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ABSTRACT

The current XAI techniques present explanations mainly as visuals and structured data. However, these 
explanations are difficult to interpret for a non-expert user. Here, the use of natural language generation 
(NLG)-based techniques can help to represent explanations in a human-understandable format. The 
paper addresses the issue of automatic generation of narratives using a modified transformer approach. 
Further, due to the unavailability of a relevant annotated dataset for development and testing, the authors 
also propose a verbalization template approach to generate the same. The input of the transformer 
is linearized to convert the data-to-text task into text-to-text task. The proposed work is evaluated 
on a verbalized explained PIMA Indians diabetes dataset and exhibits significant improvement as 
compared to existing baselines for both manual and automatic evaluation. Also, the narratives provide 
better comprehensibility to be trusted by human evaluators than the non-NLG counterparts. Lastly, 
an ablation study is performed in order to understand the contribution of each component.
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INTRODUCTION

With the advancement in technology, Artificial Intelligence (AI) has gained enormous popularity and 
applicability in various domains such as healthcare, finance, retail, etc. (Sarivougioukas & Vagelatos, 
2020). In order to produce high-performance commercial products, many AI-based companies tend 
to develop predictive models whose behaviour may sometimes deviate from human expectations 
(Cheng et al., 2021). Traditional AI systems often lack transparency in decisions due to their 
complex nature and hence, are unable to explain such deviations (EU, 2019). In critical systems like 
autonomous (Fiorini, 2020; Pandey & Banerjee, 2019) and AI-assisted healthcare systems (Gupta et 
al., 2021; Sun et al., 2019), there is a need to induce explainability of decisions for social, practical, 
and legal reasons. Hence, recently the branch of eXplainable Artificial Intelligence (XAI) has gained 
importance in applications where the result of committing a mistake can be disastrous (Gunning & 
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Aha, 2019). It refers to the branch of AI which provides reasoning behind the predictions of any AI 
model. Further, XAI techniques can be broadly divided into intrinsic and post-hoc wherein, intrinsic 
techniques aim to provide explanation along with the prediction. Whereas the post-hoc techniques 
are applied on models to produce explanation after the output is predicted. The paper aims to build 
an explanation-to-narration module for post-hoc explanations.

The current state-of-art XAI techniques present explanations in many forms such as visual, audio, 
linguistic, tabular, etc. The traditional trend in the literature is to represent results in the form of visuals, 
especially heat maps. However, these may not be well understood by a non-technical user. Out of 
the above-mentioned ways, linguistic methods can be attractive for interested non-expert users (J.M. 
Alonso et al., 2020). These allow users to understand the model’s predictions without any mathematics 
or engineering background and instigate willingness among them to use autonomous systems (J.M. 
Alonso et al., 2020). To date, few works have directly addressed the possibility of generating textual 
explanations from the structured output of an explainer. However, the NLP community (Singh & 
Sachan, 2021), especially working in data-to-text generation, can add a linguistic layer to many of the 
state-of-art post-hoc XAI systems proposed so far (Fayoumi & Hajjar, 2020; Inan & Dikenelli, 2021).

The explanations generated by the state-of-art post-hoc local XAI techniques such as LIME 
(Ribeiro et al., 2016), SHAP (Roth, 1988), etc. are generally in the form of S

i
=  { , }; ,FC F j n

j j
∀ ∈ ( )( )0  

where F
j
 and FC

j
 represent the features and their contribution respectively for each instance i . 

Natural Language Generation (NLG) techniques can convert data into text or text into text depending 
on the application requirement (Reiter & Dale, 1997). A sub-field of NLG i.e., data-to-text generation 
can be employed on the structured explanation S

i( )  to generate the corresponding narrative.
Traditionally, NLG uses templates to generate text from the given structured data. Although the 

template-based approach offers high linguistic quality and seamless content, it requires manual effort 
and is not diverse in nature. This static nature of templates lacks stylistic variation and somehow 
produces non-natural sentences. However, neural networks can help in generalizing beyond a limited 
amount of annotated data or templates. In this paper, the authors present a neural model for explanation-
to-narrative generation by extending a transformer-based model (Vaswani et al., 2017) that was 
formerly developed for the text-to-text generation task. One of the main challenges while proposing 
such a model for explanation-to-narrative generation is the absence of an annotated dataset containing 
weight contributions for each feature, and their corresponding annotated narratives. To address this 
challenge, authors first propose a verbalizational template-based data annotation technique. The 
proposed model is then trained for lexicalization and linguistic realization from such a collection of 
explanation-narrative pairs using a modified transformer model. The resulting generated narrations 
are compared to some NLG baseline model outputs using automatic and human evaluations. Also, 

Figure 1. An example of the structured explanation and corresponding narrations
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the authors present a comparison between the generated NLG interpretation of the explanation and 
a structured explanation.

