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ABSTRACT

With the rise of cloud computing, big data, and internet of things technology, intelligent manufacturing 
is leading the transformation of manufacturing mode and industrial upgrading of the manufacturing 
industry, becoming the commanding point of a new round of global manufacturing competition. 
Based on the literature review of intelligent manufacturing and intelligent supply chain, a total factor 
production cost model for intelligent manufacturing and its formal expression are proposed. Based on 
the analysis of the model, 12 first-level indicators and 29 second-level indicators of production line, 
workshop/factory, enterprise, and enterprise collaboration are proposed to evaluate the intelligent 
manufacturing capability of supply chain. This article also further studies the layout superiority and 
spatial agglomeration characteristics of the intelligent manufacturing supply chain, providing useful 
reference and support for enterprises and policymakers in decision making.

Keywords
Big Data Analysis, Intelligent Manufacturing, Layout Superiority, Supply Chain

Introduction

Smart Manufacturing Leadership Coalition (SMLC) believes that intelligent manufacturing is a 
kind of manufacturing characterized by enhanced application of advanced intelligent systems, rapid 
manufacturing of new products, dynamic response to product demand and real-time optimization of 
industrial production and supply chain network (Coalition, 2011). Its core technologies are networked 
sensors, data interoperability, multi-scale dynamic modeling and simulation, intelligent automation 
and scalable multi-level network security. Although the German Industry 4.0 strategy does not 
explicitly put forward the concept of intelligent manufacturing, it also proposes to integrate enterprise 
machines, storage systems and production facilities into the cyber physical systems (CPS) to realize 
the automatic exchange of information, trigger actions and control independently (Reischauer, 2018). 
Based on the above concepts, we believe that intelligent manufacturing is a new production mode with 
self-perception, self-learning, self-decision, self-execution, self-adaptation and other functions. It is 
based on the deep integration of the new generation of information and communication technology 
and advanced manufacturing technology, running through the design, production, management, 
service and other manufacturing activities of each link.
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According to the functional hierarchy model of manufacturing enterprises proposed by IEC62264 
standard (Chen, 2005), combined with field investigation and expert interviews, this paper proposes 
the intelligent manufacturing system structure, including the following four levels: production line, 
workshop/factory, enterprise and enterprise collaboration, as shown in Figure 1.

(1) 	 Production line layer: production site equipment and control system, mainly composed of 
operational technology (OT) network1, sensors, actuators, industrial robots, numerically-controlled 
machine tools, industrial control system, personnel/tools, etc.

(2) 	 Workshop/factory layer: manufacturing execution system and workshop logistics storage system, 
mainly including OT/IT network, data acquisition and analysis system, manufacturing execution 
system (MES), asset management system (AMS), logistics management system (LMS), warehouse 
management system (WMS), logistics and storage equipment, etc.

(3) 	 Enterprise layer: product life cycle management and enterprise management and control system, 
including product lifecycle management (PLM), IT network, data center, customer relationship 
management (CRM), computer aided technology (CAX), enterprise resource planning (ERP), 
supply chain management (SCM), business intelligence (BI), etc.

(4) 	 Enterprise collaboration layer: a manufacturing network covering the value chain based on 
network and cloud applications, mainly including manufacturing resource collaboration platform, 
collaborative design, collaborative manufacturing, supply chain collaboration, resource sharing, 
information sharing, application services, etc.

The main operation mode of traditional supply chain is to extend to the upstream and downstream 
of the supply chain according to the needs of core enterprises. Its basic economic activities are 

Figure 1. Intelligent manufacturing system structure
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dominated by core enterprises, while nodal enterprises are always in a following position.Smart 
supply chain is an integrated system that integrates Internet of Things technology and modern supply 
chain management theory. It is built within and between enterprises and has the characteristics of 
networking, visualization and intelligence. The core of smart supply chain is to build an intelligent 
information network technology platform to make information flow, logistics and capital flow barrier-
free among supply chain members with high efficiency and quality, reduce the impact of information 
asymmetry on supply chain operation and ensure the improvement of the overall efficiency of the 
supply chain. Compared with the traditional supply chain, the smart supply chain has the following 
obvious characteristics: First, the application of intelligent technology is wider and the permeability 
is stronger. Enterprise managers in the smart supply chain can make optimal decisions based on the 
specific situation of the enterprise through the Internet of Things, the Internet, artificial intelligence 
and other new-generation information technologies, so as to help enterprises improve business 
processes and achieve management innovation matching the new technological change. Second, the 
degree of information sharing is higher. Intelligent information network technology can strengthen 
the information communication between upstream and downstream members of supply chain by 
integrating supply chain information and standardizing data standards, thus providing guarantee for 
improving the accuracy and sharing degree of supply chain information resources. Third, the visual 
features are more obvious. As technology constantly updated, wisdom is no longer limited to supply 
chain performance in the form of digital data, but can use the image or video transmission demand 
more image information, even if the end there is a small change in customer demand, can accurate and 
timely passed to the upstream enterprise, try to avoid the generation of the “bullwhip effect”. Fourth, 
stronger synergy. Under the sharing mechanism with highly integrated information, each enterprise 
can accurately grasp the upstream and downstream information through the intelligent information 
network platform at any time. Once information changes, enterprise managers can timely deal with 
changes in demand to arrange business, so as to avoid blind procurement, overstocked inventory and 
blind production. The response speed of nodal enterprises is improved, and the coordination and 
cooperation mechanism of the whole supply chain operates more smoothly.

