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ABSTRACT

Predicting energy consumption has been a substantial topic because of its ability to lessen energy 
wastage and establish an acceptable overall operational efficiency. Thus, this research aims at creating 
a meta-heuristic-based method for autonomous simulation of heating and cooling loads of buildings. 
The developed method is envisioned on two tiers, whereas the first tier encompasses the use of a set 
of meta-heuristic algorithms to amplify the exploration and exploitation of Elman neural network 
through both parametric and structural learning. In this regard, 10 meta-heuristic were utilized, namely 
differential evolution, particle swarm optimization, invasive weed optimization, teaching-learning 
optimization, ant colony optimization, grey wolf optimization, grasshopper optimization, moth-
flame optimization, antlion optimization, and arithmetic optimization. The second tier is designated 
for evaluating the meta-heuristic-based models through performance evaluation and statistical 
comparisons. An integrative ranking of the models is achieved using average ranking algorithm.
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1 INTRodUCTIoN

The generation of greenhouse gases is directly proportional to energy consumption and climate 
change (Baldock et al., 2012; Al-Sakkaf et al., 2020). The worldwide increase in urbanization and 
industrialization, particularly in the building sector, has served as a major contributing factor. In 
this regard, the increases in energy consumption and related carbon dioxide emissions witnessed 
significant bumps in the last few decades, and it is expected to experience escalating increases due to 
rapid expansions in commercial and residential regions, and higher cooling demands in hot weather 
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countries (Eom et al., 2020; Conevska et al., 2020). The amount of fuel consumed by this sector is 
equivalent to 2 billion tons of oil equivalent (TOE), representing 31% of fuel for worldwide energy 
use (International Energy Agency, 2015). More specifically, in terms of electricity and heating, about 
0.84 billion TOE is consumed by the building sector. Moreover, the building sector consumes 12% of 
fresh water and contributes to 40% of global solid waste and 40% of CO2 emissions. Approximately 20 
– 25% and 30 – 40% have been reported as consumed energy for developing and developed countries, 
respectively (Akande et al., 2015; Al-Sakkaf, et al., 2019). In the United States and European Union, 
up to 40% energy consumption is attributed to the building sector (Cao et al., 2016).

Based on the aforementioned points, improved sustainability in buildings is essential to reduce 
environmental impacts and improve the wellbeing of individuals. This is also dependent on the 
efficiency of several elements in buildings. For example, consumed energy in the heating and cooling 
processes could be managed by heating, ventilation, and air conditioning (HVAC) systems to ensure 
a comfortable indoor environment in buildings. Therefore, proper design of HVAC systems, based on 
climate and building attributes, is critical to the energy efficiency of buildings (McQuiston & Parker, 
1982; Castaldo et al., 2018; Bui et al., 2019). In this regard, energy prediction models are required 
for facility managers to better understand sustainability in buildings (Ürge-Vorsatz et al., 2007; Egan 
et al., 2018; Fanti et al., 2018; Al-Sakkaf et al., 2019). Forward and inverse models are typically 
applied to evaluate the energy performance of buildings (Zhao et al., 2012). For forward modeling, 
the building attributes are utilized despite being not easily determined, decreasing the computation 
accuracy, increasing the computation time, and hindering the application for occupied buildings 
(Yezioro et al., 2008; Park et al., 2016). Inverse modeling, on the other hand, is a machine learning 
model that can be applied as an alternative to identify the correlation between energy consumption 
and building attributes or factors (Catalina et al., 2008; Yu et al., 2010; O’Neill & O’Neill, 2016). 
This modeling technique is easy and has a fast computation speed (Bui et al., 2019).

The application of machine learning has emerged as a powerful tool in building energy 
management (Bui et al., 2019). For example, Alvarez et al. (2018) predicted the energy performance 
of a house using artificial neural network (ANN) models. The models were developed using a dataset 
of different buildings located in Spain. The inputs to these models were the construction year and 
surface area while the model output comprised the U-opaque value. It was found that the constructed 
area factor was associated with the highest prediction power. The modeled U-Opaque values were 
compared against the real values for the same buildings, yielding a correlation coefficient of 0.967. 
The results confirmed the ability to provide an accurate estimate of the building’s energy efficiency 
using some modeled building characteristics. Jihad & Tahiri (2018) applied different ANN models 
to predict the heating and cooling loads of residential buildings in Morocco. The forecasting model 
included six input variables; orientation, glazing rate, relative compactness, wall surface area, and 
building height and surface area. The training samples were generated using parametric analysis 
by changing the construction mode and building usage. The developed model yielded an accuracy 
of 98.7% and 97.6% for the training and testing data, respectively. This model could be useful to 
determine the energy consumption of a new building without the need for using simulation software 
nor calculating a thermodynamic balance.

Moayedi et al. (2019) estimated the heating load in energy-efficient buildings using six machine 
learning techniques. These techniques were the multi-layer perceptron regressor, random forest, lazy 
locally weighted learning, alternating model tree, ElasticNet, and radial basis function regression. 
The calculated outcomes of the above-mentioned models were analyzed using five statistical indexes; 
root relative squared error (RRSE), root mean squared error (RMSE), mean absolute error (MAE), 
Pearson correlation coefficient (PCC), and relative absolute error (RAE). The random forest model 
yielded PCC, MAE, RMSE, RAE, and RRSE for the training dataset of 0.99, 0.19, 0.24, 2.08, and 
2.38, respectively. Besides, it determined the PCC, MAE, RMSE, RAE, and RRSE for the testing 
dataset to be 0.99, 0.34, 0.46, 3.68, and 4.59, respectively. Therefore, it was nominated as the most 
powerful predictive network. Amber et al. (2018) compared the performances of five intelligent 
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system techniques in the prediction of electricity consumption of buildings. The intelligent techniques 
comprised multiple regression, genetic programming, deep neural network, ANN, and support vector 
machines (SVM). The input parameters were daily electricity consumption, mean surrounding 
temperature, mean global irradiance, mean humidity, and mean wind velocity. It was concluded that 
the ANN model outperformed other prediction models achieving RMSE, MAE, mean relative error 
(MRE), mean absolute percentage error (MAPE), and normalized RMSE of 26, 17, 6%, 6%, and 
10%, respectively.

Seyedzadeh et al. (2019) investigated the accuracy of several machine learning models for 
predicting heating and cooling loads of buildings. The simulated energy data generated in EnergyPlus 
and Ecotect were utilized to compare the results. The combinations of model parameters were 
examined using a grid-search method based on cross-validation. Besides, a sensitivity analysis was 
performed to examine the influence of input variables on the performance of the forecasting models. 
The outcomes of the analysis demonstrated the relative importance of input variables, leading to 
faster model fitting. Finally, the proposed models resulted in satisfactory accuracy compared to the 
existing models. Mohammed Abdelkader et al. (2020) conducted a comprehensive analysis among 
five machine learning models to predict heating and cooling loads in residential buildings. These 
models included the generalized regression neural network, back-propagation neural network, radial 
basis neural network, radial kernel SVM, and analysis of variance kernel SVM. The above-mentioned 
models were assessed using three statistical measures; RMSE, MAE, and MAPE. Besides, the 
statistical significance of these models was evaluated using the student’s t-test. The results affirmed 
that the radial basis function network outperformed the remaining models.

