in semi-
molten form onto a substrate in a bottom to top manner. Moreover, FDM carries multiple advantages 
such as easiness of use, capability to fabricate functional parts, absence of toxic materials, supervision-
less manufacturing of parts, reproducibility, and use of low temperatures (Galantucci et al., 2015). 
But as stated by Boschetto and Bottini (A. Boschetto & Bottini, 2014), this technology has limitations 
in terms of poor surface roughness and restricted accuracy.

The underlying principle of obtaining high-quality AM parts, hence, lies in the proper selection of 
process parameters. Villalpando et al. (Villalpando et al., 2014) explained that FDM is considered as 
a complex process since it includes heat gradients due to airflow, solidification, melting, orientation, 
and slicing. Hence, the determination of optimum parameters becomes a difficult task as multiple 
conflicting parameters exist which in turn affect the material properties and the part quality (Mohamed 
et al., 2015). Therefore, a selection must be made to select those parameters which are more likely to 
influence the part’s quality in terms of the performance being studied. In this paper, three parameters 
were selected:

•	 Layer thickness: It is the thickness of each deposited layer. It refers to the step made by the 
platform along the z-axis once the previous layer is done and another layer starts to be deposited.

•	 Part orientation: It refers to the orientation of the part on the construction platform, relative to 
x-, y-, and z-axis as shown in Figure 1.

•	 Infill density: It is the density of the infill of mid-layers (Figure 1). The top and bottom layers 
have a solid linear infill (density of 100%) to give shape and strength to the part.

This selection was made based on the recommendation of experts in the Renault Technologies, 
Romania who also helped in manufacturing specimens.

Figure 1. (a) part orientaion on the platform, (b) infill density
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Concerning the considered geometry, a new prismatic part (65 × 65 × 10) mm was suggested. 
The part contained different geometries with different sizes, as shown in Figure 2, to assess the ability 
of the machine to fabricate accurately different geometries and allow the investigation of three types 
of dimensional accuracies, viz. z-axis, diameters, and XY plane.

The experiments were carried out using a Zortrax m200 machine (Figure 3). It is a 3D printer 
that consists of a vertically translating construction platform along the z-axis (with a maximum height 

Figure 2. (a) Technical drawing of the proposed part, (b) Designation of nominal dimensions

Figure 3. The Zortrax m200 3D printer 
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of 180 mm), a build area of (200 × 200) mm, and an extruder nozzle with translation along x- and 
y-axis. The x- and y-axis movement was achieved by a belt-driven pulley system with stepper motors, 
while the vertical translation along the z-axis was driven by a trapezoidal screw. For the extrusion 
system, a 1.75 mm diameter of filament was fed into a nozzle of 0.4 mm diameter by the help of a 
stepper motor. The control of the printer was assured through USB connection to PC or with SD card 
with the part’s G-code in it. The part’s CAD was modeled in CATIA V5, exported as STL file, and 
was then sent to Z-Suite software, where the manufacturing parameters and their levels were chosen.

Design of Experiments and Preliminary Statistical Analysis
An important step in the establishment of the experimental plan is to select the controllable factors 
for the experiments. As mentioned earlier in this article, three controllable factors, namely layer 
thickness (A), part orientation (B), and infill density (C), each at the levels (Table 1), were selected. 
Other process parameters of the Z-Suite software were fixed as shown also in Table 1.

To establish the experimental plan, orthogonal arrays (OAs) established by Taguchi were chosen 
for the simple reason of reducing the number of trials, which lead to reduced material cost and time. 
According to the given number of parameters and their levels, the L9 array was chosen (Table 2). 
Hence, 9 trials were considered (Figure 4).

Several works among those presented in the literature review suggested the fabrication of more 
than one part for each set of parameters and then calculation of the average of the measures taken to 
assess the repeatability of the machine. However, this approach has a lot of drawbacks. Firstly, each 

Table 1. Manufacturing factors and their values

Factors Units Level 1 Level 2 Level 3 Fixed 
Factors Values Fixed 

factors Values

A: Layer 
thickness (mm) 0,09 0,19 0,29 Nozzle 

temperature
280ºC /ABS 
265ºC/ULTRAT

Infill 
pattern Hexagonal

B: Density 
infill (%) 90 60 30 Bed 

temperature 105þ C Top/bottom 
fill pattern Rectilinear

C: Part 
orientation (°) 0 45 90 Nozzle 

diameter 0,4 mm Infill speed 100 mm/s

Number of 
perimeters 3 Solid infill 

speed 100 mm/s

Table 2. L9 array

N° of trial A B C

1 0,09 90 0°

2 0,09 60 45°

3 0,09 30 90°

4 0,19 90 45°

5 0,19 60 90°

6 0,19 30 0°

7 0,29 90 90°

8 0,29 60 0°

9 0,29 30 45°
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fabricated part will have some defects evidently, which involve errors in measurement, as well as 
errors related to the measuring device, the operator, etc. Secondly, the repetition of this operation with 
other parts and then calculating the average will increase the error margin which will lead to large 
deviation. The suggestion, therefore, in this paper is to fabricate one part for each set of parameters, 
and then perform several measures for each dimension.