It can be seen that compared with traditional supply chain, smart supply chain has higher technical 
requirements on enterprises, higher degree of information integration and overall coordination, stronger 
malleability and more obvious visual features, which will eventually be translated into the performance 
of smart supply chain. In order to further explore the intelligent manufacturing capability of supply 
chain, the structure of this paper is arranged as follows: Section 2 is the literature review, sorting out 
and summarizing the literature related to intelligent manufacturing capability and intelligent supply 
chain. Section 3 constructs the total factor production cost model for intelligent manufacturing, which 
lays a theoretical foundation for the comprehensive evaluation of intelligent manufacturing capability 
of supply chain. Section 4 is the specific process of comprehensive evaluation.

Literature Review
The concept of intelligent manufacturing emerged in the 1980s, and its emergence and development 
are closely related to the four industrial revolutions and the development of related technologies 
and industries. First, the first and second industrial revolutions brought the manufacturing industry 
gradually into the era of mechanization and electrification respectively. With the invention and 
application of atomic energy and computer technology, the third industrial revolution appeared. At 
the same time, terms representing new manufacturing paradigms such as “Flexible Manufacturing 
Cells (FMC)”2, “Flexible Manufacturing Systems (FMS)”3, “Computer Integrated Manufacturing 
(CIM)”4, “Intelligent Manufacturing (IM)” and “Intelligent Manufacturing System (IMS)” gradually 
appeared (Reischauer, 2018). After more than 40 years of development, intelligent manufacturing has 
gradually evolved from concept to industrialization, and has also been integrated into the emerging 
fourth industrial revolution.
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There are many descriptions or definitions of intelligent manufacturing, and many scholars 
have different opinions and focuses. Lu and Ju (2017) believe that intelligent manufacturing mainly 
integrates the new generation of information and communication technology into manufacturing 
systems to facilitate real-time response to the changing needs and conditions of factories, customers and 
supply chain networks. Li et al. (2017) believe that intelligent manufacturing is a new manufacturing 
paradigm and technological means. By adopting and integrating new-generation information and 
communication technology, intelligent science and technology, large-scale manufacturing technology, 
system engineering technology and related product technology, the integration and optimization of 
various manufacturing system elements can be realized. Ying, Pee and Jia (2018) believe that intelligent 
manufacturing is a kind of manufacturing system that applies Internet of Things technology and 
related information technology to achieve horizontal and vertical integration, enhance productivity 
and meet personalized needs. The Smart Manufacturing Leadership Coalition (SMLC) defines 
intelligent manufacturing as “the manufacturing enterprise can have the right data in the right form, 
the right staff with the right knowledge, and the right technology and operation at any time and place 
needed” (SMLC, 2011). Although the German Industry 4.0 report does not explicitly define intelligent 
manufacturing, it points out that the widely used terms such as “intelligent production”, “intelligent 
manufacturing” and “intelligent factory” specifically refer to digital and networked manufacturing 
systems (Kagermann, Wahlster & Helbig, 2013).

From material selection to factory production resource allocation, from user demand prediction to 
production process simulation, intelligent manufacturing capability is reflected in the whole product 
life cycle and production process. Gartner, a global authoritative IT research company, announced the 
Top Strategic Technology Trends for 2021, including intelligent composable business, AI engineering, 
hyperautomation etc (Panetta, 2020). These latest scientific and technological trends are the specific 
technical means of improving the capability of intelligent manufacturing. Therefore, when we discuss 
intelligent manufacturing capability, we must start from the perspective of intelligent supply chain 
(or smart supply chain). Chung, Kim and Lee (2018) believes that smart supply chain is a network 
that provides customized products according to customer needs. Oh & Jeong (2019) Pointed out 
that smart supply chain will connect all components in the supply chain by communication network 
and collaborate with customized products and services through information and communication 
technology, which can then use production technology to perform a variety of functions.

In terms of supply chain performance evaluation system, Gunasekaran, Patel and Tirtiroglu 
(2001) have established an evaluation framework to measure supply chain performance at different 
levels including strategic, tactical and operational, providing a list of key indicators. In addition to 
the common indicators such as cost and quality, Chan (2003) also defined five other performance 
evaluation indicators, including resource utilization, flexibility, visualization, trust and innovation. 
Based on supply and demand elasticity of supply chain, Hull (2005) quantitatively answered the 
problems often faced by supply chain with four evaluation indicators: capacity utilization, resource 
allocation, impact of cost increase on quantity, and response capacity of demand transfer. Bolch, 
Greiner, De and Trivedi (2006) considered the complexity of the composition of the supply chain 
performance, so they are conducting an internal evaluation in enterprise production efficiency, product 
quality, total costs and assets management, an external evaluation both in benchmark evaluation and 
customer response, a comprehensive evaluation in supply chain cost, cash turnover ratio, supply 
chain response, time and safety inventory, etc. Joshi, Banwet and Shankar (2011) proposed seven key 
performance indicators for cold chain supply chain: cost, quality and safety, service level, traceability, 
return on assets, innovation and customer relationship. Based on a comprehensive analysis of 66 
literatures, Kamble and Gunasekaran (2020) divided big data-driven supply chain performance 
indicators into two categories: big data analysis capability and supply chain process performance. 
Narimissa et al. (2020) established a sustainable supply chain performance evaluation system from 
three dimensions of economy, environment and society to evaluate different supply chain links.