Das et al. (2019) investigated the heating and cooling loads of residential buildings using Elman 
neural network (ENN), recurrent neural network, and backpropagation neural network. The models 
accounted for eight input factors, namely relative compactness, height, orientation, surface area, 
wall area, roof area, glazing area, glazing area distribution. The performance of the models was 
evaluated using MAE, MSE, and MRE. The back-propagation neural network yielded the highest 
accuracy compared to the existing methods. The computation results of the model reinforced the fact 
that ANN could be utilized to predict and analyze the energy performance of a building. Moon et 
al. (2019) proposed an ANN-based model for forecasting building energy consumption. The authors 
studied two different hyperparameters of ANN which were; the number of hidden layers and type of 
activation function. Some input factors were used for short-term load forecasting, namely calendar 
data, weather information, and historical electric loads. Ten different numbers of hidden layers in 
addition to five activation functions were examined. It was concluded that five hidden layers and 
scaled exponential linear unit function provided a better average performance when compared against 
other prediction models.

Shapi et al. (2021) developed a predictive model for energy consumption using ANN, SVM, 
and k-nearest neighbor. The model was conducted in a cloud-based machine learning platform. It 
was examined using two tenants from a commercial building in Malaysia. The performances of the 
models were compared using RMSE, MAPE, and normalized RMSE. It was proved that the tenant’s 
energy consumption had different distribution characteristics. Li et al. (2019) used ANN to emulate 
the energy consumption of complex architectural forms at the early design stage. The input variables 
encompassed building length, building width, window to wall ratio, story height, floor number, 
and room number. The output variables are cooling, heating, and lighting energy consumption. In 
this regard, the developed ANN model utilized 20 hidden neurons and hyperbolic tangent sigmoid 
transfer function. In the developed method, two architectural form decompositions were proposed 
which were: method of characterization decomposition (MCD) and method of spatial homogenization 
decomposition (MSHD). Results manifested that under the MCD method, the relative deviations were 
±5% for cooling and heating energy consumption and ±10% for lighting energy consumption. Under 
the MSHD method, the relative deviations of total energy consumption were ±10%.
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Yuan et al. (2018) adopted an ANN to simulate the seasonal hourly electricity consumption for 
three areas of the university compass in Japan. Six input parameters were used namely, day of the 
week, hour of the day, hourly dry-bulb temperature, hourly relative humidity, hourly global irradiance, 
and recorded hourly electricity consumption at the same hour and day of the week in the previous 
weeks. The Levenberg-Marquardt algorithm was used to train the developed feed-forward ANN 
model. The developed model accomplished a correlation coefficient that ranged from 96% to 99% at 
the training phase and from 95% to 99% at the testing phase. Zeng et al. (2020) presented a Gaussian 
regression process-based model for simulating electricity consumption of different types of buildings. 
It was derived that the developed model obtained higher prediction accuracies in office buildings 
than shopping malls and hotels attaining average deviations below 15%. It was also highlighted that 
the developed model could achieve a short testing time of 0.02 seconds per prediction.

In view of the above, it can be noticed that most of previous studies relied on classical machine 
learning models such as artificial neural network, multilayer perceptron and support vector machines 
to forecast building energy consumption. However, these conventional machine learning models are 
vulnerable to local minima entrapment and over fitting issues (Khan et al., 2020; Li et al., 2019). In 
addition, manual tuning-based prediction models suffer from inferior prediction capacity and long 
computational time originated from the need to calibrate the hyper parameters of the machine learning 
models (Jiang et al., 2020; Al-Allaf, 2011). Artificial neural network is the most widely utilized 
supervised learning algorithm that is usually trained using gradient descent back propagation algorithm. 
Its architecture is composed of input layer, output layer and hidden layers. The latter is composed 
of neurons which are responsible of analyzing the pattern of the fed dataset (Wang et al., 2021; Han 
et al., 2019). Multilayer perceptron is a feed forward artificial neural network that is composed of 
input layer, output layer and one or more hidden layers that are interposed between input and output 
layers, and it is normally trained using gradient descent algorithm (Hicham et al., 2017; Demirci et 
al., 2015). Support vector machines is one of the supervised learning algorithms that was proposed 
by Cortes and Vapnik (1995) and it can be used for either classification or regression problems. It is 
empowered based on mapping the original data into higher dimensional feature space through kernel 
functions, whereas the type of kernel function and its respective parameters are the most influential 
factors on the performance of support vector machines (Yetilmezsoy et al., 2021; Tezel & Buyukyildiz, 
2016). In the light of foregoing, the main objective of the present study is to build a meta-heuristic-
based Elman neural network model that an accurately simulate the heating and cooling loads of 
buildings. The developed model deploys utilizes a set of ten meta-heuristic algorithms for boosting the 
exploration-exploitation search capabilities of the ENN through optimizing both of its parameters and 
hyper parameters. The ten different types of meta-heuristics are: differential evolution (DE), particle 
swarm optimization (PSO), invasive weed optimization (IWO), teaching learning-based optimization 
(TLBO), ant colony optimization (ACO), grey wolf optimization (GWO), grasshopper optimization 
(GO), moth-flame optimization (MFO), antlion optimization (ALO), and arithmetic optimization 
(AO) algorithms. The performance of hybrid machine learning models is evaluated based on split 
validation using a set of performance metrics. The average ranking algorithm is adopted to create 
an integrative ranking of the hybrid models according to their performance with respect to several 
indicators. Besides, a correlation matrix is built in an attempt to examine the degree of correlation of 
the explanatory input variables with each other, and between the input and output variables.

2 PRoPoSed ModeL

The main objective of the present study is to build optimized Elman neural network model that can 
accurately estimate building energy consumption. As illustrated in Figure 1, the framework of the 
developed model is composed of two main components, namely hybrid machine learning model 
and model assessment. The first step of the first component is to construct the energy efficiency 
dataset. In this regard, the developed model is established based on a dataset published by the 
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UCI machine learning repository (Asuncion & Newman, 2007) for a work carried out by Tsanas 
& Xifara (2012). The utilized dataset encompasses 768 data instances generated using the Ecotect 
energy analysis platform. The input explanatory features of the developed model incorporate a set 
of residential building characteristics including glazing area, glazing area distribution, orientation, 
overall height, roof area, wall area, surface area, and relative compactness. The output predicted 
variables of the developed model comprise the amounts of heating and cooling loads. The simulated 
heating and cooling loads are produced from different scenarios and combinations of the input 
variables. The numbers of possible values of glazing area, glazing area distribution, orientation, 
overall height, roof area, wall area, surface area, and relative compactness are 4, 6, 4, 2, 4, 7, 12, 
and 12, respectively.