The main contributions for this paper are:

1. 	 Introduce selection and template-based data annotation techniques for explanation-to-narrative 
generation to prepare training datasets consisting of templated narrations along with explanations.

2. 	 Propose a modified transformer-based model to generate narratives trained on the created pairs 
from the dataset. To the best of knowledge, this is the first work to explore the explanation-to-
narrative generation problem using the template-driven neural model.

3. 	 Carry out a series of evaluations to compare the model’s performance with existing baselines.
4. 	 Evaluate the generated narratives on various automatic and human evaluations.

The rest of the paper is organized as follows.
Section 2 discusses the existing literature related to explanation-to-narrative and data-to-text 

generation and Section 3 explains, in detail, the process steps along with the modified transformer 
architecture for narrative generation. The dataset, model baselines and various evaluation metrics 
used in the work have been described in Section 4. Section 5 presents the results and analysis along 
with an ablation study to validate the proposed architecture followed by conclusion and future work.

RELATED WORK

The section discusses various techniques applied for explanation-to-narrative generation to date. Also, 
various state-of-art techniques for a data-to-text generation used in literature have been reviewed.

Explanation-to-Narrative Generation
The task of explanation-to-narrative generation can be defined as generating text corresponding 
to the explanation generated by an explainer for a particular machine learning prediction. As an 
initial attempt to produce text for the explanation generated by post-hoc (Ribeiro et al., 2016) local 
explainer (LIME), Forest et al. (Forrest et al., 2018) proposed a template-based approach where the 
explanations are converted to paragraphs using slot-value replacement approach. The authors used 
SimpleNLG (Gatt & Reiter, 2009) to create templates. However, the templates are static in nature, 
lack variation in narration, and require a lot of human intervention. Further, Alonso and Bugarin (Jose 
M Alonso & Bugar{\’\i}n, 2019) developed a web service, namely, ExpliClass, which produces post-
hoc explanations for complex models in natural language using state-of-art NLG pipeline proposed 
by Reiter et al. (Reiter & Dale, 1997).

Besides using a template-based approach, researchers have also exploited End-to-End text 
generation approaches for generating textual explanations. In 2015, Xu et al. (K. Xu et al., 2015) 
incorporated encoder-decoder based narration module in their image classification model to 
semantically explain what was detected by the model. Similarly, in 2019, an explainable cancer 
diagnosis system was proposed to automatically produce textual reports leveraging the image caption 
model trained on image-pathologist report pairs (Z. Zhang et al., 2019). Authors (Park et al., 2018) 
also used multimodal justification pairs to generate the model prediction and corresponding textual 
justification. Further, authors (Ehsan et al., 2018) coined the term AI rationalization as a process 
to generate human-like explanations of the recommender system behaviour. They have proposed 
an LSTM encoder-decoder-based narrative generation system that accepts the states, actions, and 
corresponding annotations from the model. However, they don’t utilize the explanations from a post-
hoc explainer to generate the narratives. In this paper, authors have exploited the use of transformers 
to explain the post-hoc explanations in the form of narratives.
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Data-to-Text Generation
The main aim of the data-to-text generation task is to generate text corresponding to the given 
structured data. This section reviews various state-of-art techniques for data-to-text generation 
especially tabular data. Several domain-specific tasks such as weather-forecast (Reiter et al., 2005), 
sports game summarization, and biography generation (Lebret et al., 2016) have exploited the use 
of data-to-text generation. The research in data-to-text generation increased due to the availability of 
large datasets such as E2E (Novikova et al., 2017), ROTOWIRE (Wiseman et al., 2017) and WebNLG 
(Gardent et al., 2017). Authors exploited many techniques ranging from template-based (Goldberg 
et al., 1994; van der Lee et al., 2017) to a pipeline and further to deep learning based end-to-end 
approaches. Traditional techniques such as template-based and rule-based divide the task of data-to-
text into two major subtasks i.e., what to say (content selection) and how to say (surface realization) 
(Reiter & Dale, 1997). Further, several authors (Belz & Kow, 2009; Langner et al., 2010; Pereira et al., 
2015) employed Statistical Machine Translation (SMT) for data-to-text generation. These techniques 
automatically learn and combine the two subtasks.