Journal of Global Information Management
Volume 30 • Issue 7

5

As for the indicator system, on the one hand, although many supply chain enterprises have 
realized the importance of non-financial indicators in the evaluation of supply chain performance, 
they cannot balance the financial indicators and non-financial indicators in the evaluation framework. 
On the other hand, the performance evaluation of supply chain must make clear the objectives and 
corresponding evaluation standards of the strategic layer, tactical layer and operation layer of the 
supply chain, and on this basis, establish a set of clear, scientific and perfect indicator system. At the 
same time, the operation of the supply chain system involves not only the cooperation between the 
enterprises within the supply chain, but also the cooperation between the enterprises and the external 
environment. The complexity of the operation of the system makes the information generated by the 
operation of the supply chain have the characteristics of large quantity, fuzzy and difficult to quantify, 
which further increases the difficulty of information processing. Therefore, scientific and effective 
supply chain performance evaluation method is urgently needed, which has spawned a large number 
of scholars in this field of continuous exploration.

Bai and Sarkis (2012) used the Neighborhood Rough set approach to identify and determine the 
performance indicators related to the desired results of the supply chain, and established the SCOR 
model to meet internal performance expectations and results. Zheng and Li (2010) evaluated the 
performance of dynamic supply chain by using BP neural network, which is suitable for nonlinear and 
non-normal conditions, in view of the fuzz of each performance index and the complex relationship 
among the indicators. Lima-Junior and Carpinetti (2020) proposed a new method based on SCOR 
index and Adaptive Neuro-Fuzzy Interference System (ANFIS) to support supply chain performance 
evaluation in order to overcome the limitation of processing imprecise data based on artificial neural 
network system.

To sum up, there are many methods and models for supply chain performance evaluation, including 
rough set, correlation analysis, DEMATEL and Delphi method for index screening, and DEA, BP 
neural network, grey correlation analysis, fuzzy comprehensive evaluation and other methods for 
supply chain performance evaluation model construction. Some of the methods and models have 
been widely applied to specific supply chain performance evaluation practices, enriching the theory 
of supply chain performance, and providing references for the practical application and development 
of supply chain in various industries. However, there are many methods and models with strong 
theoretical and difficult practical operation problems. In addition, there are many researches on the 
performance evaluation of specific industry supply chain, green and low-carbon supply chain and 
lean supply chain, but there are few researches on the performance of smart supply chain under 
intelligent manufacturing mode.

Total Factor Production Cost Model for Intelligent Manufacturing
The manufacturing capacity of an enterprise refers to the ability of an enterprise to produce products 
or services that meet the market needs with high quality and low cost. The accuracy of production 
cost accounting directly affects the correctness of enterprise management and operation decisions. 
Traditional production cost elements are divided into direct cost and indirect cost. Direct cost consists 
of raw materials, labor and manufacturing overhead. Indirect production costs refer to the costs 
incurred for the organization of production and operation management, such as depreciation of public 
engineering equipment, wages of auxiliary workers and workshop managers, and office expenses, 
which are not directly caused by the production process of the product, but are related to the overall 
conditions of the production process.

In production practice, due to the complexity of process and organization, it is difficult to carry 
out accurate production cost modeling, so the production cost is usually measured by similar product 
analogy method and experience allocation method. With the improvement of production automation 
equipment and production management level, there is a trend of gradual refinement in accounting 
cycle and accounting object. In terms of accounting objects, according to the different characteristics 
of production organization process, it can be divided into product varieties, product batch orders 
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and production steps. In terms of the accounting cycle, it can be divided into monthly accounting, 
production cycle accounting and so on according to the different management needs of the plant. For 
example, Corona, Cerrajero, López and San (2016) used the Full environmental Life Cycle Costing 
(FeLCC) method5 to optimize the energy use of a plant in Spain.

With the development of enterprises from traditional industrialization and automation to 
intelligent manufacturing, the evaluation of manufacturing capacity of enterprises needs to combine 
the characteristics of intelligent manufacturing, such as information perception, optimal decision 
and executive control. Information perception refers to the efficient collection, storage and analysis 
of a large amount of data and information, to achieve automatic perception and in-depth analysis, 
and to automatically transmit a large amount of data and information to the optimal decision system. 
Optimization decision means that by learning and utilizing a large amount of knowledge, information in 
each stage of the product life cycle can be automatically mined, and the information can be calculated, 
analyzed and reasonably predicted, so as to form optimal decision plans and instructions for the 
automatic system. Executive control refers to that the executive system automatically realizes accurate 
control according to the decision instruction from the superior, and ensures the stable operation and 
dynamic adjustment of the system.