The first component is designated for designing meta-heuristic-based Elman neural network 
model that can predict the amounts of heating and cooling loads. The developed model employs 

Figure 1. Framework of the developed hybrid meta-heuristic-based Elman neural network model
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a set of meta-heuristic algorithms for amplifying the search capabilities of the ENN through both 
parametric and structural learning process. The learning process involves optimizing both the 
architecture and weighed connection of the ENN. This is expected to address the exploration-
exploitation trade-off dilemma which usually hinders the training process of artificial neural 
networks (Chong et al., 2021; Chiroma et al., 2016). The ENN is trained based on formulating a 
variable length single-objective optimization function designated for minimizing the mean absolute 
percentage error of heating and cooling loads. Elman neural network is one of the recurrent neural 
networks that was first proposed by the scientist Elman (1990). Its basic configuration comprises 
input layer, hidden layer, output layer and context layer. Elman neural network is augmented by 
additional context layers and feedback loop of unit delay element (Z-1) which aid in memorizing 
the computations of the previous time step. In this regard, preserving states between succeeding 
time steps creates a non-linear dynamic behavior of Elman neural network which improves its 
learning capability over feed forward neural network (Bianchi et al., 2017). The computations in 
the conventional feed forward neural networks depends solely on the current time step and don’t 
account for preceding events which diminishes its learning abilities (kurach & Pawlowski, 2016; 
Ghasemi & Rasekhi, 2016). Meta-heuristics proved themselves as an efficient global search 
algorithms to improve the prediction performances of machine learning models in diverse civil 
engineering applications such as daily stream flow simulation (Malik et al., 2020), estimation of 
vertical settlement of raft-pile foundation (Liu et al., 2020), conceptual cost estimation of power 
plants (Hashemi et al., 2019) and prediction of structural failure of multistore buildings (Chatterjee 
et al., 2017). The developed model investigates the implementation of ten meta-heuristics such as 
DE, PSO, IWO, TLBO, ACO, GWO, GO, MFO, ALO and AO. In this regard, the applicability 
of ten different types of meta-heuristics are investigated as a result of the case dependency nature 
of meta-heuristics such that there is no absolute rule on how these algorithms can perform in 
a designated optimization problems. In this context, some meta-heuristics can provide better 
solutions than other implemented algorithms in a certain optimization problem. However, it may 
yield inferior solutions in other optimization problems (Teimouri et al., 2016; Martinez-Álvarez et 
al., 2014). There are two types of outputs from the first component of the model, whereas the first 
output includes the optimum transfer function, optimum numbers of hidden and context layers, 
optimum numbers of hidden and context neurons, and optimum weights. The second type involves 
the minimum mean absolute percentage error accomplished by the trained models.

Selection of the best performing heating and cooling load prediction model is a vital and 
complicated process (Shahsavar et al., 2020; Dutta et al., 2019). Hence, the second component of 
the developed model aims at evaluating the accuracy levels achieved by the hybrid meta-heuristic-
based Elman neural network model as per two folds of assessment. In the first fold, the developed 
models are assessed based on split validation using a set of performance metrics. The utilized 
performance indicators are MAPE, RMSE, PCC, Nash-Sutcliffe coefficient of efficiency (NSCE), 
and Willmott’s index of agreement (WI). The average ranking algorithm is adopted to create an 
integrative ranking of the hybrid machine learning models according to their performance with 
respect to several indicators. The second fold involves building a correlation matrix for the heating 
and cooling loads in an attempt to examine the degree of correlation and association of the input 
variables with each other, and between the input and output variables. All the algorithms and 
mathematical operations in this research paper are implemented using Matlab R2017a.

3 ModeL deVeLoPMeNT

This section describes the background of the utilized meta-heuristics and the designed automated 
training optimization function.
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3.1 overview of the Meta-Heuristics
3.1.1 Differential Evolution
This algorithm starts by initiating different individuals (i.e., candidate solutions) in the population. 
These old solutions are updated to produce new solutions only one time in each iteration. Each solution 
is updated using three different random solutions and the mutation factor. One of the random solutions 
searches around the space, while the two other solutions create a distance from the first one. There must 
be a mixture between the previous and current solutions to generate new solutions in the next iteration. 
The selection operation phase is performed to maintain better solutions in the current iteration. Finally, the 
solution associated with the lowest fitness function is chosen as the best solution (Storn & Price, 1997).

3.1.2 Particle Swarm Optimization
This algorithm, which was introduced by Eberhart & Kennedy (1995), imitates the movement of a 
school of fish or flocks of birds searching for their food. This algorithm commences by forming the 
particles, whereas each particle in the swarm is characterized by its current position, best position, and 
velocity. The position of a particle is updated by considering randomized values in some directions. 
Meanwhile, the velocity of any particle relies on particle best position, global best position, and the 
random function (Shi & Eberhart, 1998). This process is repeated until reaching a stopping criterion 
(e.g., satisfactory solution, maximum number of iterations, and constant fitness for a certain number of 
iterations). Finally, the current position of the best particle in the last iteration is defined as the global 
best solution (Elshaboury et al., 2020).

3.1.3 Invasive Weed Optimization
This algorithm, which was proposed by Mehrabian & Lucas (2006), simulates the invasive behavior 
of weeds in finding the most suitable place for growth and reproduction (Elshaboury et al., 2021). The 
randomness, resistance, and adaptability of weeds are imitated in this algorithm. By definition, weeds 
are powerful herbs that grow unintentionally and cause a serious threat to crops. The basic features of 
this algorithm are considered as follows: (1) population initialization where the seeds are distributed in 
the search space, (2) reproduction each flowering plant produces seeds based on its fitness value, (3) 
spectral spread that eliminates inappropriate plants, (4) competitive deprivation that ensures removing the 
grass with worst fitness from the colony to keep a constant number of herbs in the colony, (5) repeating 
the previous steps until reaching the maximum number of iterations, and (6) storing the minimum cost 
function of the grasses (Misaghi & Yaghoobi, 2019).

3.1.4 Teaching Learning-Based Optimization
It is a recent meta-heuristics algorithm which is inspired by the behaviors of teachers and learners in 
a classroom. The teacher is determined to be the learner with the best grade in the population. The 
teacher is responsible for training the learners and improving the mean grade of the class (known as the 
teacher phase). Meanwhile, each learner randomly interacts with another learner (known as the learner 
phase). In this algorithm, a group of students (i.e., learner) is considered as the population. Besides, the 
different subjects resemble the optimization design variables. The fitness function of the optimization 
problem is determined based on the results of the learner. This process is repeated iteratively until the 
termination condition is met and the best solution in the entire population is considered as the teacher 
(Rao et al., 2011).

