
DOI: 10.4018/IJISMD.297046

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

The Requirement Cube:
A Requirement Template for Business, User, and
Functional Requirements With 5W1H Approach
Yasar Ugur Pabuccu, R&D Center, Kuveyt Turk Participation Bank, Konya, Turkey*

 https://orcid.org/0000-0002-8263-5418

Ibrahim Yel, R&D Center, Kuveyt Turk Participation Bank, Konya, Turkey

 https://orcid.org/0000-0002-0052-3296

Ayse Berrak Helvacioglu, R&D Center, Kuveyt Turk Participation Bank, Konya, Turkey

 https://orcid.org/0000-0002-5533-4572

Büşra Nur Asa, R&D Center, Kuveyt Turk Participation Bank, Kocaeli, Turkey

ABSTRACT

Requirements engineering activities are carried out to come up with right and suitable quality
requirements. However, problems in requirements engineering remain even though there is a vast
amount of requirement elicitation and writing methods. Methods are either too specific for industry
application or focus on a specific part of requirements engineering. This paper proposes a new
requirement writing template, the 5W1H requirement cube. The template consists of the answers
to six questions (why, who, when, where, what, and how) and links business, user, and functional
requirements in a hierarchy within the enterprise business architecture. The template was developed
in a prominent Islamic Bank in Turkey and tested on a case study. The authors have rewritten three
software requirement specification (SRS) documents with the new approach and compared them,
showing that new approach has more brief and well-organized documents. BOA Cube software has
been developed to implement the 5W1H requirement cube approach within the organization.

Keywords
5W1H, Requirement Patterns, Requirement Templates, Requirements Engineering, Software Requirements

INTRODUCTION

Requirement elicitation is an iterative process that obtains requirements from necessary stakeholders
via communication, prioritization, negotiation, and collaboration, and it uses techniques from social
sciences, knowledge engineering, and group dynamics rather than computer science (Zowghi &
Coulin, 2005). The whole activity regarding the gathering, elicitation, and documenting of the software
requirements is called requirements engineering (RE) and it is a fundamental part of the software
development process (Garcia, Segura, & Aguirre, 2020). Insufficient requirement specifications are

https://orcid.org/0000-0002-8263-5418
https://orcid.org/0000-0002-0052-3296
https://orcid.org/0000-0002-5533-4572

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

2

still a major failover reason for software projects. Studies show that poor quality requirements cause
12%–71% failover in information systems projects (Davey & Parker, 2015).

Problems in RE can be listed as communication challenges, natural language burdens, requirement
changes, unnecessary requirements, the uncertainty of business needs, a lack of client support,
unelaborate requirements engineering, and the nondeterministic nature of RE (Davey & Parker,
2015). The mistakes during RE arise from human errors (communication, participation, domain
knowledge, specific application knowledge, process execution, other cognition), process errors
(inadequate methods, management, elicitation, analysis, traceability), and documentation errors
(Walia & Carver, 2015).

Requirements also have a terminology problem. Shareholders may refer the same requirement
statement as user, software, business, system, or functional requirement. Besides, each role (customer,
developer, etc.) demands different levels of requirement details. Different classifications exist and
the prominent three ones are as follows (Alrumaih, Mirza & Alsalamah, 2018). Lauesen’s (2002)
classification is based on data requirements, functional requirements, quality requirements, managerial
requirements. Sommerville (2011) classifies requirements as user and system requirements (system
requirements are classified as functional and non-functional). Wiegers & Beatty (2013) classify
requirements as business, user, and functional requirements. Business requirements are related to
the purpose of software development, or why the software is being implemented; user requirement is
about what users will do with the software. Finally, functional requirements describe the software’s
behavior based on user requirements (Wiegers & Beatty, 2013). In addition, non-functional
requirements represent the system constraints, such as compatibility, reliability, performance,
portability, restrictions-legality, security, and usability (Silva, Pinheiro, Albuuerque, and Barroso,
2016; Silva, Pinheiro, Albuuerque, and Barroso, 2017).

All specified requirements have to be documented. They can be represented as informal
representations, semi-formal languages like entity-relationship diagrams, formal languages, or
knowledge representation languages, and each has an advantage. The documentation has to be done
in parallel with the level of details expected by each stakeholder and must be consistent (Pohl, 1993).
Non-textual notations and diagrams are supposed to describe all requirements universally but they
require a complex translation process, which may cause problems (Mavin, Wilkinson, Harwood, &
Novak, 2009). Even though formal languages sustain the highest precision, most stakeholders are not
familiar with them. Structured natural language supported by visual models and diagrams is the most
applicable way to document requirements (Wiegers & Beatty, 2013). Finally, the written requirements
form a document named ‘Software Requirement Specification’ (SRS). Due to the aforementioned
reasons, SRS has to be prepared for the audience it addresses. SRS is exposed to natural language-
related problems, similar to requirements such as ambiguity, inconsistency, incompleteness, etc.
Several templates are proposed in order to cope with these problems, such as Use Cases, activity
diagrams, and requirement templates, etc. (Tiwari & Gupta, 2020).

In order to solve the ‘requirement puzzle’, requirement patterns are a promising option. Patterns
are in great use in software engineering and can be applied in the RE process. A requirement pattern
is “an approach to specifying a particular type of requirement”. The major contribution of the
requirement patterns is guidance. Moreover, they save time and bring consistency (Withall, 2007).
Requirement patterns allow organizations to reuse previously written requirements which streamline
the RE process, including elicitation, validation, and documentation activities (Franch, 2015).
Requirement patterns provide a “systematic way to specify a particular type of requirement in the
form of a template with categories of information (Kudo, Bulcão-Neto, & Vincenzi, 2020).” On the
other hand, a requirement template is a layout that consists of natural language sentences and some
structure. Requirement templates are a lower level abstraction compared to requirement patterns but
templates are a RE method that can be encountered in the industry (Palomares, Quer & Franch 2017).

