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ABSTRACT

Early detection of Alzheimer’s disease (AD) and its prodromal state, mild cognitive impairment (MCI), 
is crucial for providing suitable treatment and preventing the disease from progressing. It can also 
aid researchers and clinicians in identifying early biomarkers and ministering new treatments that 
have been a subject of extensive research. The application of deep learning techniques on structural 
magnetic resonance imaging (MRI) has shown promising results in diagnosing the disease. In this 
research, the authors intend to introduce a novel approach of using an ensemble of the self-attention-
based bottleneck transformers with a sharpness-aware minimizer for early detection of Alzheimer’s 
disease. The proposed approach has been tested on the widely accepted ADNI dataset and evaluated 
using accuracy, precision, recall, F1 score, and ROC-AUC score as the performance metrics.

KEywoRDS
Alzheimer’s Disease, Bottleneck Transformers, Computer-Aided Diagnosis, Deep Learning, Magnetic Resonance 
Imaging, Mild Cognitive Impairment, Self-Attention

INTRoDUCTIoN

Alzheimer’s disease (AD) is a widely prevalent neurodegenerative disease of the elderly population 
in the world. There are more than 55 million dementia patients in the world according to the World 
Health Organization. 139 million people are predicted to be living with dementia by 2050, adding 
a substantial burden to the economy, healthcare system, and society in general. In its current form, 
AD constitutes about 60-70% of all dementia cases (World Health Organization, 2021). There is 
currently no available treatment that can cure AD or completely prevent its progression. There is 
ample research being carried out to identify the cause of the disease, yet, the exact cause has not 
been able to be inferred. At an early stage, it may appear as normal episodes of forgetfulness that 
most overlook thinking it to be attributed to old age. However, it gradually worsens to a state where 
the person is unable to perform even basic cognitive tasks and requires constant supervision. Mild 
cognitive impairment (MCI) is the bridge between the clinically diagnosed AD and the expected 
normal aging with regards to cognitive abilities. MCI patients are more likely to develop AD as 
compared to the healthy cognition belonging to the same age group (Liu et al., 2014). Hence, it is 
crucial to detect AD and MCI at their earliest possible stage and prevent them from progressing.
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There are various diagnostic measures used for identifying AD. Some of them include 
measurement of amyloid, tau, and cerebrospinal fluid (CSF), neuroimaging studies, like Magnetic 
Resonance Imaging (MRI), and Positron Emission Tomography (PET), and neurogenetic diagnostics 
(Salvatore et al., 2015). MRI is a neuroimaging modality that uses radio waves and strong magnetic 
fields to provide a three-dimensional view of the brain without invasiveness. Through this technology, 
the morphology of the human brain in vivo has been able to be investigated (Sabuncu et al., 2015). 
Therefore, allowing visualization of underlying AD-related changes in the brain. In practice, these 
scans are interpreted by radiologists and physicians mostly for diagnosing AD. However, when the 
disease is in its early stages it is at times harder for humans to be able to detect accurately from images. 
To tackle this problem, computer-aided diagnosis has begun to be used by researchers and doctors 
to assist them in diagnosing more accurately.