However, deep learning-based Neural Machine Translation (NMT) outperformed the SMT 
approaches (Wiseman et al., 2017). Hence, data-to-text experts have proposed to use neural models 
by linearizing the structured input to text. Here, the data-to-text task is transformed into a text-to-
text generation task. Initially, authors (Sutskever et al., 2014a) proposed Sequence-to-Sequence 
(Seq2Seq) based models to convert data to text. Such systems employ encoder-decoder networks, 
which use recurrent neural networks (RNN) and its variants as basic units (Nie et al., 2019). Following 
this, authors (Bahdanau et al., 2014) proposed Seq2Seq models with attention mechanism in the 
encoder and decoder layers. Sometimes, these models are unable to generate some important rare 
words from the input vocabulary. Hence, to address this problem, (Gu et al., 2016) incorporated a 
copying mechanism in the Seq2Seq models to include such rare words directly from the input text 
to the output text. However, these models suffered from long-term dependency problems due to the 
recurrent units. Further, Generative Adversarial Networks (GANs) are also employed in literature to 
generate text. However, they do not contain an encoder unit and are difficult to train. Also, in some 
cases, the model may collapse and is unable to capture the real distribution of data (Tolstikhin et al., 
2017). In order to tackle these issues, authors (Vaswani et al., 2017) proposed a self-attention based 

Table 1. Explanation-to-narrative generation literature

S.No. Authors Technique Post-hoc/ Intrinsic 
Explanations Limitations

1. Forest et al. Template-based approach 
using SimpleNLG Post-hoc (LIME)

Template based 
approaches lack stylistic 
variability

2. Alonso and 
Bugarin NLG pipeline Post-hoc (LIME) The approach is slow 

and inefficient

3. Xu et al. Encoder-decoder model Intrinsic The approach is not 
generalizable

4. Z. Zhang et al. Encoder-decoder model Intrinsic The approach is not 
generalizable

5. Park et al. Multimodal justification Intrinsic
The approach cannot be 
used for generating post-
hoc narratives

6. Ehsan et al. LSTM encoder-decoder Intrinsic The approach is time 
extensive
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transformer model. Initially, the transformer model was developed for text-to-text generation tasks 
such as summarization, machine translation, question answering, etc (Li et al., 2021; Moosavi et al., 
2021; Yermakov et al., 2021) It has been found that in various data-to-text tasks (X. Xu et al., 2020), 
transformers perform better than Seq2Seq models.

PROPOSED NARRATIVE GENERATION (MODIFIED TRANSFORMER) MODEL

The section describes the proposed work. It first explains the problem statement, followed by the 
architecture of the proposed modified transformer for XAI narrative generation.

Problem Statement
This study aims to model the explanation-to-narrative generation in an encoder-decoder framework 
where a record of structured explanation is given as input to generate a narrative summary of 
the explanation.

Given an explanation in the form of a record (R) represented by feature-contribution pairs 
( , ),( , ), ,( , )F C F C F C

i i1 1 2 2
…{ }  for an instance, the target is to generate a narrative for the 

explanation. For each feature F
i
 contributing towards the prediction of an instance, there exists 

a feature contribution C
i

. The narrative is, hence, a well-formed textual summary 
y w w w t is the sentence length

t
= …{ }( )1 2

, , ;      of the record R. The paper proposes to model 
the explanation-to-narrative generation task as a text-to-text generation task which can be 
represented as:

α θθ=
( )
∑argmax log ( | ; )
,R y

P y R 	 (1)

where α  is the next generated word and θ  is the hyperparameter.

Table 2. Data-to-text generation literature

S.No. Authors Technique Limitations

1. Reiter & Dale et al. Pipelined approach Time consuming

2. Goldberg et al., van der 
Lee et al. Template Lacks stylistic variability

3. Belz & Know, Langner 
et al., Pereira et al.

Statistical Machine Translation 
(SMT) Time consuming

4. Wiseman et al. Neural Machine Translation (NMT) -

5. Bahdanau et al. Seq2seq models with additional 
attention mechanism

Time consuming and does not 
include rare words

6. Gu et al. Seq2seq models with copying 
mechanism Time consuming

7. Tolstikhin et al. Generative Adversarial Networks 
(GANs)

Difficult to train and may 
collapse

8. X. Xu et al. Transformers Does not include rare words
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Proposed Architecture
The paper employs the modified transformer-based encoder-decoder model to translate the 
explanations to narratives. Table 3 shows the difference between the vanilla transformer and the 
modified transformer. Further, figure 2 shows the detailed pipeline of the proposed model. The 
pipeline of the model can be broadly divided into two tasks, namely, Input data generation and 
narrative generation.