3.1.5 Ant Colony Optimization
This algorithm, which was proposed by Dorigo et al. (1999), was inspired by the behavior of ant colonies 
searching for their food sources. The ants communicate with each other using the pheromone, such 
that the ant that finds a food source deposits pheromone along the path to be followed by other ants. 
In this way, ants could find the shortest distance between their nests and the food source (Tran et al., 
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2019). The procedures of this algorithm are described as follows: (1) deriving solutions to the problem 
by using greedy information and pheromone values and (2) updating the pheromone values using the 
best solutions. Therefore, this optimization technique relies on learning from positive examples (i.e., 
positive learning) (Nurcahyadi & Blum, 2021).

3.1.6 Grey Wolf Optimization
This algorithm, which was introduced by Mirjalili et al. (2014), is inspired by the leadership and hunting 
process of grey wolves (Panda & Das, 2019). The leadership hierarchy is simulated using four types of 
grey wolves; alpha, beta, delta, and omega. The alphas are responsible for deciding the hunting time 
and resting place for the whole group. The beta wolves maintain discipline in the group and advise 
the alphas in their decisions. The delta wolves are authorized to dominate omegas while following the 
orders of alphas and betas. The last group of wolves follows the orders of all other dominant wolves. 
The hunting mechanism of grey wolves comprises tracking and chasing the prey, harassing the target, 
and attacking the prey target (Jitkongchuen et al., 2016).

3.1.7 Grasshopper Optimization
This algorithm, which was developed by Saremi et al. (2017), mimics the social behavior of grasshoppers. 
Grasshoppers are considered harmful insects and cause damage to crops. The lifecycle of grasshopper 
consists of three stages; egg, nymph, and adult. The nymph grasshopper is born when the eggs hatch. 
These young insects start rolling and eat everything that comes in their way. Then, they become 
adults and start swarming in the air (Gad et al., 2020). Each insect in the swarm is characterized by 
two important motions; cooperation between grasshoppers in larvae and insect phases and foraging 
for the food movement. A swarm is formed of randomly generated grasshopper agents. The fitness 
value evaluation determines the best search agent, and the search agents start moving toward the best 
grasshopper search agent (Ullah et al., 2020).

3.1.8 Moth-Flame Optimization
This algorithm, which was introduced by Mirjalili (2015a), is inspired by the navigational mechanisms 
of moths during the night. The moth maintains a fixed angle of the moonlight to be able to travel long 
distances in a straight path. Since the moon is far away from the moth, it flies in a straight line by using 
the near-parallel light near the surface. Despite the effectiveness of lateral orientation, moths often fly 
spirally around lights. The same case applies when the moths preserve a stable angle with the light source 
in the case of human-made artificial light. This algorithm commences by generating random moths 
within the search space, then evaluating the position (i.e., fitness value) of each moth, and determining 
the best position by flame. The moths’ positions are updated based on a spiral movement function, and 
the previous processes are updated until the termination criteria are met.

3.1.9 Antlion Optimization
This algorithm mimics the hunting mechanism of antlions (Mirjalili, 2015b). Antlions act as search 
agents that hunt preys by building traps, entrapping ants, catching preys, and rebuilding traps (Tian et 
al., 2018). This algorithm is characterized by a good exploration capability with the help of random walk 
and roulette wheel to build traps. Besides, the exploitation efficiency of this algorithm is highlighted by 
the time-varying boundary shrinking mechanism and elitism. The major advantages of this algorithm 
are as follows: ease of implementation, high precision, avoidance of local optima, and reduced need for 
parameter adjustment (Horng & Lee, 2021).

3.1.10 Arithmetic Optimization
This algorithm is motivated by the application of arithmetic operators (i.e., multiplication, division, 
subtraction, and addition) in solving arithmetic problems. This optimization algorithm starts by generating 
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a set of candidate solutions. The arithmetic operators determine the feasible positions of the near-optimal 
solution. The position of each solution is updated based on the exploration and exploitation mechanisms. 
Eventually, the algorithm stops by satisfying the end criterion (Abualigah et al., 2021).

3.2 Automated Training of elman Neural Network
The developed meta-heuristic-based Elman neural network model is characterized by its both 
parametric and structural learning nature. It aims at the autonomous optimization of the numbers of 
hidden layers, hidden neurons, context neurons, context layers, type of transfer function, and values of 
weighted connections in the Elman neural network. The developed model explores the implementation 
of eight activation functions, namely radial basis function, normalized radial basis, triangular basis 
function, linear function, positive linear function, log-sigmoid function, hyperbolic tangent sigmoid 
function and Elliot symmetric sigmoid function. As a result of the structural learning features of 
the developed model, the number of weighted connections varies adaptively during each training 
epoch according to the numbers of the hidden layer, hidden neurons, and context layers. Hence, the 
number of weighted connections should be computed during each training epoch to design an efficient 
variable-length optimization model. The developed estimator is created for the sake of handling the 
variability in the length of the optimization model, and it can be mathematically expressed as follows.

Num I N N C P N N P N O= +( )×( )+ × × + + × × −( )( )+ +( )×( )1 1 1 1(( ( )  (1)

Where; I .  and N  denote the numbers of input neurons and hidden neurons, respectively. C  represents 
the number of context neurons. P  denotes the number of hidden and context layers. O  stands for 
the number of output neurons. It is with mentioning that architecture of Elman neural network is 
triggered by the type of simulation problem (heating or cooling), and the search exploration ability 
of the employed meta-heuristic optimizer.

4 ModeL ASSeSSMeNT

This section describes the scoring metrics used to evaluate the developed prediction models and the 
average ranking algorithm.

4.1 Performance Comparison
The present research study utilizes five performance indicators to evaluate the developed models. In 
this context, the evaluation metrics of MAPE, RMSE, NSCE, WI, and PCC can be computed using 
Equations 2-6, respectively (Altunkaynak, 2019; Guo et al., 2019; Elshaboury & Marzouk, 2020; 
Natarajan & Nachimuthu, 2020).
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where;P
i
 and O

i
 indicate the predicted and observed heating or cooling load, respectively. O  and 

P  are the average observed and predicted heating or cooling load, respectively. k  stands for the size 
of data observations. A smaller value of MAPE  and RMSE  indicates a smaller deviation of the 
predicted values from the actual values. The values of NSCE  and WI  range from 0 to 1 while the 
values of PCC  vary from -1 to 1. In this regard, the closer values of NSCE , WI,  and PCC  to 1 
imply an increasing agreement between the predicted and actual heating or cooling loads. 

4.2 Unified Ranking
Each one of the developed meta-heuristic-based Elman neural network models behaves differently 
according to the tackled type of the performance indicator. As such, the average ranking algorithm 
is utilized to generate a final sorting of the meta-heuristic-based Elman neural network models 
according to their scores with respect to the utilized performance evaluation metrics. The mean and 
standard deviation of the rankings can be obtained using Equations 7 and 8, respectively (Yu et al., 
2018; Mohammed Abdelkader et al., 2021).