The ‘requirement puzzle’ is still unsolved even with tremendous efforts and methods proposed so
far. It is hard for industry practitioners to find an applicable approach despite numerous studies about

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

3

RE (Mavin et al., 2009). As a company in the finance industry, our bank is no exception regarding
the difficulties of requirement elicitation and engineering. Therefore, the Information Technology
department decided to develop a tool along with the methodology to cope with the aforementioned
problems in a holistic manner. We have come up with a solution to set up a requirement template based
on 5W1H (Who, Where, When, What, Why, How) format, which can be used to write business, user,
functional, and non-functional requirements. Requirements are kept hierarchical in order to track the
relations between high-level business needs and functional details of the development. Requirements
are linked to business domains in the enterprise business architecture in versions in order to provide
a requirement repository. We have chosen 5W1H as the basis of the structure, because it is a widely
used technique in requirement elicitation, and it can be understood by both business and IT actors of
the organization. The new structure is named “Requirement Cube” because six questions of 5W1H
resemble a cube that has six sides. The approach relies on structured but not restricted natural language.
We would like to avoid complicated notation, which is why 5W1H acts as a guide with simple rules.
Each dimension of 5W1H holds a certain portion of the requirement and its content slightly changes
according to the requirement level. All the rules and the structure were examined by a group of business
analysts (BAs) who are the co-authors of this paper. The requirement cube structure has been tested
with real examples within the company as a case study. We have reformed three SRS documents and
rewritten these three documents based on the 5W1H principles and have sent six documents to 17
evaluators and asked them to score them based on nine attributes. 5W1H requirement cube template
achieved a 20% higher score on average compared to our current approach. BOA Cube software has
recently been developed and our organization has started using 5W1H Requirement Cube in the actual
software development process while this paper was being prepared. We are not aware of any other
holistic approach in RE methods that can address all types of requirements.

This paper is organized as follows: Background summarizes the related work. 5W1H Requirement
Template section explains the requirement cube model in detail. Case Study section explains the
empirical results. After that, conclusion is given.

BACKGROUND

There are several definitions of what a good requirement is. However, identified characteristics are
similar. A good requirement must be:

· unambiguous, concise, finite, measurable, feasible, testable, traceable (Westfall, 2005)
· complete, consistent, unambiguous (Pohl, 1993)
· complete, correct, feasible, necessary, prioritized, unambiguous, verifiable (Wiegers & Beatty, 2013)

Even though there is a common understanding of the good quality requirement, there is no clear
idea of how to achieve it. RE has evolved to achieve this goal. It consists of elicitation, analysis,
specification, validation, and management (Carrizo, Dieste, & Juristo, 2014). Finally, the SRS
document is composed.

More specifically, requirement specifications can be written in natural language, structured natural
language, semi-formal languages, or formal languages (Fabrini, Fusani, Gnesi, & Lami, 2000). While
specifying requirements, natural languages usually remain “syntactically ambiguous and semantically
inconsistent” which makes requirements erroneous and incoherent for software engineering (Umber
& Bajwa, 2011). However, in practice, it is reported that 79% of the software requirement documents
are formed with natural-language-based methods because of customer preference. Therefore, there
is a need for introducing an accurate, consistent, and user-friendly semi-formal method for writing
software requirements (Umber & Bajwa, 2011).

Semi-formal languages are templates or graphical notations like use case diagrams, user stories,
activity diagrams, and Unified Modeling Language (UML). Use cases are among essential graphical

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

4

notations or semi-formal methods. “A use case is a description of the possible sequences of interactions
between the system under discussion and its external actors, related to a particular goal (Cockburn,
1999)” and use cases are widely used by industry practitioners (Jacobson, 2004). However, they are
not the ultimate solution for requirement specification. The effectiveness of the use case may vary
based on the chosen use case template (Tiwari & Gupta, 2020). Use cases can only take place in
describing functional requirements (Lethbridge & Laganiere, 2005). Other techniques are necessary
for those missing elements, and use cases can specify 25% of a system (Cockburn, 1999). UML is
another important graphical notation for requirements. UML can be considered as “de facto standard”
or “the lingua franca” of software engineering. It can serve as a general-purpose language and can
be customized for different domains, organizations, or projects (Ciccozzi, Malavolta, & Selic, 2019).
UML is more suitable for detailed design and deployment of a software system, but it falls short of
analysis, documentation, and requirement specifications (Siau, 2016). Formal notations are generated
with syntactically and semantically well-formed expressions (Greenspan, Mylopoulos, & Borgida,
1994). Formal languages mathematically compose rules for grammar to achieve automatic requirement
elicitation and analysis by clear semantics. However, they are rarely used in practice because they
require specific software tools and users (both technical and business) with high knowledge of
mathematics (Yue, Niu, Wang, & Yue’L, 2019).

Structured natural languages are another option for requirement specification. Requirements
written in a constrained language behave as a subset of natural language and customers’ requirements
and can be developed with accuracy by software experts (Luisa, Mariangela, & Pierluigi, 2004).
Structured natural languages or, simply, requirement patterns provide “a systematic way to specify a
particular type of requirements in the form of a template with categories of information (Kudo et al.,
2019) .” Toro, Jiménez, Cortes, & Bonilla (1999) proposed two types of patterns and a requirement
template. The templates are similar to use case templates. However, steps and descriptions provide a
pattern of writing statements such as “{The {actor, system} action performed by actor/system, Steps
described in use case (RF–x)are performed}”. EARS (Easy Approach to Requirements Syntax) is
developed in Rolls-Royce Control Systems to define high-level stakeholder requirements built on
Event-Condition-Action (ECA), which is a constrained natural language (Mavin et al., 2009). The
generic syntax is “<optional preconditions> <optional trigger> the <system name> shall <system
response>”, and its five types are: Ubiquitous, Event-driven, Un-wanted behaviors, State-driven, and
Optional features. The syntax is slightly different based on the type. EARS is tested as a case study.
The pattern reduced ambiguity, vagueness, wordiness problems, eliminated complexity, omission,
duplication, implementation, and non-testability. The AMAN-DA is a pattern for writing security
requirements to guide requirement engineers. AMAN-DA utilizes a security ontology and domain
ontology. Security goals and requirements can be distinguished and written in different patterns.
A case study is conducted in the maritime industry to identify stakeholders’ security goals, and
participants have agreed on the model’s success (Souag, Mazo, Salinesi, & Comyn-Wattiau, 2018).