As a tool for computer-aided diagnosis of a variety of diseases, deep learning in the field of 
medical image analysis has proven extremely effective. To detect AD from brain MRI scans, several 
deep learning techniques have been employed, including deep belief networks (DBNs) (Brosch et al., 
2013), stacked autoencoders (SAEs) (Gupta et al., 2013), and convolutional neural networks (CNNs) 
(Hosseini-Asl et al., 2016). With respect to vision tasks like image segmentation, classification, 
and object detection, CNNs are the most widely used architecture. This is due to the fact that they 
can directly accept image data as input and can effectively capture local information from them. 
CNN models trained on MRI scans can also automatically retrieve features for the learning process 
and thus, obviating the use of manual feature selection (Li and Liu, 2018). However, convolutions 
alone are not effectively able to model long-range dependencies, and to globally cumulate local 
filter responses, stacking multiple layers is needed. This is something that self-attention models like 
transformers are capable of dealing with. Transformers (Vaswani et al., 2017) has revolutionized 
the field of natural language processing (NLP) in the last few years due to their ability to capture 
long-range dependencies which is a critical characteristic in NLP. These ideas have steadily started 
being implemented in the computer vision domain as well. Pure Attention models (like Stand-Alone 
Self-Attention (SASA) model (Ramachandran et al., 2019), Local Relation Networks (LRNet) (Hu 
et al., 2019), Self-Attention Network for image recognition (SANet) (Zhao et al., 2020), Vision 
Transformer (ViT) (Dosovitskiy et al., 2021), etc.) and hybrid Convolution + Attention models (like 
Attention Augmented Convolutional Networks (AA-ResNet) (Bello et al., 2019), Video – Bidirectional 
Encoder Representations from Transformers (VideoBERT) (Sun et al., 2019), Criss-Cross Attention 
for semantic segmentation (CCNet) (Huang et al., 2019), Detection Transformer (DETR) (Carion et 
al., 2020), etc.) have started gaining popularity and are being applied to various image classification 
and segmentation tasks. One such hybrid model is the Bottleneck Transformer (BoTNet) (Srinivas 
et al., 2021) that has been used in this research.

The analysis of structural MRI scans of the brain in this paper was designed to identify subjects 
with MCI and AD at an early stage, by distinguishing between three categories (1) AD and CN 
(cognitively normal), (2) MCIc (patients with MCI converting to AD within a span of 18 months) and 
CN, and (3) MCIc and MCInc (patients with MCI not converting to AD within a span of 18 months). 
Patients who fall under the incubation and the illness period of AD are often diagnosed with MCI; 
however, not all of the subjects with MCI diagnosis make a transition to AD (Salvatore et al., 2015). 
As a result, it is imperative to distinguish between MCI converts and MCI non-converters so that the 
transition from mild or asymptomatic dementia to AD can be detected early and treated accordingly. 
The classification was made using BoTNet (Srinivas et al., 2021) as the base classifier in an ensemble 
of central 2D slices obtained from the brain scans. The performance of this model was then evaluated 
on the basis of accuracy, precision, recall, F1 score, and ROC-AUC score.

The paper has been assembled in the following manner. Section 2 provides a brief about the 
background of the problem statement being dealt with by analyzing the related studies available in 
the literature. This is then followed by section 3 that describes the entire architecture of the research 
work in detail. It is divided into three subsections explaining the dataset used, data preprocessing, and 
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finally the model architecture. The next section covers an analysis of the results obtained from the 
implemented work. Lastly, section 5 provides a conclusion and discusses the future scope of this work.

BACKGRoUND woRK

Neuroimaging has started gaining some substantial popularity in recent times for accurately observing 
physical changes in the brain causing AD. From various neuroimaging methods, such as functional 
magnetic resonance imaging (fMRI), structural magnetic resonance imaging (sMRI), single-photon 
emission computed tomography (SPECT), etc., it is readily apparent that degenerating brain cells 
bring about these changes (Islam et al., 2018). In addition to aiding in early detection, they also aid 
in identifying specific regions of the brain most affected by the disease. The need for reliable tools 
and methods for processing neuroimaging data from these modalities is evident, therefore. Analysis 
of neuroimaging data has greatly benefited from the use of machine learning techniques. Many 
researchers have adopted these techniques and are building increasingly enhanced classifiers to detect 
AD (Liu et al., 2014; Salvatore et al., 2015; Islam et al., 2018; Li and Liu, 2018; Pan et al., 2020). As 
successfully identified by researchers, the hippocampus, the entorhinal cortex, the gyrus rectus, the 
basal ganglia, along other regions of the brain have been shown to undergo major structural changes 
during AD (Salvatore et al., 2015).

One of the most common approaches found in several research works was developing intricate 
machine learning models to help detect AD using MRI scans. Klöppel et al. (2008) used linear support 
vector machines (SVM) to detect AD by classifying the grey matter portion of brain MRI scans. Using 
MRI and fluorodeoxyglucose (FDG) - PET scans, Gray (2012) developed an AD classification model 
using a multi-modality approach based on random forest. Salvatore et al. (2015) first extracted and 
selected features from the whole brain using Principal Component Analysis or PCA pairing it with 
Fisher Discriminant Ratio or FDR criterion and then carried out binary classifications among the 
groups - AD, CN, MCIc, and MCInc by building a machine learning model based on SVM.