¼
a

b

B

b
R

B
= =∑ 1  (7)

Ã
¼

a
b

B

b a
R

B
=

−
=∑ 1

2( )
 (8)

where; ¼
a

 and Ã
a

 indicate the mean and standard deviation of the rankings of the meta-heuristic-
based Elman neural netwoek models, respectively. B  denotes the number of performance metrics. 
A lower value of ¼

a
 and Ã

a
 imply a high-performing and more robust prediction model.
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5 ReSULTS ANd dISCUSSIoN

The utilized dataset is composed of 768 observations, whereas 614 (80%) and 154 (20%) data instances 
are randomly selected and deployed for training and testing purposes. Figures 2, 3, 4 and 5 describe the 
relationship between each of the influential independent variables and the output dependent variables. 
Table 1 summarizes a set of statistical indicators for the input and output variables. The statistical 
analysis includes minimum, maximum, average, median, standard deviation, mode, skewness, sample 
variance, range, kurtosis, and coefficient of variation. For instance, the highest value of standard 
deviation is for glazing area distribution (88.03) followed by overall height (45.14) while the glazing 
area has the least standard deviation (0.11). With regards to the coefficient of variation, the surface 
area (56.8%) is associated with the highest coefficient of variation and then relative compactness 
(55.11%). The least coefficients of variation are for glazing area (13.83%), glazing area distribution 
(13.11%) and orientation (13.69%).

Figure 2. Spatial distributions of glazing area and glazing area distribution against heating and cooling loads
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Different initializations of parameters’ configuration were experimented in order to search for 
their optimum setting. In order to create a fair comparison between the ten meta-heuristics, the number 
of iterations and population size are assumed in all meta-heuristics to be 200 and 50, respectively. In 
the differential evolution algorithm, the mutation rate is assumed to be uniform distribution ranging 
between 0.2 and 0.8. In addition, the crossover probability rate is set as 0.2. In the particle swarm 
optimization algorithm, the social parameter and cognitive learning parameter are assumed as two, 
and inertia weight is assumed as 0.5. In the invasive weed optimization algorithm, the non-linear 
modulation index is assumed as two, and the initial and final standard deviations are 0.5 and 0.001, 
respectively. The maximum and minimum numbers of seeds are equal to five and zero, respectively. 
With regards to the ant colony optimization algorithm, the sample size, intensification factor and 
deviation-distance ratio are assumed as 40, 0.5 and 1, respectively. For the grey wolf optimization 
algorithm, the trade-off parameter which manages the balance between exploitation and exploration 

Figure 3. Spatial distributions of orientation and overall height against heating and cooling
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is assumed to be linearly varying from two to zero. In the grasshopper optimization, the maximum 
and minimum deceleration values of grasshoppers when approaching food source and eating it are 
assumed 1 and 0.00004, respectively. In the moth-flame optimization algorithm, the convergence 
constant is assumed to be decreasing from -1 and -2, and the logarithmic spiral motion constant is set 
as 1. The search control parameter and exploitation control parameter in the arithmetic optimization 
algorithm are assumed 0.5 and 5, respectively. Each meta-heuristic was then run for five times in an 
independent manner to circumvent unstable solutions and the best solution associated with the run 
of the least prediction error was appended to be used for the forthcoming performance comparison 
analysis.

As mentioned earlier, ten hybrid meta-heuristic-based Elma neural network models are developed 
for the sake of predicting the heating and cooling loads. The convergence of the models for predicting 
heating loads is demonstrated in Figure 6. ENN-PSO accomplished the least MAPE and ENN-GWO 

Figure 4. Spatial distributions of roof area and wall area against heating and cooling loads
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achieved the second-lowest MAPE followed by ENN-MFO while ENN-AO provided the highest 
MAPE. In this context, ENN-PSO, ENN-GWO, ENN-MFO and ENN-AO yielded MAPE of 8.62%, 
8.98%, 9.26% and 21.81%, respectively. It is worth mentioning that ENN-TLBO, ENN-IWO, and 
ENN-ALO attained MAPE of 9.09%, 9.67%, and 12.76%, respectively. With respect to the cooling 
loads, the convergence of the models is depicted in Figure 7. ENN-IWO achieved the lowest prediction 
error with a MAPE of 8.08%. On the other hand, ENN-AO provided the highest error rate with 
MAPE of 16.32%. ENN-PSO, ENN-GWO, and ENN-TLBO attained MAPE of 8.19%, 8.2%, and 
8.61%, respectively.

The optimum structures of the developed meta-heuristic-based Elman neural network models for 
the prediction of heating and cooling loads are reported in Tables 2 and 3, respectively. It can be noticed 
that different architectures are obtained for either the prediction of the amount of heating or cooling 
loads, which imply different optimal solutions are generated by the ten meta-heuristic Elman neural 

Figure 5. Spatial distributions of surface area and relative compactness against heating and cooling load
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Table 1. Summary of the descriptive statistics of the input and output parameters 

Descriptive statistic Glazing 
area

Glazing area 
distribution Orientation Overall 

height
Roof 
area

Wall 
area

Surface 
area

Relative 
Compactness

Heating 
load

Cooling 
load

Minimum 0.62 514.5 245 110.25 3.5 2 0 0 6.01 10.90

Maximum 0.98 808.5 416.5 220.5 7 5 0.4 5 43.1 48.03

Average 0.76 671.71 318.5 176.6 5.25 3.5 0.23 2.81 22.31 24.59

Median 0.75 673.75 318.5 183.75 5.25 3.5 0.25 3 18.95 22.08

Standard deviation 0.11 88.03 43.6 45.14 1.75 1.12 0.13 1.55 10.08 9.51

Mode 0.98 514.5 294 220.5 7 2 0.1 1 15.16 21.33

Skewness 0.5 -0.13 0.53 -0.16 0 0 -0.06 -0.09 0.36 0.4

Sample variance 0.01 7749.06 1900.79 2037.31 3.06 1.25 0.02 2.40 101.68 90.39

Range 0.36 294 171.50 110.25 3.50 3.00 0.4 5 37.09 37.13

Kurtosis -0.71 -1.06 0.12 -1.78 -2.01 -1.36 -1.33 -1.15 -1.25 -1.15

Coefficient of variation 13.83% 13.11% 13.69% 25.56% 33.33% 31.94% 56.80% 55.11% 45.20% 38.67%

Figure 6. Convergence of the meta-heuristic-based Elman neural network models for forecasting heating loads
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network models. This exemplifies that the complexity of optimization problem and the exploration-
exploitation search capabilities play a principal role in the quality of generated optimal solutions, 
which evinces the need for studying the need for studying the implementation of five different types 
of meta-heuristics. In the prediction of heating loads, the optimum structure of ENN-PSO consists 
of 3 hidden and context layers, 4 hidden and context neurons, and hyperbolic tangent sigmoid as 
the optimum transfer function. The optimum structure of ENN-GO is composed of 4 hidden and 
context layers, 2 hidden and context neurons, and linear function as the optimum transfer function. 
At the level of predicting cooling loads, the optimum structure of ENN-GWO comprises 3 hidden 
and context layers, 6 hidden and context neurons, and hyperbolic tangent sigmoid as the optimum 
transfer function. The optimum topology of ENN-GO encompasses 2 hidden and context layers, 8 
hidden and context neurons, and log-sigmoid as the optimum transfer function. In addition to that, it is 
found that ENN-DE obtained varying topologies in the interpretation of heating and loading patterns. 
For instance, ENN-DE obtained one hidden layer, one context layer, two hidden and context neurons 
and hyperbolic tangent sigmoid function in heating loads assessment. In cooling loads evaluation, 
ENN-DE achieved an optimum topology of two hidden layers, two context layers, seven hidden and 
context neurons, and Elliot symmetric sigmoid activation function.