Toval, Nicolás, Moros, & García (2002) propose a method called SIREN (Simple Reuse of
Software Requirements), which focuses on the reuse of security requirements. SIREN consists of
requirement templates that are similar to use case templates. Issa & Al-Ali (2010) use a use-case-
based pattern. They propose a meta use case pattern at the top and discover use case patterns based on
application domains, such as financial, sales, and marketing, and come up with 174 distinct patterns.
Pacheco et al (2015) composed RRMSRC (The requirements reuse model for Software Requirement
Catalog), which is based on a commercial software tool RequisitePro. They classify requirements
in detail based on priority, criticality, viability, risk, source, and type. PABRE (Pattern-Based
Requirements Elicitation) framework is proposed as a meta-model to serve as a reusable requirement
pattern (Franch, Palomares, Quer, Renault, & De Lazzer, 2010). It consists of 29 patterns that all
target non-functional requirements. As of 2014, PABRE has 111 patterns obtained (Palomares, Quer,
& Franch, 2014).

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

5

In summary, requirement writing methods use either too specific and sophisticated approaches
like formal notations and domain ontologies (Siau, 2016; Yue et al., 2019) or focus on a specific type
of requirements, such as stakeholder and non-functional requirements (Souag et al., 2018; Toval et
al., 2002; Franch et al., 2010). Sophisticated approaches are almost impossible to be implemented in
industry practices (Siau, 2016). Use cases cannot handle non-functional requirements (Lethbridge &
Laganiere, 2005), and their completeness is questionable (Cockburn, 1999; Lethbridge & Laganiere,
2005). Besides, some templates or pattern-based approaches include hundreds of different templates
(Issa & Al-Ali, 2010; Palomares et al., 2014), which are hard to be implemented in practice. Therefore,
we studied an alternative requirement writing method to maintain the RE process in our organization.

5W1H REQUIREMENT CUBE TEMPLATE

5W1H is a well-known method for comprehending a fact thru perceiving all its important aspects.
It has emerged from journalism in order to report a complete news story (Carmagnola, Cena, &
Gena, 2011). By asking six simple questions (Who, Where, When, What, Why, How), it is possible
to find the actor, location, time, related action, process, and reason of the action (Jabar, et al., 2013).
Completeness is a common goal for both 5W1H and RE. Therefore, 5W1H is an ideal method for
requirement elicitation and engineering. 5W1H is widely used in different stages of the RE process
(Tiwari & Gupta, 2020), to clarify the whole process of RE (Westfall, 2005), identify the scenarios
from user stories to determine use cases (Ali & Lai, 2017), structure free text user requirements
in an automated way (Jabar et al., 2013), build an ontology framework to classify the concepts in
requirement elicitation (Awal, Gana, & Abdulrahman, 2018), or check the completeness of use case
templates (Tiwari & Gupta, 2020). In summary, 5W1H has been used in three stages of the RE
process: elicitation, analysis, and validation (Tiwari & Gupta, 2020). This paper proposes to utilize it
in the specification stage as well, and we are not aware of other studies employing this methodology.
We assert that all requirements (business, user, functional, and non-functional) can be written by
answering six questions with the rules mentioned in Appendix A. All three levels–business, user,
functional, and non-functional requirements–are written with parent-child relationships.

The requirement cube is easy to understand because it relies on a general clarification method,
5W1H. It keeps essential information for a “good, clear requirement”. The requirements are kept
hierarchically in relation to the business domain, which is why they are traceable. Requirement cube
records the aim or purpose of the requirement in “why” dimension, so requirements are verifiable.
Exact user roles, conditions, timing, and the place are written in “who”, “when”, and “where”
dimensions. Hence, the requirement cube is testable. Sine qua non properties of a good requirement–
completeness and unambiguity–are holistically sustained with the 5W1H method. Finally, “how”
dimension includes how the software will be developed.

5W1H Requirement Cube Template Explanation

The requirement cube consists of answers given to 5W1H questions. 5W1H questions guide BA
on how to write the requirements and combine their necessary elements, such as goals, actors, and
conditions, along with the systems’ design.

Why: It is the goal of the requirement, such as cost reduction, customer satisfaction, compliance
with regulations, performance, security.

Who: It is the person or the system object as the actor of the requirement.
Where: It shows where the requirement takes place, such as module/channel/user interface.
When-Trigger: It is the trigger that initiates the requirement, i.e., preconditions.
When-Conditions: It indicates the conditions that have to be met, i.e., post conditions.
What: It demonstrates the actions that will be carried out and depicts what the requirement will do.
How: It explains how the software will be developed and documents the system design details.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

6

“Why” and “How” dimensions are not parts of the requirement statement. “Why” keeps the goal
of the requirement, and “How” is used to document the system design. Instead of putting all design
details in one section of the SRS, the requirement cube approach utilizes the “How” dimension of
each requirement for technical issues. There is a separate technical design section in the proposed
SRS form but BA’s didn’t need to use it in the case study. This section is added in the SRS especially
for technical details of the large software developments.

