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ABSTRACT

The research proposes an innovated structure of the density map-based crowd counting network 
augmented by information entropy. The network comprises of a front-end network to extract features 
and a back-end network to generate density maps. In order to validate the assumption that the entropy 
can boost the accuracy of density map generation, a multi-scale entropy map extraction process is 
imported into the front-end network along with a fine-tuned convolutional feature extraction process. 
In the back-end network, extracted features are decoded into the density map with a multi-column 
dilated convolution network. Finally, the decoded density map can be mapped as the estimated 
counting number. Experimental results indicate that the devised network is capable of accurately 
estimating the count in extremely high crowd density. Compared to similar structured networks which 
don’t adapt entropy feature, the proposed network exhibits higher performance. This result proves the 
feature of information entropy is capable of enhancing the efficiency of density map-based crowd 
counting approaches.
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1. INTRodUCTIoN

The analysis of crowd in extremely-high density is essential to public safety. By predicting or alarming 
the potential hazardous incidents such as panic, casualties can be reduced or avoided. Crowd counting 
techniques can provide the real-time number of pedestrians within the footage, which is a crucial 
information to prevent stampede. The strategy of conventional computer vision-based techniques 
for crowd counting is to extract features such as HOG (Xu et al., 2016), contour (Dong et al., 2007; 
Weikert et al., 2020) and spatial-temporal information (Wang, 2019) from image patches obtained 
with a sliding window, and feed these features to classifiers such as SVM (Xu et al., 2016; Tu et al., 
2013; Zhao et al., 2017), random forest (Li & Zhou, 2016; Pham et al., 2015) and Markov Model 
(Jalal et al., 2020) to determine if a pedestrian exists in the patch. Once the detection for the entire 
footage is completed, the total number of detected pedestrians can be obtained. The major defect of 
conventional approaches is the low performance on high crowd density. When the density increased 
to a high-level, pixel-wise information for each pedestrian decreases drastically, and more occlusions 
will occur. In this case, the accurate detection of individual becomes difficult. and it will cause a 
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significant performance degradation. In order to tackle these issues, regression-based approaches 
attempt to fabric relations between the crowd distribution and certain global features of the entire 
footage, and estimate the total crowd count. Arteta et al. (2014) firstly introduced the concept of 
density map by convolving the pedestrian’s spatial positions in training data with a Gaussian kernel. 
In the training phase, extracted features and density maps are exploited to train the decoding model. 
In the testing phase, features are feed to the well-trained model to decode the density map, which will 
be used to estimate the crowd count. This technique effectively addressed the problem of occlusions 
in high density, and inspired the deep-learning based crowd counting techniques.

The structure of deep learning-based techniques usually comprises a front-end (feature extraction) 
network and a back-end (density map generation) network (Cao et al., 2018; Li et al., 2018; Liu et 
al., 2019; Karthika, 2021; Ranjan et al., 2018; Sindagi & Patel, 2017; Zhang et al., 2016). The front-
end network extracts multi-scale features from image data, while the back-end network decodes the 
features into a density map. Instead of extracting patches with a sliding window, deep learning-based 
approaches use entire image to fulfill the end-to-end training. Therefore, the processing speed is often 
much faster than the conventional. Also, the counting accuracy of deep learning-based approaches 
outperforms the conventional in most of cases.

In the training phase, by convolving the pedestrian’s head position with convolution kernels, the 
ground-truth density map can be generated. However, due to the camera’s perspective, head sizes of 
pedestrians often vary in the scene. In order to percept the different head size, convolution kernels in 
various scales are adapted to extract features in multiple scale. Zhang et al. (2016) introduced a novel 
structure namely Multi-Column Neural Network (MCNN). MCNN includes 3 independent feature 
extraction paths, where each path adapts kernels with different scales. To achieve the most accurate 
map generation in the training phase, the average distance between each pedestrian’s neighbors is 
calculated to get the self-adapted variance of the kernel. Since the MCNN only exploits the global 
features, its ability of perception on local features is relatively weak. In order to further enhance 
the counting accuracy, Sindagi & Patel (2017) introduced the Context Pyramid CNN (CP-CNN) by 
adapting a triple-stream network to extract the context relation, including Global Context encoder, 
Density Map Encoder and Local Context Encoder. Encoded context features are then concatenated 
with generated density map to achieve a better count estimation. However, multi-path feature extraction 
approaches like MCNN and CP-CNN have a high time-consumption. In order to optimize the balance 
between processing time and the quality of density map, Congested Scene Recognition Net (CSRNet) 
(Li et al., 2018) exploits the initial ten layers of the VGG-16 network (Chen et al., 2020; Simonyan & 
Zisserman, 2014) to achieve the fast convolutional feature extraction. Next, the dilated convolution 
network (Chen, Papandreou, Kokkinos, Murphy & Yuille, 2017; Chen, Papandreou, Schroff & Adam, 
2017; Yu & Koltun, 2016) with different dilate rates is utilized to percept different head sizes and 
prevent information lose in pooling layer. Context-Aware Network (CAN) (Liu et al., 2019) further 
enhanced CSRNet by applying spatial-pyramid pooling (He et al., 2014) between VGG-16 and dilated 
network to obtain the contrast context feature. More accurate density map can be generated by using 
the context feature to augment the raw feature.