Illustrations of the performances of ENN-PSO, ENN-GWO, ENN-ACO, and ENN-ALO in the 
prediction of heating loads are depicted in Figures 8 and 9. X-axis represents a certain data instance 

Figure 7. Convergence of the meta-heuristic-based Elman neural network models for forecasting cooling loads



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

17

which corresponds to a specific scenario for a combination of the input variables. Y-axis denotes the 
corresponding heating load, whereas five hundred data instances that were randomly sampled from 
training and testing partitions are plotted in these figures. The black and blue curves denote the actual 
and predicted heating values that are obtained by the meta-heuristic-based Elman neural network 
models It can be inferred that ENN-PSO, ENN-GWO have successfully predicted the heating loads 
pattern, whereas they produce very close predicted values to the actual heating loads. However, 
ENN-ACO and ENN-ALO failed to predict the actual heating loads efficiently providing considerable 

Table 2. Optimum structures of the developed meta-heuristic-based Elman neural network models for predicting heating loads

Model Hidden Layers Hidden Neurons Context Layers Context Neurons Transfer Function

ENN DE- 1 2 1 2 Hyperbolic tangent sigmoid

ENN PSO- 3 4 3 4 Hyperbolic tangent sigmoid

ENN IWO- 3 3 3 3 Elliot symmetric sigmoid

ENN TLBO- 1 1 1 1 Hyperbolic tangent sigmoid

ENN ACO- 1 1 1 1 Hyperbolic tangent sigmoid

ENN GWO- 1 2 1 2 Elliot symmetric sigmoid

ENN GO- 4 2 4 2 Linear

ENN MFO- 2 4 2 4 Hyperbolic tangent sigmoid

ENN AO- 1 10 1 10 Hyperbolic tangent sigmoid

ENN ALO- 2 1 2 1 Hyperbolic tangent sigmoid

Table 3. Optimum structures of the developed meta-heuristic-based Elman neural network models for predicting cooling loads

Model Hidden Layers Hidden Neurons Context Layers Context Neurons Transfer Function

ENN DE- 2 7 2 7 Elliot symmetric sigmoid

ENN PSO-  7 5 7 5 Linear

ENN IWO- 2 3 2 3 Elliot symmetric sigmoid

ENN TLBO- 1 1 1 1 Hyperbolic tangent sigmoid

ENN ACO- 2 1 2 1 Hyperbolic tangent sigmoid

ENN GWO- 3 6 3 6 Hyperbolic tangent sigmoid

ENN GO- 2 8 2 8 Log-sigmoid

ENN MFO- 1 3 1 3 Log-sigmoid

ENN AO- 8 10 8 10 Elliot symmetric sigmoid

ENN ALO- 2 1 2 1 Hyperbolic tangent sigmoid
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mismatch with the observed heating patterns. Figures 10 and 11 show the performances of ENN-PSO, 
ENN-GWO, ENN-ACO, and ENN-ALO in the prediction of cooling loads. Y-axis represents the 
cooling load in these figures, ao five hundred data instances were randomly picked from the training 
and testing partitions, and visualized. The black and blue curves depict the actual and predicted 
amounts of cooling loads generated from the meta-heuristic-based Elman neural network models. 
Graphical comparisons reveal that the cooling pattern is better recognized by ENN-PSO, ENN-GWO 
than by ENN-ACO and ENN-ALO. In this regard, the prediction trend of the cooling loads provided 
by the models of ENN-PSO, ENN-GWO models resembled the measured actual values. However, 
explicit variations are encountered between the actual and predicted values by the models of ENN-
ACO and ENN-ALO. Figure 12 describes the correlation between the expected and measured heating 
loads for all the training and testing instances based on ENN-PSO. The regression chart shows that 
the determination coefficient (R2 ) is 92.6%, which demonstrates a very good agreement between 
the predicted and measured heating loads. A graphical comparison between the predicted and actual 
cooling loads for all data instances based on ENN-GWO is shown in Figure 13. It can be found that 
an acceptable consistency (R %2 88 3= . ) is obtained between the predicted and actual cooling loads.

A performance comparative analysis between the meta-heuristic-based Elman neural network 
models for predicting heating loads is reported in Table 4. It can be concluded that the ENN-PSO model 

Figure 8. Actual and predicted heating loads using ENN-PSO and ENN-GWO models
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achieved the lowest prediction error followed by ENN-GWO and then ENN-IWO. On the other hand, 
ENN-AO provided the highest prediction error. In this regard, the ENN-PSO model accomplished 
MAPE, RMSE, NSCE, WI, and PCC of 8.335%, 2.732, 0.927, 0.98, and 0.927, respectively. ENN-
GWO provided MAPE, RMSE, NSCE, WI, and PCC of 8.788%, 2.947, 0.915, 0.976, and 0.92, 
respectively. It could be also oberved that the ENN-AO model yielded MAPE, RMSE, NSCE, WI, 
and PCC of 21.972%, 5.881, 0.66, 0.916, and 0.746, respectively. With respect to cooling loads, 
their prediction performances are recorded in Table 5. It can be noticed that ENN-GWO achieved 
the highest prediction performance, whereas it provided MAPE, RMSE, NSCE, WI, and PCC of 
8.154%, 3.343, 0.876, 0.956, and 0.884, respectively. The developed models of ENN-PSO and 
ENN-IWO yielded the second highest prediction performance. In addition, it is observed that ENN-
AO attained the lowest prediction performance, such that MAPE, RMSE, NSCE, WI, and PCC are 
equal to 17.342%, 6.156, 0.581, 0.844, and 0.781, respectively. As such, it can be interpreted that the 
developed ENN-PSO and ENN-GWO provided lower error rate than ENN-AO by 37.46% and 35.18% 
in the prediction of amounts of heating and cooling loads, respectively. At the level of both heating 
and cooling loads, it can be argued that the developed modes of ENN-PSO, ENN-GWO, ENN-IWO 
and ENN-TLBO demonstrated satisfactory good prediction performance. This can be explained by 
the high exploration and local search behaviors of these models which allowed them to efficiently 
investigate the full range of entire search space meanwhile avoiding local minima stagnation. On the 

Figure 9. Actual and predicted heating loads using ENN-ACO and ENN-ALO models



International Journal of Applied Metaheuristic Computing
Volume 13 • Issue 1

20

other hand, the developed models of ENN-AO, ENN-GO and ENN-ALO failed to adequately inspect 
the search space of parameters and hyper parameters of Elman neural network as a result of their low 
exploration abilities and slow convergence rate.