Deep learning frameworks have also risen in popularity as they are able to learn abstract feature 
representations from data. They are known to perform excellently in computer vision tasks and are 
increasingly being applied to medical imaging for the same. Brosch et al. (2013) used manifold 
learning based on deep belief networks (DBN) to detect AD from 3D MRI scans. Liu and Shen 
(2014) used unsupervised and supervised learning to learn deep features from MRI scans for AD 
and MCI classification based on a pre-trained CNN model. Pan et al. (2020) aimed at early detection 
of AD by combining CNNs with ensemble learning on MRI slices to perform the classifications as 
done by Salvatore et al. (2015). They also developed a 3D Squeeze-and-Excitation Networks model 
(3D-SENet) that makes use of a channel attention mechanism.

In this paper, a novel approach has been proposed to detect AD by making use of Bottleneck 
Transformers (Srinivas et al., 2021), a deep learning model, as the base classifier with a sharpness 
aware minimizer in an ensemble of T1 weighted MRI scans sliced along the coronal axis. The same 
classification approach has been followed as performed by Salvatore et al. (2015) and Pan et al. (2020) 
in their respective research works. This methodology of employing BoTNet for the early detection 
of AD is the first of its kind.

SySTEM ARCHITECTURE

Dataset
All the data used in this study has been obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (http://adni.loni.usc.edu/). As a public-private partnership, ADNI was launched in 
2004 under the leadership of Dr. Michael W. Weiner, with the goal of detecting Alzheimer’s disease 

http://adni.loni.usc.edu/
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at its earliest stage. Using MRI, PET, and clinical and neuropsychological testing, ADNI examines 
the progression of early Alzheimer’s disease and mild cognitive impairment.

This study examines the structural MRI brain scans with T1 weighting for a total of 569 subjects. 
Out of these 569 subjects, 201 subjects identified as cognitively normal elderly controls, 136 subjects 
were diagnosed with AD, 92 subjects with MCI diagnosis who converted to AD within a span of 
next 18 months (MCIc), and 140 subjects with MCI diagnosis but did not convert to AD within the 
span of next 18 months (MCInc). In this study, participants who had been followed for less than 18 
months were excluded. Both baseline and non-baseline brain scans were included to facilitate better 
training. However, in an effort to prevent overlap between the training/validation and testing datasets, 
the datasets were constructed according to the IDs of the subjects.

Cognitively normal subjects were defined as having Mini-Mental State Examination (MMSE) 
scores between 24 and 30 and Clinical Dementia Rating (CDR) (Morris, 1993) as zero along with 
the non-existence of any signs of depression, MCI, or dementia. In order to be considered for MCI, 
individuals had to have an MMSE score between 24 and 30 and a CDR of 0.5 with objective loss 
of memory, examined by measuring scores on the Wechsler Memory Scale Logical Memory II 
(Wechsler, 1987) along with the non-existence of major signs of dementia. Lastly, AD criteria for 
inclusion included MMSE scores between 20 and 26 and a CDR between 0.5 and 1; as well as the 
ADRDA/NINCDS standard for likely AD (Dubois et al., 2007; McKhann et al., 1984).

Data Processing
Post-processed T1 weighted MRI scans were downloaded from the ADNI database in .nii (NIfTI) 
format. The brain scans had a field strength of 1.5T and the plane of acquisition as Sagittal. The 
processing pipeline followed by ADNI first included the images to undergo B1 correction for non-
uniformity (Narayana, 1988), and 3D GradWarp correction for non-linearity of gradient (Jovicich et 
al., 2006) using the UCSD package. Subsequently, the Scaled process and N3 ADNI pipeline were 
also implemented. Further processing of the MRI brain scans was carried out using FreeSurfer’s 
(http://surfer.nmr.mgh.harvard.edu/) cross-sectional and longitudinal processing pipeline. Finally, 
the cross-sectionally and longitudinally processed brain masks, registered to Talairach space, were 
collected for the purpose of this study.