The post-hoc local explanation for the prediction of a particular instance (i) is in the form 
of a record FC FQ

i i
,( ) . The explainer discretizes each feature into quantiles FQ

i( )  and assigns 
the contribution value FC

i( )  to each FQ
i
 associated with the instance. As positive contributions 

are significant for positive labels and negative contributions for negative labels, hence, the data 
cleaning and mapping step prunes the insignificant values and maps the features with the 
contributions. Further, a verbalizational template is generated to facilitate the data annotation 
step whose output can be used as reference text for the proposed transformer model. Also, the 
structured explanations are linearized to be fed as input to the transformer. The encoder of the 

Figure 2. Pipeline of Explanation-to-Narrative Generation

Table 3. Difference between transformer and modified transformer architecture

Characteristics Transformer Modified Transformer

Positional Encoder Included Does not include

Normalization layer Layer normalization RMS normalization

Search strategy in decoder 
unit Greedy search Beam search

Copying mechanism Does not include Included

Activation function in Feed 
forward layer ReLU Leaky ReLU
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transformer model learns the latent representations from the given input text. The decoder then 
generates the narratives using the learned representations from the encoder. The following 
subsections explain the design details of various blocks.

Record Representation

Each record can be represented as a set of {key,value} pairs where each feature quantile FQ
i( )  

represents a key and the corresponding contribution ( )FC
i

 represents the value (as shown in eq. 2):

( ∀ ∈ ∃( ) = =( )r R k v k FQ v FCand
i i

)( , |   	 (2)

There is an exception in the representation that the last pair’s key is represented by string ‘reference 
text’ and the corresponding template annotated text represents the value. It may be noted that the 
value for some of the keys may be blank (or NULL) as those quantiles don’t contribute towards the 
prediction of that instance.

Data Cleaning and Mapping

A post-hoc local explainer generates instance explanation in the form of a record Q C
i i i

n

,( ){ }
=1

. It 

discretizes each contributing feature into quantiles (Q
i
) and assigns contribution values (C

i
) to them. 

The input to the proposed model is, hence, a record of {key,value} pairs where key is denoted by the 
feature quantile Q

i( )  and its contribution represents the value. However, some features may drive 
the prediction towards the contradictory label. Hence, the authors proposed to eradicate those features 
before providing the record as input to the transformer model. Also, it has been observed that only 
few top features significantly contribute towards the prediction. Hence, as a data cleaning step, the 
top ‘p’ features are filtered out from the given set based on their contributions. 

Template Generation and Data Annotation
In order to train a supervised learning-based transformer model, training data is required to teach 
the structure of the sentences to the model. However, as per the author’s knowledge, there does not 
exist any such explanation-to-narrative dataset. Hence, in the paper, authors propose a template-
based approach to annotate the training data. A set of human annotators are employed to generate 
reference phrases for each feature quantile. Multiple verbalizations are then generated for each input 
by combinations of the phrases to increase the diversity of text generation.

Linearization
Here, authors propose to cast the explanation-to-narrative task as a text-to-text task. Hence, 
they linearize the input columns into text sequences (Kale, 2020). The structured data columns 
are linearized into input text using a defined format, i.e., “<table> <cell> v

1
 <col_header> 

f
1

 </col_header> </cell> <cell>……..</cell> <cell> v
n

 <col_header> f
n

 </col_header> 
</cell> </table>”. The input linearized text can then be fed to the proposed transformer to 
generate the corresponding narrative. 

Narrative Generation Model
Transformers have shown state-of-art results in text-to-text generation tasks such as machine 
translation, abstractive summarization, question answering, etc. The authors have employed a 
transformer model (Vaswani et al., 2017) which consists of an encoder and decoder to generate 
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the corresponding narratives. In this paper, a modified transformer model has been proposed for 
explanation-to-narrative generation.

However, there are few rare words which cannot be directly generated by the decoder module 
using the generative vocabulary. Hence, the authors propose to employ the copying mechanism (See 
et al., 2017) which copies rare words (such as the name of the features) from the input linearized text 
and pastes them directly to the output sequence.