Further, the production mode of intelligent manufacturing has also undergone important changes. 
According to the domain model of smart factory composition proposed by Reference Architecture 
Model Industrie 4.0 (RAMI 4.0) of Germany’s Electrical Industry (ZVEI) (Flatt et al., 2016), smart 
factory resources can be divided into physical resources and virtual resources. Physical resources 
include human resources, machines, materials, etc., while virtual resources mainly exist in the form 
of digital resources in smart factories. Digital resources generally refer to the total information 
resources published, accessed and utilized in digital form formed by the integration of computer 
technology, communication technology and multimedia technology. In factories, it mainly includes 
intelligent control system, software, knowledge and information used in production and management 
activities. According to the RAMI 4.0 standard model, physical resources and virtual resources show 
different spatial scale distribution in the horizontal dimension and vertical dimension of the model, 
and have the characteristics of CPS physical information fusion and coordination in intelligent 
manufacturing. Among them, digital resources and intelligent talents, as more and more important 
factors of production, will become more core factors of intelligent manufacturing than traditional 
factors of production.

Traditional cost allocation method can not achieve accurate cost positioning, can not achieve 
visualization for batches or individual products or the correct expression of enterprise manufacturing 
capacity. Although action-based costing method has some positioning accounting for specific products, 
it still lacks effective cost accounting methods for some new production factors, such as digital 
resources, etc. The evaluation results based on the traditional cost model must be one-sided, or can not 
guarantee the correct degree of the evaluation results, and can not meet the needs of the evaluation of 
enterprise intelligent manufacturing capacity under the new production mode. Therefore, it is urgent 
to establish the total factor production cost model which adapts to the intelligent manufacturing 
production mode to make up the deficiency of the traditional method.

Model Demand Analysis
Since the purpose of this paper is to evaluate the intelligent manufacturing capability, the demand 
analysis should be considered from two aspects of the comprehensiveness and multilevel of the cost 
model.

First, it is necessary to identify the factors to be considered in the cost model. As can be seen from 
Figure 3.1, resources of smart factories can be divided into physical resources and virtual resources. 
Physical resources include human resources, machines, materials, etc., while virtual resources mainly 
exist in the form of digital resources in smart factories. Digital resources generally refer to the total 
information resources published, accessed and utilized in digital form formed by the integration 
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of computer technology, communication technology and multimedia technology. In factories, it 
mainly includes intelligent control system, software, knowledge and information for production and 
management activities. Among them, digital resources and intelligent talents, as more and more 
important factors of production, will become more core factors of intelligent manufacturing than 
traditional factors of production.Therefore, the total elements of the cost model used in the evaluation 
include production and processing equipment, logistics, inventory, utilities, digital resources, and 
human resources.

In addition, production costs need to be extended at multiple levels. With the increasing 
complexity of intelligent manufacturing production system, different levels of capacity assessment 
have different demands on the resolution of production cost model, and information integration and 
overall optimization have become the focus of intelligent modeling. The traditional single-level cost 
accounting modeling method can no longer meet the new cost management requirements due to the 
difficulties such as multi-entity correlation process and multi-spatio-temporal resolution requirements. 
Therefore, it is urgent to build a modeling method that includes multiple spatio-temporal resolutions 
and can calculate production cost at different management levels. According to the prototype of 
ERP-MES-PCS level of ISA95 and IEC62264 standard (Kletti, 2007) and Manufacturing Operations 
Management (MOM) system (Gifford, 2007), combined with the intelligent manufacturing resource 

Figure 2. Component domain model of smart factory



Journal of Global Information Management
Volume 30 • Issue 7

8

domain composition model, the basic resources should show hierarchical mapping relationship 
according to spatial scale, production process and application requirements.

Production Cost Model
The formal expression of total factor production cost model for intelligent manufacturing is as follows:
M COST ENTITY LINK COST VALUE= ( )_ , , _

where M refers to the cost model of any intelligent manufacturing production process. COST_
ENTITY refers to the cost node. The cost node refers to the cost accounting unit defined for the 
convenience of cost management. LINK refers to the interface and connection between nodes, that is, 
the cost accounting relationship between different cost nodes in the production process. COST_VALUE 
refers to the total cost of the production process. The detailed expression and meaning of each part 
of the model are described below.

The model of cost node is expressed as:
COST ENTITY Entity ID Entity Type Cost Elem

k
_ _ , _ , _= { }( )

In the formula, Entity_ID represents the serial number of the cost node, and Entity_Type represents 
the type of the node. The node types include:

(1) 	 Node Machine_EntityPCS of production and processing equipment refers to the machinery and 
equipment directly involved in production and processing. Node attributes include equipment 
process parameters, processing plan, processing capacity, etc.

(2) 	 Logistics node Logis_EntityPCS refers to mobile logistics facilities for products, materials and 
semi-finished products, such as pipelines and transport vehicles.Node attributes include transport 
carrier type, transport capacity, speed, etc.