Example:
When <Branch Staff> <clicks the Approve Button> <on Credit Application Screen> <credit

application has to be sent to supervisor> if <credit amount is bigger than 10.000 USD.>
Why: Reduce default risk and fraud.
How: A new workflow state will be added to the current credit application flow. A new script

has to be written. The script will find the supervisor of the branch member and assign the supervisor
as the approver.

The italic words (when and if) are used as conjunctions to set up a proper sentence. 5W1H
dimensions are given below.

Who: Branch Staff
When-trigger: clicks the Approve Button
Where: on Credit Application Screen
What: credit application has to be sent to the supervisor
When-condition: credit amount is bigger than 10.000 USD
“How” and “Why” are not included in the requirement text to keep the statement simple and make

it easy to follow. The remaining dimensions are sequenced based on the natural language grammar
structure. The sequence of the 4Ws and conjunctions can be changed according to different languages.
We believe it is a unique strength of the requirement cube, whereas almost all prominent patterns
are based on the English language. Besides, it is possible to compose additional patterns, such as
restriction requirements or conditional requirements to make the requirements linguistically better.
However, we did not create multiple patterns in order to achieve a simple solution. The formations
were initially created for the Turkish language and then revised for English.

“Who” statements should include specific roles. In the case of a general role (such as customers),
adverbs such as ‘all’, ‘except’, ‘only’ have to be used to make requirements clear. Writing “Individual
Customers” or “All Customers” is recommended instead of writing just “Customers”. Therefore,
the template pushes BA to think about alternative scenarios. BA has to write “always” if there is no
specific trigger or condition for the “When” section. Using an adverb like “always” or “never” also
pushes the BA and business sides to think about alternative scenarios.

We propose a similar requirement hierarchy as in Wiegers and Beatty (2016), which consists
of three levels: business requirements are at the top, user requirements in the middle, and functional
at the bottom. There is a why-how relationship between each level. The business requirement is the
purpose that user requirements have to achieve. Similarly, user requirements are the purpose of the
functional requirements, which show how user requirements will be implemented. There is no “How”
dimension in business requirements. Fig.1 illustrates the approach in three levels and shows how each
level is written and related to each other. The “how-why” relation between each level is similar to
Rasmussen’s abstraction hierarchy (Rasmussen, Pejtersen & Goodstein, 1994). “When” and “Where”
portions are optional in functional requirements. If “When” and “Where” dimensions are blank,
they will be taken to be the same as “When” and “Where” portions of user requirements. There are
some commonalities with Zachman’s enterprise architecture (Zachman, 1987) which uses 5W1H as
contextual dimensions with six different perspectives for stakeholders. However, the Requirement
Cube has three perspectives which are business, user and functional.

Business requirements stand for high-level business objectives and they are written in business
terms and definitions. System objects like screens’ menus and buttons are not mentioned in the business
requirement. Business requirements are grouped and linked to business modules and business functions

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

7

in the enterprise business architecture. “Why”, “Who”, and “What” dimensions are mandatory fields
in the business requirement. Business requirements can be written in the following template.

WHO – WHAT- WHERE - WHEN TRIGGER- WHEN CONDITION

User requirements are the core of software requirement specification. They represent the end-user
expectations from the software. Functional requirements lie at the bottom of user requirements and
explain how the system works to sustain user requirements. “How” dimension comprises free text
explanations, such as diagrams or mock-ups, showing the technical steps that need to be taken by the
developer, such as creating a new table, or adding a new field in the screen.

The requirement cube approach manages non-functional requirements such as security and
performance requirements as an attribute in the requirement. Each requirement (user or functional
level) can be categorized as UI, Task, Business Process, Security, or a Performance requirement etc.

The user requirement structure for Turkish and English is given below. Words in italic are fixed
conjunctions.

The structure of the user requirement for Turkish:
WHO – WHERE – WHEN TRIGGER – if – WHEN CONDITION – WHAT
The structure of the user requirement for English:
– when WHO – WHEN TRIGGER – WHERE– What – if – WHEN CONDITION
The detailed rule set is given in the Appendix A for English.
The structures of functional and user requirements are the same for Turkish. However, the

structure in English is revised.
WHO – WHAT – when – WHEN TRIGGER –and – WHEN CONDITION – WHERE

Figure 1. Requirement Cube Template Illustration

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

8

Case Study
A case study was carried out in Kuveyt Turk Participation Bank, which is the 10th largest bank in
Turkey and the number 1 in Islamic banking, with more than 400 branches. The Bank uses its own
in-house developed banking system, namely BOA, and has two official R&D centers. The Information
Technology department employs around 500 people. A case study was conducted to measure the
effectiveness of the 5W1H requirement cube template.

Our research questions are:

Hypothesis One: Does the 5W1H requirement template guide BAs to write clear and distinctive
requirements compared to the current approach?

Hypothesis Two: Does the 5W1H requirement template improve the quality of the requirements in
the SRS document?

Three SRS documents were used in the case study. We have reformed and rewritten these three
documents based on the 5W1H principles and have sent six documents to 17 evaluators and asked
them to score them based on nine attributes. 5W1H documents achieved better results. The study
was carried out in Turkish with the Turkish requirement cube template.

All three SRS documents belong to different business domains and they were written by different
BAs. Personnel Relative Identification and Listing is human-resources-related software development.
Stock Exchange Integration is related to a web service integration to buy and sell stocks online.
Courier Management is about courier operations in branchless banking. All descriptive statistics are
summarized in Table 1.

The current SRS format is quite permissive and BAs structure the requirements based on their
individual experiences and choices. The document format consists of fixed titles, and BAs fill each
title with free-text statements. One SRS document did not have distinctive requirements and all
requirements were explained in mixed long texts. One of them had three simple requirements. One
had 13 requirements, but they were defined with long and complicated wordings. After the 5W1H
template was applied the number of requirements increased and requirements became distinctive.
Besides, the amount of free-text statements was reduced drastically in two SRS documents. Therefore,
it can be stated that the 5W1H requirement template guides BAs to write requirements distinctively.