Encoder
The encoder unit of the transformer converts each discrete input symbol (including features, tags, 
contribution values and tag properties) into numerical representations which are then fed into the 
decoder part. It takes the linearized text as input. This linearized input text is initially converted to 
numerical vectors using input embeddings. Since, the order of the input features does not matter in the 
narration, hence, it has been proposed to remove the positional encoder from the vanilla transformer 
encoder. The main objective of the encoder is to learn better input vector representation that manages 
long-term dependencies and keeps semantic and syntactic properties intact.

The multi-head attention enables the model to parallelly focus on data from different dimensions. 
It concatenates the attention vectors of j heads. The resulting multi-head attention output is then fed to 
a feed-forward network which constitutes two linear layers and a Leaky ReLU activation layer. Each 
encoder in the encoder stack also consists of normalization layers which provide a residual connection 
around each sublayer. In this work, the authors replace the Layer normalization layer with the Root 
Mean Square (RMS) Layer Normalization (B. Zhang & Sennrich, 2019) as the layer normalization 
in standard transformer may raise computational overhead. It normalizes all the inputs to a neuron 
in a layer using R(c) statistic as:

c w x
i

j

n

ij j
=

=
∑

1

	

Figure 3. Proposed architecture of Modified transformers
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c
c

R c
h

i
i

i
=
( )

	

R c
n

c
i

n

i( ) = ( )
=
∑

1

1

2
	 (3)

where w
i
 is the weight to the ith  output neuron, c

i
 is the normalized alternative of c

i
 i.e. the weighted 

summed inputs of output neurons and h
i
 is the rescaling gain parameter.

Decoder
The decoder part is responsible for generating narrative text to the corresponding explanations. It has 
the same components as the encoder with an additional encoder-decoder attention layer between the 
masked multi-head attention and feed forward neural network layer. The encoder-decoder attention 
layer of each decoder takes the input from the last encoder to learn the latent representations of the 
input which serves as the Key K

dec( ) , and Value V
dec( ) . Like the encoder part, the Layer normalization 

layer has been replaced with the Root Mean Square Layer Normalization in the decoder part as well. 
In addition, the decoder layer uses greedy search to find the next word to be generated based 

on the highest probability. However, the greedy search technique suffers from the problem that it 
might miss high probability words veiled behind a low probability word. Hence, the paper uses the 
beam search technique which aids in finding an output sequence with cumulative higher probability 
depending on the beam size.

Copying Mechanism
Some feature attributes in the feature contribution set (FC ) directly influence the text to be generated. 
Somehow, these cannot be directly generated by the vocabulary. Hence, it is suggested to directly 
copy those rare words from the attributes of the instance to be explained. The paper employs a copy 
mechanism while generating the output text. The copying mechanism was proposed (Gu et al., 2016) 
in the text-text generation to address such rare word limitations associated with Out of Vocabulary 
problems with text summarization. In copying mechanism, the next word w

i
 is generated by 

considering the following probabilistic distribution:

P c w a w x w b
g t c

T
t a
T

t x
T= + + +( )σ ∈ 


0 1, 	

P y P P P P y
i g vocab g enc dec i

( )= ( )+ −( ) ( )−1 	 (4)

where w w w
c a x
, ,  and b are trainable parameters and σ  is the sigmoid function. P

vocab
 is the vocabulary 

of the reference document. Here, P
g
 can be thought of as a switch to decide whether to generate word 

from the vocabulary or directly copy it from the input linearized text.

EXPERIMENTAL SETUP

The section presents the dataset used, various baselines, model parameters and settings, and evaluation 
metrics for the experiments conducted to validate the effectiveness of the proposed approach.
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Dataset
The model is evaluated and validated on the structured explanations generated by a post-hoc local 
explainer, namely, LIME. The explanations are generated for the predictions of diabetes in female 
patients using a publicly available UCI dataset (PIMA Indians, available at: https://archive.ics.uci.
edu/ml/datasets/diabetes) by a SVM model. The LIME explainer divides each feature into various 
quantiles to properly explain the contribution. Hence, the explanation dataset consists of feature 
attributes (divided into quantiles) and their corresponding contribution values for each instance. In 
addition, the reference text and its verbalizations are generated for each row using the proposed template 
approach. Figure 4 shows the explanation dataset instance and its corresponding reference texts.

Baselines
A comparison of the modified transformer has been done with the following state-of-art 
baseline approaches:

1. 	 LSTM (Hochreiter & Schmidhuber, 1997): It is a memory-based recurrent neural network 
(RNN) which resolves the problem of vanishing gradient associated with the vanilla RNNs. 
However, it processes inputs sequentially.