(3) 	 Inventory node Stock_EntityPCS, refers to material and product storage inventory node, node 
attributes include inventory capacity, warehouse type, etc.

(4) 	 Public engineering node Utili_EntityPCS refers to the public facilities such as heat supply, water 
supply, power supply, gas supply and fire protection that support production in the factory. Node 
attributes include the type of energy supply, capacity, power and price.

(5) 	 Digital resource node Digital_EntityPCS, including the automatic control system of traditional 
production equipment, as well as the newly added intelligent facilities and systems, network 
systems, software, knowledge, models, data and information under the intelligent manufacturing 
production mode. Node attributes include intelligence level, standard, function and other 
parameters.

(6) 	 Human resources node Pers_EntityPCS: On the basis of the traditional labor resources that mainly 
focus on operation workers, new human resources of intelligent positions are added. Node 
attributes include intelligence level, qualification, ability and so on.
{Cost_Elemk} refers to the itemized cost accounting elements and cost calculation values of 

each node. Cost components of processing equipment, logistics, inventory, utilities, digital 
resources include depreciation, materials, energy consumption, maintenance, operations, 
and others. The cost components of human resources are qualification, training, salary, 
benefits, health and others.

According to the cost node attributes and cost element items, the accounting matrix of each cost 
node can be formed, and the cost value of this node can be calculated:

Cost Elem C
k

j

m

kj
_ =

=
∑
1
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In the formula, Cost_Elemk represents the cost value of the kth node, k K N∈ = { }1 2, ,..., , K 
represents the set of cost nodes, including N kinds of cost nodes, Ckj represents the cost value of the 
jth element of the kth node, and m represents the number of elements.

At present, because the cost accounting model of cloud computing platform is relatively mature, 
digital resource accounting takes this as a reference and divides digital resources into physical 
resources and virtual resources. Among them, intelligent equipment, network, memory and other 
physical resources can be cost accounting according to the average life depreciation method, rapid 
depreciation method and so on. Intelligent algorithms and cloud services are virtual resources that 
can be calculated based on the quantity and time provided by the resources.

LINK refers to the connection relationship between cost nodes, specifically the interface and 
topology direction between nodes. Cost nodes form the path of cost accounting through connection 
relationship, that is, define the direction of value stream. The physical connection mainly refers to 
the connection relationship between the processing equipment before and after the process. Virtual 
connection mainly refers to the communication between control equipment, processing equipment 
and personnel.
LINK Link Typt Entity For Entity Bac= ( )_ , _ , _

In the formula, Link_Type represents the type of connection relation, which can be divided into 
physical connection and information connection. Entity_For represents the forward node; Entity_Bac 
indicates the backward node.

The Hierarchical Extension of the Cost Model
On the basis of the total factor production cost model, the hierarchical characteristics are added to 
obtain the formal expression of the multi-level total factor production cost model as follows:
M COST ENTITY LINK COST VALUE
Ti
= ( )_ , , _

In the formula, MTi refers to the total factor production cost model at layer i, i P Ln∈ = { }1 2, ,..., , 
Ln is the number of layers of the cost model, which can be taken from 2 to 4 layers according to the 
level of enterprise management structure. For example, Ln=3, corresponding to the functional 
hierarchical structure of ISA95 standard, refers to Process Control System (PCS), Manufacturing 
Execution System (MES) and Enterprise Rsource Planning (ERP) in turn. Ln=4, corresponding to 
the equipment hierarchical structure of ISA95 standard, refers to the industrial site device layer, 
production area layer, factory layer and enterprise layer in turn. Ln=2, which can correspond to 
various combinations of flat management.

In the formula, COST_ENTITY refers to the cost node at this level.LINK refers to the interface 
and connection relationship between cost nodes at this level, that is, the cost accounting relationship 
between different nodes at the same level. COST_VALUE refers to the total cost of the production 
process of this layer. Based on the cost node model of PCS layer production process in the previous 
section, through establishing the coupling relationship between nodes at different levels, cost nodes 
at MES layer can be obtained as follows:

Human resource node Pers_EntityMES refers to the unique human resource node of management 
positions at the MES level, such as scheduler. Digital resource node Digital_EntityMES refers to the 
unique intelligent control system and application software at MES level. Coupling node Coul_EntityMES, 
which is coupled by several nodes related to PCS layer production process according to MES layer 
cost management requirements, represents the hierarchical relationship between PCS layer and MES 
layer devices and functions. When the coupling node is composed of multiple similar sub-nodes in 
PCS layer, its coupling relation is the clustering relation of sub-nodes. When it is composed of sub-
nodes of different classes, its coupling relationship is determined by the connection relationship of 
these sub-nodes in PCS layer. For example, multiple equipment nodes, digital resource nodes and 
human resource nodes of the same production process in PCS layer are combined and coupled to 
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form a coupling cost node of MES layer. Similarly, cost nodes of ERP layer include Pers_EntityERP, 
Digital_EntityERP and Coul_EntityERP, which will not be described here.