Table 1. Descriptive Statistics of the Case Content

Courier
Management

HR Personal
Relative Definition

Stock Exchange
Integration

Current 5W1H Current 5W1H Current 5W1H

Number of requirements 3 28 0 47 13 52

Number of user requirements 0 9 0 34 13 15

Number of functional requirements 0 19 0 7 0 37

Number of non-functional requirements 0 0 0 6 0 0

Number of words 1385 1642 2545 1554 2796 2567

Average word per requirement 8 49.5 NA 20.11 70.92 13.09

Average word per user requirement 0 40.3 NA 19.59 70.92 13.13

Average word per functional requirement 0 53.8 NA 23.86 NA 9.3

Average word per non-functional requirement 0 0 NA 18.67 0 NA

Number of words as free text 1360 104 2406 373 1874 1886

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

9

This example from the case study is translated to English. Fig.2 presents the earlier condition
of HR Personal Relative Definition for the “Send to Approval” button. Fig.3 shows the status after
the 5W1H template was applied.

Our former approach is based on screen names, and buttons are listed under the screen title.
Requirements are written in free text and it is hard to clarify how many requirements exist. Therefore,
additional effort is necessary to write the test cases. This portion of the SRS has 389 words. Mock-ups,
business needs, and functional requirements are written informally and business objective is missing.

However, the 5W1H requirement cube comprises a more sound SRS document. Business function
is used as the title instead of the screen name. The business functions come from the enterprise
architecture, and screen names are mentioned in the “where” portion in the requirement statement.
The SRS documentation is more brief (only 260 words) and well-organized. Business, user, and
functional requirements are clearly stated, and system design details are written under the requirement
statements in the “How” dimension, along with the mock-ups.

We have sent the current and 5W1H versions of the SRS documents to 17 people within the
organization. Participants consist of four analysts, five developers, two business members, two testers,
two managers, and two auditors. We asked participants to fill out a questionnaire of nine questions
regarding the overall quality of the requirements. The content of the questionnaire can be found
below. Questions were determined based on the good quality attributes found in Mavin et al (2009)
and Silva et al (2017).

· Requirements are clear and understandable. (Clarity)

Figure 2. Former Approach

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

10

· Requirements include relevant information regarding the development. There are no irrelevant
statements. (Relevance)

· Requirements are consistent with each other. (Consistency)
· Requirements are implementable. (Implementability)
· Requirements are testable. (Testability)
· Requirements state the need completely. (Completeness)
· Requirements have no duplication. (No Duplications)
· Requirements do not include overstatement. (No Wordiness)
· How the system will operate and how it will be developed is stated separately. (Well Organized)

Participants picked an answer for each attribute from a nine-point scale, from extremely
unsatisfactory as the minimum to extremely satisfactory as the maximum level. It was not possible
to compare among requirements because they were not distinctive and were written in long free text
in the former SRS format. Thus, participants made their evaluations document by document. Table
2 shows the descriptive results of the evaluations.

Results show that average scores have increased by 35%, 10%, and 18%, respectively, in all
three cases of 5W1H. Another valuable outcome of the template is homogeneity. The scores of the
former SRS documents vary between 5.31 and 6.45. However, the range of SRS documents with the
5W1H template is 7.04 to 7.2. Thus, it can be asserted that the 5W1H requirement cube template
brings homogenous and good quality results independent from business domains and the BAs who
prepared the document.

Each attribute’s scores are presented in Fig. 4 for the 5W1H and the former approach, showing
that the 5W1H template is more preferable in every aspect. Testability gets the highest score, while
the clearance score is the lowest, which is also the lowest for the former approach.

Regarding professions, the 5W1H approach is mostly favored by managers and followed by the
BAs. As potential writers of the new format, high scores from BAs are promising. Additionally, as
potential implementers, the developers are also critical and their score has increased by 25%. Not only
the IT side but also auditors and business units appreciate the new method. Test engineers believe
that there is no such difference between the two approaches although the testability question gets the
highest score. More senior employees tend to give higher scores for the 5W1H template. Females
prefer the 5W1H approach more than males. Overall, the 5W1H template achieved a 20% better result
on average, compared to the current approach. Table 3 presents more details.

The major weakness in this case study is the non-functional requirements. They are supposed
to be the hardest requirements to find, as the business side rarely mentions them. The documents
used in the case study have no non-functional requirements. During the case study, the team came
up with some non-functional requirements and was able to write in 5W1H format. However, the
5W1H template does not guide the BAs for non-functional requirements unlike user and functional
requirements. Hence, a template extension is useful in detecting non-functional requirements better.

There are validity risks associated with empirical studies that affect the trustworthiness of the
results. The first risk in our case study was creating 5W1H documents with extra quality. We used
past SRSs as they were and re-wrote them in 5W1H form. During this transformation, we might have
given more and specific attention to the 5W1H SRSs. Usually, BAs may complain that they do not
have enough time to prepare SRSs with extra care due to daily emergencies, meetings, and other daily
work requirements. Therefore, we prepared 5W1H versions during their daily job routine as an extra
task. Spelling mistakes and misconstrued sentences were left as they were. 14 of 17 reviewers had no
prior information regarding the 5W1H approach. The logic of the template was not explained to them
in detail. On the contrary, they just saw the fully constructed sentences. Before the case study, there
was no face-to-face meeting due to COVID-19 precautions. Instead, short videos were prepared to
explain what was expected from the study. We believe this distant approach had a positive effect on
validity because we did not create a certain expectation that might affect results in favor of 5W1H.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