2. 	 Vanilla Seq2Seq (Sutskever et al., 2014b): It is an encoder-decoder model comprising of 
recurrent units such as RNN, LSTM or GRU as the main units. The decoder unit produces output 
text word-by-word conditioned on input.

3. 	 Vanilla Transformer (Vaswani et al., 2017): It is an encoder-decoder model based entirely on 
attention mechanism. It replaces the recurrent units with the multi-head attention layers in both 
encoder and decoder units.

4. 	 Pointer-Generator Network (See et al., 2017): It is a seq2seq model which uses copying 
mechanism along with coverage mechanism to keep record of the words that have been 
summarized for avoiding repetition.

5. 	 Copy-net (Gu et al., 2016): It applies copying mechanism to the seq2seq model’s decoder where 
the required word is copied from the input statement and pasted to the output sequence at its 
proper location.

Model Parameters and Settings
The modified transformer is implemented using Tensorflow library in python. It uses GPU Nvidia 
1080Ti with 11 GB RAM to train the model. The vocabulary size is set to limit of 7010 for both 

Figure 4. Explanation instance along with reference texts

https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/diabetes
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source and target texts. The implementation uses Adam optimizer to speed up the process. A set of 
parameters, known as hyperparameters, are selected experimentally before training the model. The 
dataset is divided into train, test and validate sets by 80:10:10 ratios. Further, the implemented modified 
transformer model includes eight encoders as well as decoders units. The implemented model also 
uses a learning rate scheduler wherein the learning rate of the model is initially set to a value i.e. 
0.01. During training, it is decreased exponentially (following eq. 4) until the validation loss stops to 
decrease. Let t be the iteration number from the total training iterations, k be the hyperparameter and 
be the learning rates, then learning rate during the training process can be calculated as: 

� *α α= −( )
0
e
kt 	 (5)

Also, during the testing, the beam size is set to 3.

Evaluation Metrics
The proposed model’s performance is evaluated on various parameters such as BLEU, ROGUE, 
METEOR scores and various human evaluation parameters. Let n  be the total number of candidate 
words, C w( )  be the count of each unique word ‘w’ in the candidate text and R w( )  be the count of 
appearance of each w in the reference text.

1. 	 BLEU score (Papineni et al., 2002): The weighted average of the counted number of matches 
between the reference and model generated (candidate) text irrespective of the words’ position. It is 
measured on a scale of 0 to 1. Bleu score is mathematically calculated using Minimum function as:

Bleu e p
m

n

j
j

=


















−










=
∏min ,1

1

1

4 





1

4

	

where:

p
C w R w

nj

s target vocab j s=
( ) ( )( )

∈ − ∈∑ ∑ min ,
	 (6)

Table 4. Hyperparameter settings

Model Modified Transformer

Batch Size 16

Initial learning rate 0.01

Loss function Cross-entropy

Optimization Algorithm Adam

Number of epochs 13

Learning rate scheduler Exponential learning rate decay

Beam size 3

Number of Encoder layers 8

Number of Decoder layers 8
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and m is the length of reference text.

2. 	 ROUGE (Lin, 2004): Rouge-N generally calculates the score between the candidate text 
‘n-grams’ and the reference text. Mathematically, it can be defined as:

ROUGE N
Count n gram n

Num
r reference n gram r

n

i text i

gram

− =
−( )

∈ − ∈∑ ∑ ,

ss m( )

	 (7)

where Count(n-gram,n) calculates the total number of times specific n-gram appears in candidate 
document, Num_n_grams(m) donate the number of n-grams in reference document.

However, Rouge-N requires consecutive matching of words in an N-gram, Rouge-L matches 
words in a subsequence. The words can be matched in any order in the longest matching sequence 
using Longest Common Subsequence (LCS) algorithm.

3. 	 METEOR (Banerjee & Lavie, 2005): The METEOR metric computes the score of the 
implemented system by aligning the candidate text to any one of the reference text. Let ‘n’ is the 
number of mapped unigrams, then, precision (P) and recall (R) are calculated as ‘n/ l c( ) ’ and 
‘n/  l r( ) ’, where l r( )  and l c( )  are reference and candidate lengths, respectively. Further, F-score 
can be calculated as:

F
RP

R P
=

+
10

9
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Hence:

METEOR F Penalty= −( )1 	 (8)

It ranges between 0 and 1.