The average ranking algorithm is utilized to blend the performances of the ten meta-heuristic-
based Elman neural network models with respect to the five evaluation metrics. The results generated 
from the average ranking algorithm for the prediction of heating and cooling loads are presented in 
Tables 6 and 7, respectively. In the prediction of heating loads, it is found that ENN-PSO accomplished 
the first ranking and the most stable performance followed by ENN-TLBO while ENN-AO provided 
the tenth ranking. In this regard, µ

a
 and Ã

a
 of ENN-PSO are equal to 1 and 0, respectively. For 

ENN-TLBO, µ
a

 and Ã
a

 are equal to 2.4 and 0.49, respectively. For cooling loads, ENN-GWO 
accomplished the first ranking followed by ENN-PSO and then ENN-IWO. ENN-GWO achieved 
µ
a

 and Ã
a

 of 1.6 and 1.2, respectively. It is also shown that µ
a

 and Ã
a

 of ENN-IWO are equal to 
2.4 and 0.49, respectively. Furthermore, it is worth noting that the performances of meta-heuristics 
vary from one optimization problem due to their case dependent nature, whereas some meta-heuristics 
can outperform their counterparts in some sort of problem. However, they may underperform in other 
optimization problems. For instance, ENN-ACO accomplished higher rank than ENN-ALO in heating 
loads prediction. However, it is outranked by it in cooling loads prediction. Moreover, ENN-TLBO 

Figure 10. Actual and predicted cooling loads using ENN-PSO and ENN-GWO models
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Figure 11. Actual and predicted cooling loads using ENN-ACO and ENN-ALO models

Figure 12. Correlation between the observed and predicted heating loads using ENN-PSO model
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obtained higher ranking than ENN-GWO in predicting amounts of heating loads. Nevertheless, ENN-
GWO outranks ENN-TLBO in cooling loads assessment. 

Further comparative performance evaluations of meta-heuristic-based Elman neural network 
models against classical machine learning models are reported in Table 8. In the back propagation 
artificial neural network (BPANN) model, the numbers of hidden layers and hidden neurons are 
assumed 5 and 2, respectively. The momentum coefficient and learning rate are assumed 0.8 and 
0.01, respectively. The activation function is log sigmoid and gradient descent algorithm is used for 

Figure 13. Correlation between the observed and predicted cooling loads using ENN GWO-  model

Table 4. Performance comparative analysis between the meta-heuristic-based Elman neural network models in predicting 
heating loads

Model MAPE RMSE NSCE WI PCC

ENN DE- 12.758% 3.472 0.881 0.969 0.884

ENN PSO- 8.335% 2.732 0.927 0.98 0.927

ENN IWO- 9.36% 3.230 0.897 0.971 0.905

ENN TLBO- 8.956% 2.944 0.915 0.976 0.918

ENN ACO- 15.286% 4.52 0.799 0.944 0.803

ENN GWO- 8.788% 2.947 0.915 0.976 0.92

ENN GO- 15.205% 4.949 0.759 0.921 0.807

ENN MFO- 9.12% 3.315 0.892 0.969 0.901

ENN AO- 21.972% 5.881 0.660 0.922 0.746

ENN ALO- 13.043% 4.237 0.823 0.944 0.856
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training the network. In the support vector machines (SVM) model, Gaussian radial basis function 
is utilized with sigma and scaling factor equal to 1. In both heating and cooling loads, the developed 
ENN-PSO and ENN-GWO performed better than BPANN and SVM. In this context, ENN-PSO and 
ENN-GWO provided higher prediction accuracies than BPANN and SVM in heating and cooling, 

Table 5. Performance comparative analysis between the meta-heuristic-based Elman neural network models in predicting 
cooling loads 

Model MAPE RMSE NSCE WI PCC

ENN DE- 13.394% 4.739 0.752 0.939 0.797

ENN PSO- 8.204% 3.373 0.874 0.966 0.883

ENN IWO- 8.285% 3.352 0.876 0.961 0.883

ENN TLBO- 8.736% 3.430 0.870 0.959 0.879

ENN ACO- 15.043% 5.365 0.682 0.883 0.782

ENN GWO- 8.154% 3.343 0.876 0.956 0.884

ENN GO- 13.195% 5.360 0.682 0.881 0.765

ENN MFO- 9.188% 3.797 0.840 0.938 0.852

ENN AO- 17.342% 6.156 0.581 0.844 0.781

ENN ALO- 10.502% 3.986 0.824 0.935 0.839

Table 6. Average and standard deviation of the rankings of the meta-heuristic-based Elman neural network models for 
predicting heating loads

Model Average ranking Standard deviation of ranking Final ranking

ENN DE- 5.8 0.4 6

ENN PSO- 1 0 1

ENN IWO- 4.2 0.4 4

ENN TLBO- 2.4 0.49 2

ENN ACO- 8.4 0.49 7

ENN GWO- 2.6 0.49 3

ENN GO- 8.6 0.49 8

ENN MFO- 5 0.63 5

ENN AO- 10 0 10

ENN ALO- 7 0 9
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respectively. It is also found that ENN-PSO and ENN-GWO can improve the prediction performance 
of SVM by 27.68% and 14.49% in heating and cooling, respectively. With reference to BPANN, it 
is derived that ENN-PSO and ENN-GWO managed to improve the prediction accuracies by 29.75% 
and 40.84% in heating and cooling loads prediction, respectively. BPANN obtained higher error rate 
than the SVM in both heating and cooling prediction. In heating behavior prediction, SVM yielded 
MAPE, RMSE, NSCE, WI, and PCC of 16.15%, 4.869, 0.767, 0.933, and 0.771, respectively. With 
regards to cooling loads, it is found that SVM exhibited MAPE, RMSE, NSCE, WI, and PCC of 
13.809%, 4.184, 0.806, 0.943, and 0.872, respectively.