11

Figure 3. After the 5W1H Template

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

12

Table 2. Descriptive Statistics of Evaluations

Project
Name

Courier
Management

Personnel Relative
Identification & Listing

Stock Agency
Integration

Overall

Current
SRS

5W1H
SRS Current SRS 5W1H SRS

Current
SRS

5W1H
SRS

Current
SRS

5W1H
SRS

Mean 5.31 7.20 6.45 7.08 5.94 7.04 5.90 7.10

Median 5.00 7.00 7.00 7.00 6.00 7.00 6.00 7.33

Mode 5.00 7.00 7.00 7.00 6.00 7.00 6.00 7.00

Standard
Deviation 1.51 1.06 1.22 1.62 1.31 1.16 0.91 1.07

Minimum 1.00 3.00 2.00 1.00 1.00 3.00 2.67 3.67

Maximum 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00

Figure 4. Average Score by Evaluation Item

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

13

CONCLUSION

Requirements engineering is more a process rather than a set of activities for gathering and specifying
different requirements’ levels. Requirements engineering can be divided into three sub-processes:
requirement definition, requirement specification, and software specification. There is a vast amount
of methods and techniques in RE but they are mostly specific to a sub-process. Therefore, it is hard
to carry on the “translation of business needs’’ to software specifications holistically and smoothly.
This study proposes a requirement template that can be used in all parts of the RE. We utilize the
5W1H method–a common technique in RE–to set up a hierarchical requirement template for business,
user, and functional requirements. The 5W1H requirement cube stores necessary elements of a good
requirement in “Why”, “Who”, “When”, “Where”, “What”, and “How” dimensions. It gathers and
links all types of requirements under the enterprise business architecture and composes a repository.

A case study was conducted to find if the 5W1H requirement template

- supports BAs to write clear and distinctive requirements compare to current approach
- improves the quality of the requirements in the SRS documents.

Three SRS documents were rewritten with the 5W1H template and sent to 17 people in the
organization with a questionnaire consisting of nine questions. Results show that BAs wrote clearer
and distinctive requirements and that of SRS documents’ quality improved with the 5W1H template.
However, the 5W1H template doesn’t guide the BAs for the non-functional requirements and an
extension is necessary to elicit the non-functional requirements.

Writing all three types of requirements in the 5W1H template solves the requirement transition
problems moving from high level to detail level in the RE and gives a solid account of writing software
requirement specifications. 5W1H requirement cube proposes the same template for business, user, and
functional requirements. In other words, it helps shareholders speak a common language during the

Table 3. Evaluations by Demography

Indicator Groups Frequency Ratio
Current
Approach
(Average Score)

5W1H Approach
(Average Score)

Job Title

Analyst 4 24% 6.16 7.36

Auditor 2 12% 5.72 6.85

Business
Unit 2 12% 6.44 7.17

Developer 5 29% 5.65 7.07

Manager 2 12% 5.31 7.69

Test
Engineer 2 12% 6.22 6.28

Experience < 5 4 24% 5.81 6.76

(years) 5 - 10 11 65% 6.02 7.21

> 10 2 12% 5.43 7.2

Gender
Male 11 65% 5.87 6.97

Female 6 35% 5.96 7.36

Number of Attendees 17 100%

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

14

RE process and software development lifecycle. Besides, everything is kept linked and it is possible
to follow ‘what’ to do and ‘why’ to do.

All requirement writing methods have a trade-off between requirement’s precision/clarity and
the convenience of the method. The clearer the requirement, the harder it is to write. The 5W1H
requirement cube offers a reasonable balance between the writing effort and the statement’s quality.
Consequently, we believe that the 5W1H requirement template is a promising candidate that can be
applied in the industry.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

15

REFERENCES

Ali, N., & Lai, R. (2017). A method of requirements elicitation and analysis for Global Software Development. J
Softw Evol Process., 29(4), e1830. doi:10.1002/smr.1830

Alrumaih, H., Mirza, A., & Alsalamah, H. (2018, April). Toward automated software requirements classification.
In 2018 21st Saudi Computer Society National Computer Conference (NCC) (pp. 1-6). IEEE. doi:10.1109/
NCG.2018.8593012

Awal, A., Gana, U. M., & Abdulrahman, A. (2018). Ontology Development for the Domain of Software Requirement
Elicitation Technique Development of Framework and an Application Model for Positive Contribution to Teaching
View project Ontology Development for the Domain of Software Requirement Elicitation. Artic Int J Eng Tech Res.
doi:10.17577/IJERTV7IS040237

Carmagnola, F., Cena, F., & Gena, C. (2011). User model interoperability: A survey. User Modeling and User-Adapted
Interaction, 21(3), 285–331. doi:10.1007/s11257-011-9097-5

Carrizo, D., Dieste, O., & Juristo, N. (2014). Systematizing requirements elicitation technique selection. Information
and Software Technology, 56(6), 644–669. doi:10.1016/j.infsof.2014.01.009

Ciccozzi, F., Malavolta, I., & Selic, B. (2019). Execution of UML models: A systematic review of research and practice.
Software & Systems Modeling, 18(3), 2313–2360. doi:10.1007/s10270-018-0675-4

Cockburn, A. (1999). Writing effective use cases. Addison-Wesley Longman.

Davey, B., & Parker, K. R. (2015). Requirements Elicitation Problems: A Literature Analysis (Vol. 12). http://iisit.
org/Vol12/IISITv12p071-

Fabrini, F., Fusani, M., Gnesi, G., & Lami, G. (2000). Quality evolution of software requirements specifications.
Proceedings of Software and Internet Quality Week.