4. 	 Human evaluations: Human evaluations are performed for better, thorough, and accurate 
comparisons. Hence, 15 human annotators were asked to score generation texts in various 
aspects, namely content faithfulness, sentence fluency, relevance and style embodiment on a 
5-point Likert scale. Each annotator was provided with a set of information, first being sentence 
from the modified transformer model followed by the sentences generated from the baselines. 
Afterwards, they were asked to rank the information. In addition, annotators were asked to 
score the non-NLG and Narratives generated by the modified transformer on a 5-point Likert 
scale for various parameters like Readability, Understanding and Trust. For experimental 
study, the results on 20 test instances were evaluated and the average of all values was taken 
for each evaluation category.
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RESULT AND ANALYSIS

The section presents the experimental results and analysis on the dataset for explanation-to-narrative 
generation. A comparative analysis of the model with above mentioned baselines on various evaluation 
metrics has been performed along with ablation study to visualize the effect of model’s components.

Figure 6 shows the results of the LIME explainer for an instance from the dataset, followed by 
the feature selection and linearization outputs.

Table 5 illustrate some output examples from the proposed model and other baselines. It has 
been observed that the modified transformer produces texts which are closer to the human generated 
text (aka GOLD text). Table 6 compares the BLEU, ROUGE-1, ROUGE-2, ROUGE-3, ROUGE-L, 
and METEOR scores of the proposed approach with other baselines. Further, the proposed approach 
outperforms all the baselines for each automatic evaluation metric. Especially, the model outperforms 
the most commonly used LSTM baseline for machine translations by a large margin with respect 
to ROUGE metrics. Also, it outperforms vanilla transformer as it incorporates copying mechanism 
to include rare words in the output sentence. It performs better than pointer-generator and copy-net 
networks because unlike them, it is a transformer-based network having RMS normalization layer. 
Also, the proposed model shows similar results on validation dataset with 0.612 BLEU and 0.621 
ROUGE evaluation scores.

Figure 5. 5-point Likert scale for Human evaluation

Figure 6. Example instance of Pre-processed input data for the modified transformer. It includes LIME explainer output, the feature 
selection and linearization outputs.
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In addition, table 7 provides the comparative analysis of the approaches for human evaluation 
categories. The human annotators were asked to score the generated texts on a Likert scale which 
consists of value points as: strongly disagree (1), disagree (2), neither agree or disagree (3), agree (4) 
and strongly agree (5). The scores from all the annotators for each evaluation category is averaged to 
find the human evaluation score. It has been observed that modified transformer (p<0.001) model 
performs better than other baselines w.r.t. sentence fluency and relevance. The inclusion of copying 
mechanism along with beam search strategy helped the model outperform the baseline techniques. 
However, Pointer generator network performs marginally better than the model w.r.t. style embodiment 
due to coverage mechanism. Further, table 8 shows the responses of human annotators for content 
faithfulness in terms of yes, no, partially or can’t. The annotators agreed that more than 79% of the 
text generated by the modified transformer model is faithful to the content. However, 5% of the 
generated text is partially correct and 6% is incorrect. Rest, many annotators couldn’t tell anything 
about the content generated. The results suggest that the modified model generates more factually 
correct statements compared to all baseline models.

In addition to this, the authors compared the model with non-NLG output i.e. the structured 
output from the explainer (as shown in table 9). On an average, the human annotators understood the 
narratives (NLG output) better than the non-NLG output. Also, generated narratives were easy to 

Table 5. Generated texts for linearized explanations

Linearized Input:
<table><cell>0.469610357<col-header>glucose > 140.00</col-header></cell><cell>0.091565354<col-header>bmi 
> 36.50</col-header></cell></table>

Reference Text:
The patient has chances of diabetes because her glucose levels are dangerously high and the bmi of the patient is high

LSTM:
The patience have have risk diabetic because levels is shoot

Seq2Seq:
The patience has diabetes because glucogen level high and or bp is obese bp

Vanilla Transformer:
The patient diabetic reason glucose level are high and bmi heavy obese bp

Pointer Generator:
The patient have diabetic because glucose levels is high bmi obese overweight

Modified Transformer:
The patient has chances of diabetes because blood tests report high glucose and patient’ s bmi values falls within severly 
obese category

Table 6. Automatic evaluation results

Model BLEU ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-L METEOR

LSTM 0.561 0.465 0.468 0.472 0.481 0.416

Seq2Seq 0.564 0.469 0.471 0.475 0.485 0.420

Transformer 0.586 0.512 0.522 0.527 0.562 0.469

Pointer-Generator 0.592 0.481 0.493 0.501 0.518 0.481

Copy-net 0.598 0.492 0.519 0.505 0.521 0.483

Modified 
transformer

0.639 0.651 0.665 0.674 0.678 0.569
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read and built trust as humans understand text better than facts. The proposed model proposes a 
modified transformer with encoder-decoder self-attention layers. Hence, it can be observed that the 
training complexity associated with the approach is O t2( )  where t is the sequence length.