In order to accelerate the training and testing of the model, the 3-dimensional brain scans were 
then sliced into 2-dimensional images along the coronal axis taking ten central brain slices from 
each scan. Figure 1 shows a few examples of the 2D slices of a subject’s brain scan. The slices were 
then cropped to give images with a resolution of 224×224 and then normalized using min-max 
normalization. They were then flipped and translated along the sagittal axis to augment the data and 
avoid possible over-fitting.

Model Architecture
There were three binary classifications made namely: AD vs. CN, MCIc vs. CN, and MCIc vs. MCInc. 
All these classifications followed the same architecture of modeling i.e., training ten BoTNet-50 

Table 1. Number of subjects and MRI scans for each category of classification

Category Unique subjects Total scans

CN 201 764

AD 136 739

MCIc 92 376

MCInc 140 426

http://surfer.nmr.mgh.harvard.edu
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models corresponding to ten different central 2D brain slices. The training was carried out in a 5 
folded cross-validation loop with 60 epochs per fold where the best model for each slice was chosen 
based on its validation accuracy. Figure 2 visually demonstrates the flow of work of the entire system 
architecture for each binary classification.

BoTNet
The architecture of BoTNet (Srinivas et al., 2021) has been correctly described as simple yet powerful 
by its creators. It differs from ResNet in just the way that the spatial 3×3 convolution layers in the 
last three bottleneck blocks are replaced with Multi-Headed Self-Attention (MHSA) layers. These 
blocks can be seen as Transformer (Vaswani et al., 2017) blocks.

Residual Net or ResNet (He et al., 2015) is a popular deep learning algorithm proposed in 2015 
to tackle the problem of exploding/vanishing gradient associated with deep convolutional neural 
networks as the number of layers increases. A method known as identity shortcut connections was 
introduced that skips one or more layers and connects to the output directly. The idea is that instead 
of input ‘x’ being multiplied by weights of each layer and then adding a bias term, the network fits 
the residual mappings. Thus, the initial mapping H(x)=F(x) is transformed to H(x)=F(x)+x which 
is a relatively easier mapping to optimize.

Figure 1. Central brain slices from MRI scan

Figure 2. The framework of each binary classification
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BoTNet incorporates self-attention into ResNet’s backbone architecture in a way that lets 
convolutions downsample first and then the self-attention mechanism takes over from there and works 
on the lower resolutions as seen in table 2 and figure 4. This approach significantly improves the 
performance of a typical ResNet. Just as in ResNet, BoTNet consists of four stages [C2, C3, C4, C5] 
having multiple bottleneck blocks. Following the architecture of ResNet-50, the model of BoTNet 
that is used in this research work also consists of [3, 4, 6, 3] stacks of bottleneck blocks in its last four 
stages respectively. Table 2 portrays the architecture of BoTNet-50 that is used here as described in 
the paper by Srinivas et al., 2021. Figure 5 illustrates the Bottleneck Transformer (BoTNet) block, 
which is the last block in the model.

Multi-Head Self-Attention Layer
Attention is the technique that has the capability of selecting and focusing on only the most pertinent 
information. In self-attention essentially the inputs are able to interact with each other to identify 
what parts to pay more attention to. This mechanism employs similar pixels and disregards the ones 
having no correlation to the other pixels in a feature map (Yang, 2020). This works in a way that each 
attention head presides over an input sequence, x = (x1, x2, …, xn) where xi ∈  dx, and outputs another 
sequence z = (z1, z2, . . ., zn) where zi ∈  dz. Here dx and dz refer to the embedding size of input and 
output sequence respectively. The elements in the output sequence z are calculated as the weighted 
sum of linearly transformed input elements (Shaw et al., 2018):

zi = 
j

n

=
∑
1

a ij(xjW
V) (1)

The weight coefficient αij is calculated with the help of a softmax function as follows:
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Figure 3. Residual building block for ResNet
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Here eij is calculated by implementing a scaled dot product to compare two input values:

eij = 
xW xW

d
i

Q
i

K
T

z

( )( )
√

 (2)