Franch, X. (2015). Software requirements patterns - A state of the art and the practice. In Proceedings - International
Conference on Software Engineering (Vol. 2). IEEE Computer Society. doi:10.1109/ICSE.2015.298

Franch, X., Palomares, C., Quer, C., Renault, S., & De Lazzer, F. (2010). A metamodel for software requirement
patterns. Lect Notes Comput Sci, 6182, 85-90. doi:10.1007/978-3-642-14192-8_10

García-López, D., Segura-Morales, M., & Loza-Aguirre, E. (2020). Improving the quality and quantity of functional and
non-functional requirements obtained during requirements elicitation stage for the development of e-commerce mobile
applications: An alternative reference process model. IET Software, 14(2), 148–158. doi:10.1049/iet-sen.2018.5443

Glinz, M. (2011). A glossary of requirements engineering terminology. Standard Glossary of the Certified Professional
for Requirements Engineering (CPRE) Studies and Exam. Version, 1, 56.

Greenspan, S., Mylopoulos, J., & Borgida, A. (1994). On formal requirements modeling languages: RML Revisited
Invited Plenary Talk. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.4047&rep=rep1&typ
e=pdf

Issa, A. A., & Al-Ali, A. (2010). Use case patterns driven requirements engineering. 2nd Int Conf Comput Res Dev
ICCRD 2010, 307-313. doi:10.1109/ICCRD.2010.16

Jabar, M. A., Ahmadi, R., Shafazand, M. Y., Ghani, A. A. A., Sidi, F., & Hasan, S. (2013). An automated method
for requirement determination and structuring based on 5W1H elements. Proceedings - 2013 IEEE 4th Control and
System Graduate Research Colloquium, ICSGRC 2013, 32-37. doi:10.1109/ICSGRC.2013.6653271

Jacobson, I. (2004). Use cases – Yesterday, today, and tomorrow. Software & Systems Modeling, 3(3), 210–220.
doi:10.1007/s10270-004-0060-3

Kudo, T. N., Bulcão-Neto, R. F., & Vincenzi, A. M. R. (2020). Requirement patterns: A tertiary study and a research
agenda. IET Software, 14(1), 18–26. doi:10.1049/iet-sen.2019.0016

Lauesen, S. (2002). Software requirements: styles and techniques. Pearson Education.

Lethbridge, T. C., & Laganière, R. (2005). Object-oriented software engineering: Practical software development
using UML and Java. McGraw-Hill Education.

http://dx.doi.org/10.1002/smr.1830
http://dx.doi.org/10.1109/NCG.2018.8593012
http://dx.doi.org/10.1109/NCG.2018.8593012
http://dx.doi.org/10.17577/IJERTV7IS040237
http://dx.doi.org/10.1007/s11257-011-9097-5
http://dx.doi.org/10.1016/j.infsof.2014.01.009
http://dx.doi.org/10.1007/s10270-018-0675-4
http://iisit.org/Vol12/IISITv12p071-
http://iisit.org/Vol12/IISITv12p071-
http://dx.doi.org/10.1109/ICSE.2015.298
http://dx.doi.org/10.1007/978-3-642-14192-8_10
http://dx.doi.org/10.1049/iet-sen.2018.5443
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.4047&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.4047&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ICCRD.2010.16
http://dx.doi.org/10.1109/ICSGRC.2013.6653271
http://dx.doi.org/10.1007/s10270-004-0060-3
http://dx.doi.org/10.1049/iet-sen.2019.0016

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

16

Luisa, M., Mariangela, F., & Pierluigi, N. I. (2004). Market research for requirements analysis using linguistic tools.
Requir Eng., 9(1), 40–56. doi:10.1007/s00766-003-0179-8

Mavin, A., Wilkinson, P., Harwood, A., & Novak, M. (2009) EARS (Easy Approach to Requirements Syntax).
Proceedings of the IEEE International Conference on Requirements Engineering, 317-322. doi:10.1109/RE.2009.9

Pacheco, C. L., Garcia, I. A., Calvo-Manzano, J. A., & Arcilla, M. (2015). A proposed model for reuse of software
requirements in requirements catalog. J Softw Evol Process., 27(1), 1–21. doi:10.1002/smr.1698

Palomares, C., Quer, C., & Franch, X. (2014). Requirements Reuse with the PABRE Framework. Requir Eng Mag.,
1. https://www.researchgate.net/publication/260730928

Palomares, C., Quer, C., & Franch, X. (2017). Requirements reuse and requirement patterns: A state of the practice
survey. Empirical Software Engineering, 22(6), 2719–2762. doi:10.1007/s10664-016-9485-x

Pohl, K. (1993). The three dimensions of requirements engineering. Springer. doi:10.1007/3-540-56777-1_15

Rasmussen, J., Pejtersen, A. M., & Goodstein, L. P. (1994). Cognitive systems engineering. Academic Press.

Siau, K. (2016). Identifying difficulties in learning UML supply chain management view project. 10.1201/1078.105
80530/46108.23.3.20060601/93706.5

Silva, A., Pinheiro, P. R., Albuquerque, A., & Barroso, J. (2017). Evaluation of an approach to define elicitation guides
of non-functional requirements. IET Software, 11(5), 221–228. doi:10.1049/iet-sen.2016.0302

Silva, A., Pinheiro, P. R., Albuquerque, A. B., & Barroso, J. (2016). A Process for Creating the Elicitation Guide of
Non-functional Requirements In Computer Science. In On-line Conference (pp. 293-302). Springer. doi:10.1007/978-
3-319-33622-0_27

Sommerville, I. (2011). Software engineering (9th ed.). Academic Press.

Souag, A., Mazo, R., Salinesi, C., & Comyn-Wattiau, I. (2018). Using the AMAN-DA method to generate security
requirements: A case study in the maritime domain. Requir Eng., 23(4), 557–580. doi:10.1007/s00766-017-0279-5

Tiwari, S., & Gupta, A. (2020). Use case specifications: How complete are they? J Softw Evol Process, 32(1), 9–11.
doi:10.1002/smr.2218

Toroa, D., Jiménez, B.B., Cortés, R., & Bonilla, M.T. (1999). A Requirements Elicitation Approach Based in Templates
and Patterns ? Requir Eng., 17-29.