The measurements of the different dimensions of the fabricated parts (Figure 2) were taken using 
a digital caliper with an accuracy of 0.001 mm. Then the percentage change in length was calculated 
for each dimension using Equation 1:

%∆L
L L

L
CAD

CAD

=
−

×100 	 (1)

where L is the measured value of length, LCAD is the nominal length, and %∆L is the percentage 
change in L.

The percentage change values were calculated for each type of the dimensional accuracy 
investigated: z-axis, external & internal dimensions (XY plan), and diameters. These values will 
constitute the input of the Grey Relational Analysis (GRA) method as explained below.

Grey Relational Analysis (GRA)
The GRA, as explained by Pan et al. (Pan et al., 2007), is a method that aims to study systems with 
insufficient, incomplete, or uncertain information. This is a statistical method and an efficient tool 
for multi-optimization problems and experimental results analysis. Its aim is the conversion of multiple 
optimized responses into a single one, giving at the same time a ranking of the performed experimental 
sets, to find out the optimal combination of the controllable factors. The first step in performing GRA 
is the data pre-processing, which consists of a conversion of all the obtained measurements to a set 
of normalized values in a range of 0–1, called Grey relational coefficient, using one of the following 
equations (see Equation 2) according to the type of performance characteristic. x k

i

0( ) ( )  is the measured 
value of the kth characteristic for the ith experiment and for i n N= ∈1 2, ,..,  and k m N= ∈1 2, ,.., , 
the measurements taken from all the experiments could be represented by the following sequences:

Figure 4. The specimens fabricated in ULTRAT (in white) and some of the specimens fabricated in ABS (in yellow)
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In case where minimizing a performance characteristic is required (as we aim in this paper for 
dimensional deviation), then the lower-the better equation is used:

x
i
* 	 (3)

Following the calculation of the Grey relational coefficient, a weighting adjustment is required 
which is defined by Equation 4:

x k x k w w
iwi i i

i

n

i
* * ,( ) = ( )× =

=
∑   

1

1 	 (4)

The weights could be assigned equally in case there is no information on the contribution of each 
performance characteristic to the final response. However, a subjective factor of decision maker will 
be then introduced. In this context, the entropy weighting has the advantage of calculating the relative 
weighting factors in a well-defined, objective way. The entropy weighting method computations were 
fulfilled based on procedure outlined by (Chung Wang et al., 2007).

The last step in the Grey procedure is the calculation of the Grey relational grade (GRG) related 
to each trial as given by Equation 5:

Γ
∆

∆ ∆
Γ

∆
i

i

i
=

+

+
< ≤min max

*
max

,
0

0 1     	 (5)

where:

∆ ∆ ∆
0

1
0 0 0

1
i

i

n

i i iwin
k k x k x k* * *,= ( ) ( ) = ( )− ( )

=
∑   	

∆
max

* *max= ( )− ( )x k x k
iwi0

	

∆
min

* *min= ( )− ( )x k x k
iwi0

	

Here, x k
0
* ( )  and x k

iwi
* ( )  are respectively, the reference sequence and the specific relative 

(comparability) sequence. Based on the value of the GRG, Γ
i
, the sequence with the greatest 

effect, is noted. The higher value of the Γ
i
 stands for the trial fulfilled with the optimal 

combination of parameters.
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Results of GRA
The GRA approach was applied in this paper to determine the optimal combination of the levels of 
the factors that allowed the reduction of the dimensional deviation of ABS and ULTRAT parts. Since 
the aim was to minimize the dimensional deviation, i.e., the percentage change, %∆L , in each 
dimension of the specimens, the lower-the-better was the type of the performance characteristic used. 
9 trials were run to identify the three input controllable factors, and 9 quality characteristics were 
optimized, viz. the percentage in change in height (z), in diameters (D1 and D2), in external dimensions 
(L and l), and in internal dimensions (L1, l1, L2, and l2). This multi-optimization method transformed 
the nine quality characteristics into a single response, i.e., the GRG. The highest value of the GRG 
denoted the optimal combination of parameters. Table 3 shows the calculation of the GRG for ABS 
and ULTRAT parts.