Nodes between adjacent layers are coupled through the corresponding relationship of actual 
production process cost nodes, and the mapping relationship between layers is as follows:
M REL M M M
Ti Ti Tj Tj
⋅ ( ) →,

In the formula, MTj is the cost model of the jth layer, j=i+1 in general. REL(MTi,MTj) represents 
the coupling mapping from layer i to layer j.

The mapping relationship between layers defines the cost accounting relationship formed by 
different cost management layers due to different time and space characteristics, and provides a 
method for classifying cost accounting and value stream analysis of each layer individually, as well 
as cost element tracking across layers. It solves the problem of accurate allocation of indirect cost in 
traditional cost accounting.

Methodology

The Construction of Evaluation Index System
Based on the functional hierarchy model of manufacturing enterprises and the total factor production 
cost model for intelligent manufacturing, we extracted the first-level evaluation indicators of intelligent 
manufacturing at four levels, namely production line, workshop/factory, enterprise and enterprise 
collaboration, and further refined them into second-level indicators.

Questionnaire Design
In 1987, Paulk, Curtis, Chrissis and Weber (1993) put forward Capability Maturity Model (CMM) 
for software, which was first used as a tool to determine the maturity of software process by means of 
development process and target management. It can clearly describe the development level of things 
with several limited progressive maturity levels, and has become a popular method of engineering 
implementation and management. As shown in the figure below, CMM defines five levels of things 
development:

Table 1. Evaluation Index System at Production Line Layer

First-level indicators Second-level indicators

Flexible manufacturing
Production/product flexibility

Response flexibility

Data acquisition
Real-time data acquisition

Range of data acquisition

Man-machine interaction
Man-machine interaction mode

Range of man-machine interaction

Machine to machine communication The way of machine to machine communication
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Table 2. Evaluation Index System at Workshop/factory Layer

First-level indicators Second-level indicators

Data processing

Real-time data processing

Data utilization level

Data visualization

Communication network
Information communication mode

Coverage of information communication network

Logistics & Warehousing

Logistics management system (LMS)

Warehouse management system (WMS)

Intellectualization of equipment

Table 3. Evaluation Index System at Enterprise Layer

First-level indicators Second-level indicators

Intelligent decision support

Automatic production scheduling and dynamic scheduling

Supply chain management

Order tracking

Product quality traceability

Implementable decision support content

Model-based system engineering

Product model data definition

Product data management (PDM)

Product model delivery and relational maintenance

Vertical integration within the enterprise
Integration of MES and ERP

Integration of manufacturing process control systems with MES

Table 4. Evaluation Index System at Enterprise Collaboration Layer

First-level indicators Second-level indicators

Resource sharing across enterprises
Information resources sharing across enterprises

Manufacturing resources sharing across enterprises

Coordinated optimization across the value chain
Coordinated optimization of key manufacturing links

Flexible configuration of resources and services
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(1) 	 Initial level: the software process is chaotic and the production environment lacks standardization 
and management.

(2) 	 Repeatable level: basic project management process has been established, and basic indicators 
such as cost and schedule have been tracked.

(3) 	 Defined level: the software process is stable and repeatable, and the management of cost and 
time schedule is documented and standardized.

(4) 	 Managed level: there are detailed measurement standards for software process and product quality, 
focusing on measurement improvement of software quality and productivity.

(5) 	 Continuous optimization level: new information and new technologies are effectively analyzed, 
and existing processes are continuously improved.

This article fully draws on the process-centered idea of the software capability maturity model. 
Five options are set for each question, which respectively represent five levels of corresponding 
indicators (1 initial level, 2 planned, 3 standardized, 4 continuous integration, and 5 leading 
optimization). The questionnaire is designed with CMM as the capability scale. The questionnaire 
puts forward the key points of evaluation of various activities in the whole product life cycle, including 
design and development, procurement, production planning and scheduling, production operations, 
production quality control, production storage and distribution, production safety and environmental 
protection, and resources. Through this questionnaire, the level of intelligent manufacturing capability 
of supply chain can be analyzed.

Figure 3. CMM
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Determination of Weight Coefficient
Considering that most of the evaluation indexes are qualitative and the relative importance of each 
index needs to be determined through expert experience, we adopt the analytic hierarchy process 
(AHP) combining quantitative and qualitative methods to determine the weight coefficient of each 
evaluation index.The following takes the evaluation index of intelligent manufacturing capability of 
supply chain at the enterprise level as an example to illustrate the process of determining the weight 
coefficient.

(1) 	 Establish a hierarchical structure model

According to Table 3, the hierarchical structure model of intelligent manufacturing capability 
of supply chain at the enterprise layer can be obtained, as shown in Table 5.