Table 7. Average and standard deviation of the rankings of the meta-heuristic-based Elman neural network models for 
predicting cooling loads

Model Average ranking Standard deviation of ranking Final ranking

ENN DE- 6.8 0.98 7

ENN PSO- 2.2 0.75 2

ENN IWO- 2.4 0.49 3

ENN TLBO- 3.80 0.4 4

ENN ACO- 8.6 0.49 9

ENN GWO- 1.6 1.2 1

ENN GO- 8.4 1.02 8

ENN MFO- 5.2 0.4 5

ENN AO- 9.8 0.4 10

ENN ALO- 6.2 0.4 6

Table 8. Comparative performance evaluation against classical machine learning models

Heating Loads

Model MAPE RMSE NSCE WI PCC

ENN PSO- 8.335% 2.732 0.927 0.98 0.927

BPANN 17.9% 4.967 0.757 0.924 0.761

SVM 16.15% 4.869 0.767 0.933 0.771

Cooling Loads

Model MAPE RMSE NSCE WI PCC

ENN GWO- 8.154% 3.343 0.876 0.956 0.884

BPANN 14.831% 5.938 0.61 0.665 0.69

SVM 13.809% 4.184 0.806 0.943 0.872
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Computational time is an important aspect when comparing the prediction models. Table 9 reports 
the average training time and average testing time of the meta-heuristic-based Elman neural network 
models. The used laptop is of specifications: Intel Core i7 CPU, 2.21 GHz and 16 GB of memory. 
It can be observed that ENN-GWO and ENN-MFO are the most time efficient prediction models, 
whereas they consumed lesser training times than the remainder of other prediction models. In this 
regard, the training times of ENN-GWO and ENN-MFO are 10.88 and 14.26 minutes, respectively. 
It can be also interpreted that ENN-IWO and ENN-AO have relatively short training times of 16.34 
and 19.42 minutes, respectively. On the other hand, ENN-GO has the longest training time with 94.49 
minutes. In addition, it can be noticed that most of the developed meta-heuristic-based Elman neural 
network models nearly consume the same testing times, whereas all of their testing times vary from 
1.25 to 2.45 seconds.

Table 10 describes the correlation between the input and output variables. As can be seen, 
the glazing area has a negative correlation with orientation and overall height. The roof area has a 
positive strong correlation with heating load and cooling load. The overall height has a negative strong 
correlation with heating load and cooling load. In this regard, the correlation coefficients of the roof 
area with heating load and cooling load are 0.889 and 0.896, respectively. Additionally, the correlation 
coefficients of overall height with heating and cooling loads are -0.862 and -0.863, respectively. It 
is also revealed that wall area and relative compactness manifested low levels of dependencies with 
heating and cooling loads. It is also evinced that the amount of heating load is highly correlated with 
cooling load (correlation coefficient is 0.976).

6 CoNCLUSIoN

Analyzing energy performance is crucial to maintain sustainable energy consumption in residential 
buildings. As such, this research paper proposed a novel hybrid meta-heuristic-based Elman neural 
network model for autonomous forecasting of amounts of heating and cooling loads in residential 
buildings. Performance comparison demonstrated that the complexity of the designated optimization 
problem and search capability of meta-heuristic significantly implicate the performance of meta-

Table 9. Comparison of computational times of the meta-heuristic-based Elman neural network models

Model Training time (Sec) Testing time (Sec)

ENN DE- 53.31 2.45

ENN PSO- 37.80 1.34

ENN IWO- 16.34 1.59

ENN TLBO- 37.39 1.46

ENN ACO- 39.51 1.36

ENN GWO- 10.88 2.35

ENN GO- 94.49 2.25

ENN MFO- 14.26 2.36

ENN AO- 19.42 1.35

ENN ALO- 49.52 1.25
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heuristics. In this context, different meta-heuristics obtained different optimum architectures in the 
same optimization problem. In addition, same meta-heuristic yielded different optimum topologies 
in different optimization problems (heating and cooling assessment). Comparative analysis also 
illustrated that the developed ENN-PSO and ENN-GWO accomplished the highest performance 
accuracies among the meta-heuristic-based Elman neural network models in heating and cooling 
loads prediction, respectively. In this regard, they managed to reduce the prediction error of ENN-AO 
by 37.46% and 35.18% in heating and cooling loads, respectively. Against the ENN-DE model, the 
developed ENN-PSO and ENN-GWO managed to improve the prediction accuracies by 13.44% and 
19.55% in heating and cooling loads, respectively. The outcome of the average ranking algorithm 
manifested that ENN-PSO, ENN-AO, and ENN-ALO models exhibited the most stable ranking in 
the heating loads prediction (

a
Ã = 0)  meanwhile the ENN-TLBO, ENN-MFO, ENN-AO, and ENN-

ALO models accomplished the lowest standard deviation of rankings ( 0.4
a

Ã = )  in cooling loads. 
In addition to that, the average ranking algorithm exemplified that the relative importance (i.e., 
ranking) varied from heating to cooling loads prediction. For example, EN-PSO obtained a higher 
ranking (first) than ENN-GWO (third) in heating loads simulation. Nevertheless, ENN-GWO (first) 
outranked ENN-PSO (second) in cooling loads simulation.

When compared against the conventional machine learning models of BPANN and SVM, the 
developed ENN-PSO succeeded in diminishing the forecasting error of heating loads by 29.75% and 
27.68%, respectively. Additionally, the developed ENN-GWO was able to reduce the prediction error 
of cooling loads estimation by 40.84% and 14.98%, respectively. Analysis of computation times of 
the meta-heuristic-based Elman neural network models revealed that ENN-GWO and ENN-MFO 
had the shortest training times. Besides, ENN-IWO and ENN-AO consumed comparatively short 
training times. It was also observed that ENN-GO requires substantially long training time although 
it produces high prediction error (eighth ranking in both heating and cooling). The constructed 
correlation matrices illustrated that the highest level of correlation were exhibited between the input 
factors of roof area and overall height, and the output variables of heating and cooling loads. It was 
also noticed that wall area and relative compactness are lowly correlated with heating and cooling 
loads. It is expected that the developed model can aid architectural designers through providing them 
with a platform to study the implications of several design parameters on buildings’ energy efficiency.

Table 10. Correlation matrix of the input and output variables

Glazing 
area

Glazing area 
distribution Orientation Overall 

height
Roof 
area

Wall 
area

Surface 
area

Relative 
Compactness

Heating 
load

Cooling 
load

Glazing area 1 -0.992 -0.204 -0.869 0.828 0 0 0 0.622 0.634

Glazing area 
distribution -0.992 1 0.196 0.881 -0.858 0 0 0 -0.658 -0.673

Orientation -0.204 0.196 1 -0.292 0.281 0 0 0 0.456 0.427

Overall 
height -0.869 0.881 -0.292 1 -0.973 0 0 0 -0.862 -0.863

Roof area 0.828 -0.858 0.281 -0.973 1 0 0 0 0.889 0.896

Wall area 0 0 0 0 0 1 0 0 -0.003 0.014

Surface area 0 0 0 0 0 0 1 0.213 0.27 0.208

Relative 
Compactness 0 0 0 0 0 0 0.213 1 0.087 0.051

Heating load 0.622 -0.658 0.456 -0.862 0.889 -0.003 0.27 0.087 1 0.976

Cooling load 0.634 -0.673 0.427 -0.863 0.896 0.014 0.208 0.051 0.976 1
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