According to the GRG results, the fourth and the first experiment have the highest values of 
GRG for ULTRAT and ABS parts, respectively, which denote the optimal combination of parameter 
levels. Therefore, the combination of fabrication parameters leading to minimizing the dimensional 
deviation in all parts’ dimensions stands for ‘A2B1C2 for ULTRAT parts’, i.e., a layer thickness of 
0.19 mm, an infill density of 90%, and an orientation of 45°. For the ABS parts, ‘A1B1C1’ constitute 
the optimal combination, i.e., the layer thickness is 0.09 mm, the density infill of 90%, and the part 
orientation of 0°.

After calculating the GRG values for each material, the GRG for each factor level could be 
calculated from Table 3 as the mean of the GRG values related to each parameter level. As an example, 
the GRG for the parameter (A) at the first level for ULTRAT parts is shown below:

GRG (A1) = (0.9710 + 0.96910 + 0.97060) / 3	

For each parameter, the difference between the minimum and the maximum value of the 
averages of GRG was calculated. This difference symbolizes the effect of each controllable factor 
on the response. The higher is this difference, the higher is the effect of the parameter on the quality 
characteristic.

To better visualize these values and the interrelations between them, the average of the GRG 
values related to each parameter level, were represented in Figure 5. This could assist in figuring out 
the levels giving rise to the highest mean. These levels comprise of the optimal combination. From 
Figure 5, the first level of A, the first level for B, and the second level for C, are the levels with the 

Table 3. The Grey Relational Grade (GRG) calculated for ABS and ULTRAT Parts

N° of trial
ABS parts ULTRAT parts

GRG Order GRG Order

1 0,98206 1 0,97107 2

2 0,97768 2 0,96910 5

3 0,97294 4 0,97060 3

4 0,96931 5 0,97505 1

5 0,96381 6 0,96877 6

6 0,95665 9 0,95827 9

7 0,96684 8 0,96280 7

8 0,95752 7 0,95907 8

9 0,97460 3 0,96985 4



International Journal of Manufacturing, Materials, and Mechanical Engineering
Volume 12 • Issue 1

10

highest mean for both materials, ABS and ULTRAT. Thus, a layer thickness of 0.09 mm, a filling 
density of 90%, and a part orientation of 45°, constitute the optimal combination of controllable 
factors for minimizing the dimensional deviation in all of the part’s dimensions.

Furthermore, Figure 6 depicts the effect contribution of layer thickness, filling density, and 
part orientation on multiple performance characteristics for ABS and ULTRAT. The highest effect 
contribution for the ABS parts stands for the layer thickness with a difference value of 0.01430. At the 
second place is the part orientation with a value of 0.0084, while the density of the infill has the least 
effect on the multi-quality characteristic, with a 0.0063 of the difference of the GRG means. For ULTRAT 
parts, the highest value of the difference between the means was recorded for the part orientation with 
a value of 0.0085, the layer thickness came at the second place with a value of 0.0063, and the lowest 
effect contribution was registered for the filling density with a difference value of 0.0039.

Figure 5. Average grey relational grade (GRG) for each factor level – (a) ABS parts, (b) ULTRAT parts

Figure 6. Effect contribution of controllable factors on the performance characteristics
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These results highlight the importance of selecting materials in the design phase. Indeed, the 
material selection could be influenced by the selection of the manufacturing parameters, which 
implies the need to choose carefully how to set up the manufacturing parameters and to take them 
into account when choosing the appropriate material for a specific application.

VERIFICATION AND DISCUSSION

Analysis of Variance (ANOVA)
The purpose of ANOVA is to determine the manufacturing parameters that significantly affect the 
performance characteristic. In this section, the GRG values (Table 3) are considered as the performance 
characteristic on which the ANOVA is applied. The aim is then to investigate which controllable 
factors affect the multiple-performance characteristics, i.e., which factors are more likely to reduce 
the dimensional deviation for all the investigated dimensions. To run the ANOVA calculations, the 
procedure described by (Condra, 1995) is used. The results obtained are shown in Table 4 for data 
of GRG related to the ABS parts, and in Table 5 for those related to the ULTRAT parts.