In multi-headed self-attention, individual attention heads are generally concatenated and run 
parallelly with the application of a linear transformation. This permits the model to together pay attention 
to information from multiple representation subspaces simultaneously (Vaswani et al., 2017). On a 2D 
feature map, global self-attention (all2all attention) in BoTNet is implemented with relative position 
encodings (Srinivas et al., 2021). Figure 5 provides a representation of this self-attention layer as used 
by Srinivas et al., 2021 in their model. In figure 5, Rw and Rh refer to the relative position encodings 
corresponding to the width and height respectively. qrT and qkT are the attention logits where q, k, and 
r represent query, key, and relative position encodings respectively. WQ, WK, WV ∈  dx×dz are projection 
matrices to create the query, key, and value vectors respectively. Every layer and attention head has its 
own projection matrix. 1×1 refers to a pointwise convolution, while element-wise summation and matrix 
multiplications are represented by Å  and Ä , respectively. Transformer architectures often utilize 
position encoding to make attention mechanisms aware of position (Vaswani et al., 2017). 

Relative Position Encodings
Recently it has been noticed that position encodings aware of relative distance perform better on 
computer vision tasks (Shaw et al., 2018). This can be credited to attention considering the relative 

Table 2. The architecture of the BoTNet-50 model used

Stage Size of the output BotNet-50

C1 112×112 7×7, 64, stride 2

C2 56×56

3×3 max pool, stride 2

1 1 64

3 3 64

1 1 256

×
×
×
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Figure 4. Bottleneck Transformer (BoT) block of the model behaving as a ResNet bottleneck block in the architecture

Figure 5. Multi-Head Self-Attention (MHSA) layer used in the last block of BoTNet
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distances between features at different locations and not just the content information. As seen from 
figure 5, BoTNet makes use of 2D relative position encoding that is able to viably connect information 
across objects with positional awareness (Srinivas et al., 2021). The use of relative position encoding 
can help save parameters as it can be shared among various heads (Wu et al., 2021). As proposed in 
(Shaw et al., 2018) and later improved by (Wu et al., 2021) the edge information or value embeddings 
in relation-aware self-attention can be calculated by modifying eq. (1) as follows:

zi = 
j

n

=
∑
1

a ij(xjW
V + rij

V) (3)

where rij
V ∈  dz is a vector depicting the edge between inputs xi and xj and dz=dx.

Next, the equation to calculate the compatibility function i.e., eq. (2) is also modified as follows:
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where bij ∈   is the 2D relative position encoding and is calculated as:

bij = xW r
i

Q
ij
T( )  (5)

where rij ∈  dz is a vector interacting with the query embedding.

Hyperparameters
In this study, 8 heads for the MHSA layer of the BoTNet-50 model were used. Other hyperparameters 
that were included along with their optimized values are mentioned in Table 2. The loss function 
used is the Cross-Entropy Loss which is the most popular choice in deep learning. It computes the 
performance of the classification task by taking the sums of negative logarithms of probabilities of 
different classes. To avoid rigorous pretraining which is a common practice in models using the self-
attention mechanism, the recently proposed sharpness aware minimizer (Foret et al., 2021) with a 
base optimizer as Adam was used. This method improved the generalization ability of the model by 
smoothing the loss function. The motivation behind the sharpness aware minimization is that instead 
of searching for parameter values that reduce the training loss, it looks out for values of parameters 
wherein their entire neighborhood has a consistently low training loss value. Thus, it simultaneously 
reduces the loss value and loss sharpness (Foret et al., 2021).

Table 3. Hyperparameters of the model and their optimized values

Hyperparameter Optimized value

Number of epochs 60

Learning rate 3e-5

Weight decay 3e-5

Loss criterion Cross-Entropy Loss

Optimizer SAM (with base optimizer as Adam)
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RESULT AND ANALySIS

The dataset was initially divided such that 80% of data went to the training set, 10% to the 
validation set, and an additional 10% was held out for the testing purpose to verify the efficacy 
of the proposed technique. The average classification accuracies after five-fold cross-validation 
on the ensemble of 10 different slices were 91.67% for AD vs. CN, 85.22% for MCIc vs. CN, 
and 82.67% for MCIc vs. MCInc. As seen from Table 4 these accuracies are significantly 
higher than the ones achieved by Salvatore et al., 2015 and Pan et al., 2020 using PCA+SVM 
and CNN-EL approaches respectively. Figure 6 displays the training and validation loss and 
accuracy as functions of epochs during training.