Ablation Study
This section focusses on conducting extensive ablation studies to understand contribution of each 
component of the model. Table 10 shows the results for different evaluation metrics.

Here, ✓ means the inclusion of corresponding column component and  means removal of the 
column component. Here, the paper uses “CM” for copy mechanism, “RMS” for Root Mean Square 
Normalization, “BS” for Beam Search and “LRELU” for Leaky ReLU.

Effect of Copying Mechanism
From the table 8, it is evident that copying mechanism plays an important role in increasing the 
efficiency and faithfulness of the text. Without any component, the model acts as a vanilla transformer. 
Incorporating copying mechanism in vanilla transformer for explanation-to-narrative generation 
helps in increasing the scores in all the automatic metrics as it directly copies the rare words from 
the input to the narrative text.

Table 7. Human evaluation results

Evaluation 
category LSTM Seq2Seq Transformer Pointer-Generator Copy-net Modified 

Transformer

Sentence 
Fluency -0.56 -0.32 0.34 0.32 0.36 0.79

Relevance -0.21 -0.05 0.45 0.48 0.63 0.86

Style 
embodiment 0.25 0.32 0.36 0.82 0.45 0.76

Table 8. Responses of content faithfulness

Response LSTM Seq2Seq Transformer Pointer-
Generator Copy-net Modified 

Transformer

Yes 30% 42% 76% 69% 71% 82%

No 52% 34% 14% 20% 19% 6%

Partially 08% 21% 7% 6% 7% 5%

Can’t decide 10% 3% 3% 5% 3% 7%

Table 9. Comparison of narrative with non-NLG output (-1 to 1)

Parameter Non-NLG Narrative

Understandability -0.72 0.78

Readability 0.2 0.89

Trust -0.45 0.84
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Effect of RMS Normalization and Leaky ReLU
In this part, the authors compared modified transformer model with the transformer model with 
copying mechanism. It is quite evident from the table that with the inclusion of RMS normalization 
in the encoder and decoder part of the transformer, the speed of the network increases considerably by 
28% while maintaining comparable performance. Also, with the replacement of ReLU layer with the 
Leaky ReLU, the time taken for training the network decreases by 15% while maintaining performance.

Effect of Beam Search
The model is also tested for the Beam Search component. When beam search is added in the decoder 
unit, each of the automatic metrics are improved slightly as compared to vanilla transformer. This 
is, however, reasonable because the beam search aims at increasing output quality and faithfulness.

CONCLUSION

The explanations generated by the state-of-art post-hoc XAI techniques are mainly in the form of 
structured data. As a non-expert user finds it difficult to interpret as well as trust the explanations, the 
need to generate narratives from such explanations necessitates the extensive use of NLG techniques. 
The paper proposed an approach for automated generation of narratives using a modified transformer 
with copying mechanism for data-to-text generation tasks. Initially, the input data is linearized to 
convert the task into text-to-text. Further, a verbalizational template-based approach is also proposed 
to annotate the data for training and testing the transformer. Our modified transformer uses the RMS 
normalization layer in the encoder and decoder along with a copying mechanism that includes rare 
words from input to output sentence. The proposed approach generated high quality narratives for 
structured explanations and outperformed various baselines for data-to-text on automatic and manual 
evaluations with a BLEU score of 0.639. During the process of comparing the narratives with non-
NLG output of the explainer, the human annotators preferred the narratives by a significant margin. 
Also, the ablation study exhibited that copying mechanism plays an important role in increasing the 
efficiency and faithfulness of the text and the inclusion of RMS normalization layer, Leaky ReLU 
and Beam search enhance the performance of the model.

Table 10. Ablation study

CM RMS BS LReLU BLEU ROUGE METEOR Time taken 
(s)

    0.42 0.48 0.412 0.79

✓   ✓ 0.62 0.656 0.51 0.72

✓ ✓   0.626 0.668 0.528 0.61

✓ ✓ ✓  0.631 0.671 0.559 0.59

✓ ✓ ✓ ✓ 0.639 0.678 0.569 0.32
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