(2) 	 Constructing judgment matrix

Many experts in the field of intelligent manufacturing were invited. After three rounds of scoring 
and feedback, the opinions of experts gradually converged, and the judgment matrix of each layer 
was obtained:

Judgment matrix A at the first layer:

A =

























1 1
2
1
4

2 1 1
3

4 3 1

The judgment matrix A1, A2 and A3 at the second layer are:

Table 5. Hierarchical Structure Model at Enterprise Layer

The target layer First-level criteria layer Second-level criteria layer

Supply chain intelligent 
manufacturing capability 
evaluation is at 
enterprise layer (U)

Intelligent decision support (U1)

Automatic production scheduling and dynamic 
scheduling (U11)

Supply chain management (U12)

Order tracking (U13)

Product quality traceability (U14)

Implementable decision support content (U15)

Model-based system engineering (U2)

Product model data definition (U21)

Product data management (PDM) (U22)

Product model delivery and relational 
maintenance (U23)

Vertical integration within the enterprise 
(U3)

Integration of MES and ERP (U31)

Integration of manufacturing process control 
systems with MES (U32)
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A
1

1 3 2 1
3
4

1
3

1 1
2
1
4
3

1
2

2 1 1
5
3

3 4 5 1 6

1
4
1
3
1
3
1
6
1

=

































A
2

1 1
2
1
4

2 1 1
3

4 3 1

=

























A
3

1 2

1
2
1

=
















(3) 	 Calculate the maximum eigenvalue and eigenvector of the judgment matrix

Using MATLAB software, the maximum eigenroot and eigenvector of the above judgment matrix 
are calculated and normalized. Then the weight vectors of each evaluation index relative to the upper 
evaluation index can be obtained. The results are shown in Table 6.

(4) 	 Consistency test of judgment matrix

Considering that the second-order matrix is always a uniform matrix, there is no need to test the 
consistency of judgment matrix A3. Below, the consistency index (CI) and consistency ratio (CR) 
of judgment matrix A, A1 and A2 are calculated respectively, and the results are shown in Table 7.

Table 7. Consistency index and modified consistency index of each judgment matrix

Judgment matrix CI CR

A 0.0100 0.0172

A1 0.0475 0.0424

A2 0.0100 0.0172

Table 6. The maximum eigenroot, eigenvector and weight vector of each judgment matrix

Judgment matrix The maximum eigenroot Eigenvector Weight vector

A λ=3.02 ω=(0.20, 0.35, 0.92) ω=(0.14, 0.24, 0.62)

A1 λ=5.19 ω1=(-0.40, -0.18, -0.24, 
-0.86, -0.09)

ω1’=(0.23, 0.10, 0.14, 0.49, 
0.05)

A2 λ=3.02 ω2=(0.20, 0.35, 0.92) ω2’=(0.14, 0.24, 0.62)

A3 λ=2 ω3=(0.89, 0.45) ω3’=(0.66, 0.34)
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Table 8. Evaluation index system of intelligent manufacturing capability of supply chain

Layer First-level 
indicators Weight Second-level indicators Weight

Production line layer

Flexible 
manufacturing 0.49

Production/product flexibility 0.50

Response flexibility 0.50

Data acquisition 0.31
Real-time data acquisition 0.25

Range of data acquisition 0.75

Man-machine 
interaction 0.13

Man-machine interaction mode 0.75

Range of man-machine interaction 0.25

Machine to machine 
communication 0.08 The way of machine to machine 

communication 1.00

Workshop/factory 
layer

Data processing 0.36

Real-time data processing 0.14

Data utilization level 0.62

Data visualization 0.24

Communication 
network 0.36

Information communication mode 0.75

Coverage of information communication 
network 0.25

Logistics & 
Warehousing 0.28

Logistics management system (LMS) 0.26

Warehouse management system (WMS) 0.26

Intellectualization of equipment 0.48

Enterprise layer

Intelligent decision 
support 0.14

Automatic production scheduling and 
dynamic scheduling 0.23

Supply chain management 0.10

Order tracking 0.14

Product quality traceability 0.48

Implementable decision support content 0.05

Model-based system 
engineering 0.24

Product model data definition 0.14

Product data management (PDM) 0.24

Product model delivery and relational 
maintenance 0.62

Vertical integration 
within the enterprise 0.62

Integration of MES and ERP 0.66

Integration of manufacturing process control 
systems with MES 0.34

Enterprise 
collaboration layer

Resource sharing 
across enterprises 0.25

Information resources sharing across 
enterprises 0.50

Manufacturing resources sharing across 
enterprises 0.50

Coordinated 
optimization across 
the value chain

0.75

Coordinated optimization of key 
manufacturing links 0.75

Flexible configuration of resources and 
services 0.25
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As CR of each judgment matrix is less than 0.1, it can be considered that the consistency of all 
matrices is acceptable, so as to obtain the weight coefficient of the evaluation index of intelligent 
manufacturing capability of the supply chain at the enterprise layer, as shown in Table 8. Similarly, 
the weight coefficient of the evaluation index of intelligent manufacturing capability of supply chain 
at production line layer, workshop/factory layer and enterprise collaboration layer can be obtained.