Toval, A., Nicolás, J., Moros, B., & García, F. (2002). Requirements reuse for improving information systems security:
A practitioner’s approach. Requir Eng., 6(4), 205–219. doi:10.1007/PL00010360

Umber, A., & Bajwa, I. S. (2011). Minimizing ambiguity in natural language software requirements specification. 2011
6th International Conference on Digital Information Management, ICDIM, 102-107. doi:10.1109/ICDIM.2011.6093363

Walia, G. S., & Carver, J. C. (2009). A systematic literature review to identify and classify software requirement errors.
Information and Software Technology, 51(7), 1087–1109. doi:10.1016/j.infsof.2009.01.004

Westfall, L. (2005). Software requirements engineering: What, why, who, when, and how. http://www.westfallteam.
com/Papers/The_Why_What_Who_When_and_How_Of_Software_Requirements.pdf

Wiegers, K., & Beatty, J. (2013). Software Requirements. Microsoft Press.

Withall, S. (2007). Software requirement patterns. Microsoft Press. www.microsoft.com/mspress

Yue, L., Niu, P., Wang, Y., & Yue, L. (2019). Guidelines for defining user requirement specifications (URS) of
manufacturing execution system (MES) based on ISA-95 standard. 10.1088/1742-6596/1168/3/032065

Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems Journal, 26(3), 276–292.
doi:10.1147/sj.263.0276

Zowghi, D., & Coulin, C. (2005). Requirements elicitation: A survey of techniques, approaches, and tools. In
Engineering and Managing Software Requirements (pp. 19–46). Springer Berlin Heidelberg. doi:10.1007/3-540-
28244-0_2

http://dx.doi.org/10.1007/s00766-003-0179-8
http://dx.doi.org/10.1109/RE.2009.9
http://dx.doi.org/10.1002/smr.1698
https://www.researchgate.net/publication/260730928
http://dx.doi.org/10.1007/s10664-016-9485-x
http://dx.doi.org/10.1007/3-540-56777-1_15
http://dx.doi.org/10.1049/iet-sen.2016.0302
http://dx.doi.org/10.1007/978-3-319-33622-0_27
http://dx.doi.org/10.1007/978-3-319-33622-0_27
http://dx.doi.org/10.1007/s00766-017-0279-5
http://dx.doi.org/10.1002/smr.2218
http://dx.doi.org/10.1007/PL00010360
http://dx.doi.org/10.1109/ICDIM.2011.6093363
http://dx.doi.org/10.1016/j.infsof.2009.01.004
http://www.westfallteam.com/Papers/The_Why_What_Who_When_and_How_Of_Software_Requirements.pdf
http://www.westfallteam.com/Papers/The_Why_What_Who_When_and_How_Of_Software_Requirements.pdf
http://www.microsoft.com/mspress
http://dx.doi.org/10.1147/sj.263.0276
http://dx.doi.org/10.1007/3-540-28244-0_2
http://dx.doi.org/10.1007/3-540-28244-0_2

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

17

APPENDIX A - 5W1H RULES

Business Requirement Writing Rules:

Why: Mandatory. Free text explanation of the business goal.
Who: Mandatory. Free text or categorized selection of the actors of the requirement.
Where: Optional. Can be a channel name, system name, business process name
When Trigger: Mandatory. If there is no special case it has to be written “anytime” as when trigger.

The actions in the when trigger has to be written in active tense.
When Condition: Optional. It starts with “if” before writing the related condition. Conditions that

will lead to different results have to be written as a separate requirement.
What: Mandatory. The basic definition of the requirement.

User Requirement Writing Rules:

Why: Not mandatory, but recommended. It should include the goal of the requirement such as cost
reduction or compliance with regulations, etc.

Who: Mandatory. It includes user profile roles, customer types, and automated tasks that carry on
actions on behalf of actual users. It is recommended to include an adverb like “All”, “Only”,
“Except”

Example: Individual Customers, All Customers, Supervisors and Above, Only Managers, All users
except Customer Representatives.

When Trigger: Mandatory. If there is no special case, “always” should be written as the when trigger.
The actions in the when trigger have to be written in the active tense.

Where: Mandatory. It can be a channel, a display screen, or a device. Mobile App, ATM, Expense
Entry Display Screen, etc.

When Condition: Optional. It starts with “if”, followed by the related condition. Conditions that lead
to different results have to be written as a separate requirement.

What: Mandatory. It will be written with a “shall” statement. It can be in passive form if the when
trigger is an active statement. It can include multiple actions as long as all actions are tied with
each other with “and”. “Or” statements are not allowed and have to be written as a separate
requirement.

Functional Requirement Writing Rules:

Why: Not mandatory. The goal is assumed as the related user requirement if it is null. Specific reasons
unique to a functional requirement can be written in the Why portion.

Who: Not Mandatory. It can be a system object, a task, workflow, process, etc.
What: Mandatory. It will be written with a “shall” statement. Active tense is recommended but can be

passive. It can include multiple actions as long as all actions are tied with each other with “and”.
“Or” statements are not allowed and have to be written as a separate requirement.

When Trigger: Mandatory. If there is no special case, “always” has to be written. The actions can be
written in an active or passive voice.

When Condition: Optional. It starts with “and”, followed by a related condition. Conditions that lead
to different results have to be written as a separate requirement.

Where: Optional. It can be a channel, a display screen, or a device. If it is empty, it will be perceived
the same as the “where” portion of the related user requirement

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

18

Yasar Ugur Pabuccu got his bachelor’s degree as an Industrial engineer in 2000. He received MS in Information
Systems and completed his Ph.D. in Business Administration. He works as an Enterprise Architect in Kuveyt Turk
Participation Bank Information Sytems and is responsible for internal systems regarding demand and portfolio
management, business process management, software system analysis and testing.