As it could be seen from Tables 4 and 5, the infill density (B) has the lowest percentage 
contribution (10.81% and 10.46% for ABS and ULTRAT, respectively) which means that it has 
low effect on the GRG for both materials. For ABS parts, the layer thickness (A) has the highest 
percentage contribution (55.90%) which indicates that it has the most effect on the deviation of part 
dimensions compared to the part orientation (C) that has a contribution percentage of 18.64%. This 
is in contrary to the ULTRAT parts, where the layer thickness has a low percentage contribution 
22.76%, while the part orientation (C) has the highest value (41.04%), implying that it is more likely 
to affect the dimensional deviation of parts. These results are in good concordance with those found 
through GRA method and confirm the inference stated regarding the influence of choice of values 
of parameters on the material selection.

Table 4. ANOVA applied for GRG of ABS parts

Parameters DF Sum of squares 
(SS)

Mean squares 
(MS) F-value Percentage 

contribution

A 2 0,000340 0,000170 3,81 55,90%

B 2 0,000066 0,000033 0,74 10,81%

C 2 0,000113 0,000057 1,27 18,64%

Error 2 0,000089 0,000045 - 14,65%

Total 8 0,000609 0,000305 - 100,00%

Table 5. ANOVA applied for GRG of ULTRAT parts

Parameters DF Sum of squares 
(SS)

Mean squares 
(MS) F-value Percentage 

contribution

A 2 0,000061 0,000030 0,88 22,76%

B 2 0,000028 0,000014 0,41 10,46%

C 2 0,000109 0,000055 1,59 41,04%

Error 2 0,000069 0,000034 - 25,75%

Total 8 0,000266 0,000133 - 100,00%
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Integration of Taguchi Method With the GRA
The application of GRA method facilitated through a multi-objective optimization, was used to find 
the optimal combination allowing the reduction of the dimensional deviation in all dimensions of a 
part. From the obtained values of the GRG, the experiment with the highest GRG value is nominated 
as the optimal combination of the levels of parameters. It has been found that ‘A1B1C2’ is the optimal 
combination for the ABS and the ULTRAT processed parts.

Herein, Taguchi method is integrated with the analysis to increase the scope of the application of 
GRA method. The key tool in Taguchi’s algorithm is the calculation of the S/N ratio, which reveals 
the fluctuation of the tested quality characteristic. The highest S/N ratio value corresponds to the 
best quality characteristic index. In the analysis in this paper, the calculated GRG for both materials, 
ABS and ULTRAT, was the quality characteristic on which the S/N ratio calculation was applied. 
There are three types of S/N ratio calculations according to the type of the performance characteristic 
to be inspected; the-higher-the-better, the-lower-the-better, and the-nominal-the-better. For the case 
registered in this paper, the aim is to find the highest GRG value. So, the S/N ratio values are calculated 
as shown in Equation 6 and as suggested by (Markopoulos et al., 2016):

η = −










=
∑10
1 1

1
2

log
n yi

n

i

	 (6)

where y
i
 represents the measured data, which is the GRG values for both materials, and n is the 

number of the performed trials. 
Table 6 shows the calculated S/N ratio values for GRG for ABS and ULTRAT parts. Figure 7 

shows the main effects plot for the S/N ratio calculated for the GRG values for all the levels of the 
parameters for ABS and ULTRAT parts. The optimal level of each parameter stands for the highest 
value of the mean of S/N ratio values calculated for each level of the controllable factors. Thus, 
A1B1C2 constitutes the optimal combination of parameters’ levels, i.e., 0.09 mm for layer thickness 
(A), 90% for the filling density (B), and 45° for part orientation (C). This result matches the results 
revealed by the ANOVA analysis as well as the calculations of effect contribution of each factor level 
determined from the GRG values which prove that the results generated from Taguchi method are in 
a good agreement with the other methods used.

Table 6. S/N ratio calculation performed on the GRG values of ABS and ULTRAT parts

Trials S/N ratio for ABS parts S/N ratio for ULTRAT parts

1 -0,157240 -0,254989

2 -0,196065 -0,272628

3 -0,238279 -0,259194

4 -0,270746 -0,219462

5 -0,320171 -0,275586

6 -0,384938 -0,370242

7 -0,292908 -0,329278

8 -0,377043 -0,362994

9 -0,223472 -0,265909
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Verification Test
The multi-objective analysis GRA defined the optimal combination as 0.09 mm for layer thickness, 
90% for the filling density, and 45° for part orientation, allowing minimizing the deviation for 
all dimensions of the part for both materials; ABS and ULTRAT. The ANOVA analysis and the 
Taguchi method found the same combination of parameters and confirmed the results given by GRA. 
However, to be able to validate the attained optimal combination, a confirmation test is necessary. 
This was accomplished by means of manufacturing two parts, each with each material (a part with 
ABS and another with the ULTRAT) using the same fixed factors as set before (Table 1) as well as 
the controllable factors set at the optimal levels (A1B1C2). Once the fabrication was finished, the 
measurements of the different dimensions of the parts were taken. The aim was to compare these 
results with the predicted ones for optimal levels. The predicted values (noted P) for each response 
and characterized as the quality characteristic, were calculated as follows:

Figure 7. Main effects plot for S/N ratio applied for GRG values. (a) ABS parts, (b) ULTRAT parts.
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P = mean of response for A1 + mean of response for B1 + mean of response for C2 – 2	   
x Mean of response.	

Figures 8 and 9 shows the deviation values of the manufactured parts using the optimal 
combination and the predicted values from the previous nine experiments.

It is evident from Figure 8 that for the deviation values of the ABS parts, some values of 
dimensions taken from the confirmation test are higher than those predicted, which reflect an 
improvement in minimizing the deviation using the optimal combination. This is true for the two 
circles, D1 and D2, and for the dimensions measured along the width, i.e., l, l1, and l2. The other 
values differ by 0.073 mm for the measurement along the z-axis, by 0.015 mm for L1, by 0.025 mm 
for L2, and by 0.171 mm for the outer dimension, L. For the ULTRAT part (Figure 9), all the values 
from the confirmation test are higher than those predicted. It follows from the foregoing comparison 
that there is a notable improvement in values of dimensions recorded from parts fabricated using the 
optimal combination of parameters A1B1C2, especially the part manufactured using the ULTRAT. 
This further confirms the method used and permits to declare that a layer thickness of 0.09 mm, an 
infill density of 90% and a part orientation of 45° is the optimal combination of parameters leading 
to the minimum deviation along all the part’s dimensions. Our methodology, therefore is validated 
and confirmed.

The findings of this study also highlight the importance of selecting materials in the design 
phase and the preparation of parts for fabrication. For applications with polymers, ABS and ULTRAT 
can be considered as a suitable option and are interchangeable. However, the selection can further 
be influenced by the selected manufacturing parameters and their levels, which implies the need 
to consider the manufacturing parameters as well as their values when choosing the appropriate 
material for a specific application. This is truly justified when other specifications are considered 
such as mechanical properties, when selecting the appropriate material is crucial. Furthermore, the 
multi-optimization procedure followed in this paper can be extended to optimize other specifications 
rather than dimensional accuracy, or several materials to choose from, which will help to define more 

Figure 8. Predicted deviation values (without optimal combination) and confirmation test deviation values for all dimensions – 
ABS parts
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accurately the optimal combination of parameters and their levels to guarantee the best material 
choice, the minimal dimensional deviation, the prescribed mechanical properties, and the desired 
surface roughness.

Moreover, for every application, although the appropriate material and the levels of the 
manufacturing parameters are well-chosen, the deviation will take place certainly. To predict and 
minimize it, a mathematical modeling of the occurred deviation can be done in order to determine 
the compensation values with which the CAD file would be modified before the manufacturing of 
the part. This was the core concept of Insaf Bahnini et al. (2020) wherein the development of this 
model and its application were outlined and verified.

CONCLUSION

In this paper, the dimensional deviation of parts manufactured with ABS and ULTRAT, was 
investigated. New part geometry was proposed to assess three types of dimensional deviations: along 
z-axis, in external and internal dimensions, and through diameters. According to the recommendations 
of experts, the controllable factors were chosen along with their levels. In order to establish the 
experimental plan, the orthogonal arrays of Taguchi were used. A multi-optimization using the 
GRA method combined with the S/N ratio and the ANOVA methods were performed to identify the 
optimal set of parameters and to depict the most/least influencing factors on the deviation. The optimal 
combination of parameters was: a layer thickness of 0.09 mm, a filling density of 90%, and a part 
orientation of 45° for both ABS and ULTRAT processed parts. Carrying a verification test remains 
important to confirm the findings and hence, a test was performed using the parameters’ optimal set 
found previously. An improvement was evident in minimizing the deviation between the nominal 
and the manufactured parts’ dimensions, which subsequently confirmed the proposed methodology 
and validation of the carried experiments.

Figure 9. Predicted deviation values (without optimal combination) and confirmation test deviation values for all dimensions – 
ABS ULTRAT parts
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