Another strategy to enhance the counting performance is by enhancing the density map’s resolution. 
Iterative-Counting CNN (IC-CNN) (Ranjan et al., 2018) attempts to generate high-resolution density 
map by merging original image, low-resolution density map and feature map extracted with MCNN 
together. Unlike the multi-path structured MCNN, Scale Aggregation Net (SANet) (Cao et al., 2018) 
adapted the single-stream multi-layered network structure based on inception model (Szegedy et al., 
2015). For each layer, kernels with various scales are exploited to extract and aggregate features, and 
send them to the next layer. After 3 iterations of extraction and aggregation, transposed convolutions 
are implemented to generate the density map in high-resolution. SANet outperforms CP-CNN and 
CSRNet. However, due to the multi-scale extraction in each layer, the computational burden of SANet 
is relatively high. The selection of loss function in back-end network can also be crucial. The work 
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of Wan (2021) proved the pixel-wise L2 loss and Bayesian loss can be exploited as the generalized 
loss function to outperform others for accurate density map estimation.

As statistical feature, information entropy is widely exploited for the detection of abnormal 
crowd behaviors (Hao et al., 2019; Zhang et al., 2019). In order to explore the entropy’s capability to 
enhance the efficiency of deep learning-based crowd counting approaches, this paper introduced an 
entropy augmented crowd counting neural network. Same to the main-stream structure, the proposed 
network contains the front-end feature extraction network and back-end decoding/regression network 
as well. Inspired by CSRNet, the front-end adapted a fine-tuned VGG-16 network to achieve fast 
extraction of features. On the other hand, multi-scale entropy maps are obtained with an extraction 
model from the input image, and merged with convolutional features. Finally, a back-end decoding 
network based on the dilated convolution utilizes merged features to generate the density map. This 
paper attempts to prove the information entropy’s effectiveness to enhance the accuracy of density 
map modeling and pedestrian counting in extremely high density.

The remainder of contents are distributed as below. Section 2 explains the principle of crowd 
counting techniques in high-density with density map estimation as well as relevant concepts, including 
the ground-truth density map generation and the self-adapted Gaussian kernel. Section 3 introduces 
the architecture of the devised network. In the front-end network, two feature extraction processes 
including a fine-tuned VGG16 network and a multi-scale entropy map extraction model are specifically 
described. In the decoding network, a multi-path dilated convolution network is introduced to decode 
the feature map into density map. Section 4 introduces adapted datasets for the measurement of the 
proposed technique, the evaluation criteria and comparative results with main-stream crowd counting 
approaches. Section 5 concludes the research and discusses the potential optimizing strategy of the 
proposed approach.

2. CoUNTING PRINCIPLe oF deNSITy MAP-BASed APPRoACHeS

As illustrated in Figure 1, the counting strategy based on deep learning comprises two independent 
phases - training and estimation. In the former phase, labelled spatial positions of pedestrian’s heads 
are convolved with a fixed gaussian kernel to generate the ground-truth density map. Next, the front-
end network is used to extract features from the original image. The map generation network trains 
the decoding model by regressing these features into the density map. In the estimation phase, the 
well-trained decoding model is capable of transforming modelled features into density map. Since a 
mapping relation exists between density map and actual crowd number, a count can finally be estimated.

Figure 1. Principles of deep-learning based crowd counting approach
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The density map is utilized to train the back-end decoding network, and estimate the count 
number. Therefore, the density map’s quality ultimately determines the accuracy of counting result. 
In order to model the density map in training phase, spatial positions x y

N N
,( )  of N  pedestrians are 

firstly collected from the manually labelled dataset. For each pedestrian i , a Gaussian kernel G x y,( )  
is convolved with the value of 1 at position x y

i i
,( ) . Next, convolution results of all pedestrians are 

accumulated to get the density map D  of current footage. The global density map D x y,( )  can be 
expressed as Equation 1.

D x y x x y y G x y
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representing pedestrian i ’s head position, s  is the standard deviation of G x y,( ) . When modeling 
D x y,( ) , the value of s  determines the scale of pedestrian’s head. In real-life scenario, scales of 
heads may vary or distort due to the perspective of camera and occlusion between pedestrians. 
Therefore, a fixed s  can’t guarantee the quality of D x y,( )  in extremely high crowd density, which 
can potentially impact the accuracy of count estimation. The self-adapted s  is a possible solution 
to tackle this issue. Based on the assumption that pedestrians are evenly distributed in extremely 
crowded scene, shorter Euclidean distance r

i j,
 between 2 pedestrians i  and j  indicates they are 

farther from the camera, and the corresponding s  should be lower. Thus, the value of s
i
 can be 

modelled based on distances with k  nearest neighbors. The self-adapted s
i
 can be expressed as 

Equation 2.