To more extensively evaluate the performance of the model, Accuracy, Precision (or positive 
predictive value), Recall (or sensitivity), F1 score, and ROC-AUC score were calculated for the 
three classifications. Accuracy is the most commonly used performance metric of a classification 
model that determines the rate of correct classifications. Simply put, accuracy represents a ratio of 
the correct classifications calculated as the number of correct predictions divided by the number 
of predictions made. Precision refers to the correctness of a classifier. This number is determined 
by dividing the number of true positives by the total number of positives (i.e., true positives 
plus false positives). Recall refers to the sensitivity of a classifier. It is determined by dividing 
the sum of true positives and false negatives by the total number of true positives. F1 score is 
the weighted mean of precision and recall. Basically, this score is calculated as two times the 

Figure 6. Training versus Validation loss and accuracy plots for the three classifications

Table 4. Accuracy for the three binary classifications

Research Classifier AD vs. CN MCIc vs. CN MCIc vs. MCInc

Salvatore et al. (2015) SVM 76% 72% 66%

Pan et al. (2020) 3D-SENet 80% 75% 57%

Pan et al. (2020) CNN-EL 84% 79% 62%

Proposed approach BoTNet 91.67% 85.22% 82.67%
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product of precision and recall divided by the sum of their parts. ROC-AUC (Receiver Operator 
Characteristic – Area Under the Curve) is a measure of performance that plots the relationship 
between the true-positive rate and the false- positive rate for various threshold settings. Its value 
ranges from 0 to 1. Figure 7 displays plots of ROC curves for the three classifications. As seen 
from Table 5 the binary classification AD vs. CN gave the highest precision, recall, F1 score, 
ROC-AUC score, and accuracy, followed by MCIc vs. CN, and then MCIc vs. MCInc. This 
hierarchy could be justified as a result of the difference in the size of the data available for these 
four categories as seen in Table 1. Figure 8 represents a graphical illustration for visualizing the 
improvement in results obtained from the proposed approach.

CoNCLUSIoN

This paper experimented with the use of Bottleneck Transformers (BoTNet) for the early detection 
of AD by performing three binary classifications between (i) AD and CN, (ii) MCIc and CN, and 
(iii) MCIc and MCInc. The final accuracies yielded by them were 91.67%, 85.22%, and 82.67% 
respectively. The advocated methodology showed a significant improvement in the accuracies from 
previous attempts at these classifications for AD detection. Especially, a remarkable performance 
enhancement for the classification between MCI converters and non-converters can provide great 
insight in further understanding what factors contribute to the transition from MCI to AD. Moreover, 

Table 5. Results of different evaluation metrics

Classification Precision Recall F1 score ROC-AUC 
score

Holdout set 
accuracy

Validation 
accuracy

AD vs. CN 0.907 0.895 0.897 0.89 89.5% 91.67%

MCIc vs. CN 0.88 0.87 0.87 0.86 87.28% 85.22%

MCIc vs. MCInc 0.80 0.76 0.78 0.77 76% 82.67%

Figure 7. ROC curves for the three classifications
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BoTNet is computationally faster than pure self-attention models like Vision Transformer and just 
slightly slower than convolution-based models with a significant increase in overall performance. 
Thus, indicating the importance of hybrid convolution + attention models for computer vision and 
in particular, for the medical imaging domain.

As a future direction, the proposed approach can be extended to the task of image segmentation 
for identifying biomarkers that help distinguish between MCI converters and non-converters to 
facilitate an appropriate treatment plan for the two classes. Furthermore, the prescribed method may 
be deemed helpful in the early detection of more such diseases as well as be useful in finding their 
relevant biomarkers.

Figure 8. A bar graph illustrating the results from various research works compared with the one proposed
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