Evaluation Model

(1) 	 Dimensionless processing of indicators

a. 	 Quantitative index

For quantitative data, the maximum and minimum values of this index should be determined first. The 
maximum value is the optimal value that can be achieved after intelligent manufacturing is realized, 
and the minimum value is the value of the indicator before intelligent manufacturing is implemented. 
The maximum value and minimum value are fixed values. Then, the following formula is applied for 
dimensionless processing of the original data:

x
x x

x xi
i min

max min

' =
−

−
×100

where, xi is the original score of evaluation index i, xmax is the maximum possible value of 
evaluation index i, xmin is the minimum possible value of evaluation index i, xi’ is the score of evaluation 
index i after dimensionless treatment, and its value range is [0,100].

b. 	 Qualitative index

Delphi method was used to score qualitative indicators, and experts scored them according to 
the data collection of evaluation indicators. Then, the following formula is applied for dimensionless 
processing:

x
x x x

ni

j

n

ij min max' =
− −

−
=∑ 1

2
where, xij is the score of the jth expert on evaluation index i, n is the number of experts participating 

in evaluation, xmax is the maximum score of all experts on evaluation index i, xmin is the minimum score 
of all experts on evaluation index i, xi’ is the score of evaluation index i, and the score range is [0,100].

(2) 	 Evaluation score calculation model

After the dimensionless processing of the index, the weighted average model can be used to 
calculate the specific evaluation score.

θ α β=
= =
∑∑
i

m

j

n

i j j
x

1 1

where θ is the evaluation score of intelligent manufacturing capability of supply chain, αi is the 
weight coefficient of the ith first-level index, βj is the weight coefficient of the jth second-level index, 
xj is the score of the jth second-level index, i =(1,2,...,m), j = (1,2,...,n).

Analysis of Superiority of Supply Chain Layout

(1) 	 Global spatial autocorrelation
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In order to further analyze the superiority of intelligent manufacturing supply chain layout, Moran’s 
I index was used to analyze the spatial correlation and difference degree of intelligent manufacturing 
supply chain layout, and the index value was between [-1,1]. If I is greater than 0, the intelligent 
manufacturing supply chain layout has a positive correlation of spatial distribution, that is, high value 
is close to high value or low value is close to low value. When I is less than 0, it indicates negative 
correlation, that is, high value is close to low value or low value is close to high value. If I equals 0, 
it is distributed randomly in space and there is no spatial autocorrelation.

I
n A

A

i

n

k

n

ik i k

i

n

k

n

ik i

n

i

=
−( ) −( )









= =

= = =

∑ ∑
∑ ∑ ∑

1 1

1 1 1

θ θ θ θ

θ −−( )θ 2

where, I is the global Moran’s I index, n is the total number of research samples, θi is the intelligent 
manufacturing capability index of the supply chain of sample i,  is the average value of the intelligent 
manufacturing capability index of all sample supply chains. Aik is the spatial weight matrix, 
representing the adjacency relation between sample i and sample k. Aik is denoted as 1 when adjacent, 
and 0 when not adjacent.

(2) 	 Local spatial autocorrelation

The local autocorrelation method of hot spot analysis is used to further study the spatial 
distribution of intelligent manufacturing supply chain with similar attributes. By calculating Getis-
Ord G*I index, the score of Z value and P value is calculated to test whether there are hot spots in 
local areas. If Z value is high and P value is low, it indicates that this region is a spatial cluster of high 
value, namely the hot spot region; if Z value is low and negative, and the value is small, it indicates 
that this region is a spatial cluster of low value, namely the cold spot region.

Conclusion

In order to scientifically measure the development level of intelligent manufacturing capability 
of supply chain, to guide the development direction of intelligent manufacturing enterprises, and 
provide decision support for the government to strengthen the industry management, based on the 
analysis of intelligent manufacturing concept, system architecture and key elements, this article 
establishes the total factor production cost model of intelligent manufacturing and discusses the 
evaluation index system of intelligent manufacturing capability of supply chain. In this paper, 12 
first-level indicators and 29 second-level indicators of production line, workshop/factory, enterprise 
and enterprise collaboration are proposed, and the determination of index weight coefficient and the 
calculation model of evaluation score are introduced. Based on this, this article further studies the 
layout superiority and spatial agglomeration characteristics of intelligent manufacturing supply chain, 
which is conducive to the forward-looking layout scheme of intelligent manufacturing industry. Since 
intelligent manufacturing is still in its infancy, this paper is only an exploration of the evaluation of 
intelligent manufacturing capability in supply chain. In the future, the evaluation index system will 
be improved iteratively according to the connotation of intelligent manufacturing and the specific 
practice of enterprises.
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ENDNOTES

1 	 OT network is an industrial communication network that is used to connect the equipment and system on 
the production site and realize automatic control.

2 	 FMC is a machining unit composed of one or several CNC machine tools or machining centers.
3 	 FMS is an automatic mechanical manufacturing system which can adapt to the transformation of machining 

objects, composed of a unified information control system, a material storage and transportation system 
and a group of digital control processing equipment.

4 	 CIMS is an integrated and intelligent manufacturing system that is suitable for multi-variety and small-
batch production to realize the overall benefit.

5 	 FeLCC refers to the sum of design and development costs, production costs, use and maintenance costs, 
and final waste costs incurred during the entire life cycle of a product from birth to disappearance.