σ η
i

j

k

j
d=

=
∑
1

 (2)

Where d
j
 is the Euclidean distance between pedestrian j  and current i . h  indicates the scale 

parameter and empirically set to 0.1 based on experimental results. The process of ground-truth 
density map modelling can be illustrated as Figure 2.

Figure 2. The procedure of ground-truth density map modelling
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In the estimation phase, features are obtained from the input image I x y,( )  with the extraction 
network, and sent to the decoding network to estimate the corresponding density map. The front-end 
network is often a multi-path network, in order to extract features in various types or scales. For 
example, MCNN (Zhang et al., 2016) adapts a triple-stream network with kernel size 5, 7 and 9 to 
handle different perceptive scales. CP-CNN (Sindagi & Patel, 2017) proposed a triple-stream network 
including global context, convolutional and local context feature streams. The adapted feature 
extraction network stream is expected to provide additional information for the density map estimation. 
However, since the multi-path network usually has higher time consumption when extracting features 
than single-stream, which can hamper the efficiency of network. Li et al. (2018) and Liu et al. (2019) 
replace the front-end part with pre-trained single-stream network to achieve fast feature extraction, 
and exploits multi-stream dilated convolution network to percept and decode the estimated density 
map. This paper adapted the concept of pre-trained front-end network as well as the additional feature 
extraction path. Like the import of contextual information in CAN (Liu et al., 2019), a multi-scale 
entropy feature extraction process is imported into the dual-stream front-end network.

During the process of regression/decoding features into the estimated density map, the primary 
defect of utilizing ordinary convolution network is the loss of feature’s inner structure and local 
patterns due to the down-sampling. This defect impacts the accuracy of the density map estimation. 
Using smaller convolution kernel can better percept local features, but the scale of perception field 
will decrease. Usually, the multi-stream dilated convolution structure is implemented to tackle the 
defect of using ordinary networks while increasing the perceptive field. The proposed back-end 
network applied a multi-stream hybrid dilated convolution structure to estimate the density map based 
on multi-scale perceptions. Once the final density map D̂  is decoded, the estimated number of 
pedestrians ĉ  can be obtained from all pixels p  within D̂ , as expressed in Equation 3.

ˆ ˆc D p I
p I

= ( )
∈∑ |  (3)

3. THe STRUCTURe oF INFoRMATIoN eNTRoPy 
AUGMeNTed CRoWd CoUNTING NeTWoRK

The specified structure of the devised network is portraited as Figure 3. As previously mentioned, 
the network comprises a front-end and a back-end networks. The front-end network at the top part 
of Figure 3 extracts features, and the back-end network at the bottom part decodes the estimated 
density map. Firstly, the original image is sent into 2 independent streams within the front-end 
network, including a fine-tuned network with first 10 layers of VGG-16, and a multi-scale entropy 
map extraction model. Next, the extracted VGG-16 feature and entropy map are merged for density 
map estimation and sent to the back-end decoding network. The back-end is a multi-stream hybrid 
dilated convolution network, dilated factors are set to 1, 2, 2, 4 to percept features in various scales. 
Once the density map is modelled, a count number can be estimated according to Equation 3.
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3.1 The Fine-tuned VGG16 Feature extraction Network
The adapted VGG-16 in the front-end network includes ten 2-dimensional convolution layers and 
three max-pooling layers. The label Conv2-64-1 in Figure 3 indicates the layer’s type is convolution 
2D, there are 64 different filters, and the dilation factor is 1. Every convolution layer is attached with 
a ReLU layer. The introduced approach utilized the standard pre-trained model. Thus, the training 
process of VGG-16 can be skipped. Assuming the gray-scale image of original input is I , the extracted 
feature Fv  can be expressed as Equation 4.

F f Iv = ( )  (4)

Where f x( )  indicates the feature extraction process of the VGG-16 network. Note that the 
dimension of Fv  is 512. Since it will be merged with the multi-scale entropy map in the following 
process, Fv  is rescaled to the identical size of original image and then normalized. The normalization 
approach is adapted from the research of Zhang et al. (2019), which can be expressed as Equation 5.

F
F F

F F
Fv

v
min
v

max
v

min
v

v′ =
−

−
 (5)

Figure 3. The structure of entropy augmented crowd count network
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Where Fv ¢ is the normalized feature, F
max
v  is the maximum value, and F

min
v  is the minimum 

values in Fv . When normalized, features are ready to be merged with the multi-scale entropy map 
for density map estimation.

3.2 extracting the Multi-scale entropy Map
Shannon Entropy is the quantitative measurement of the information’s uncertainty. As visual feature, 
the entropy describes the irregularity of pixel’s distribution in image. The entropy of local image part 
reveals details in the footage, which can provide additional information for the modelling of density 
map. The aim of the devised entropy feature extraction process is to obtain the multi-scale Entropy 
Map from the original image. To obtain the entropy map H x yie ,( )  on scale e

i
 from input image 

I x y,( ) , the entropy H
x y,

 of each pixel q I
x y,

Î  will be calculated with pixels q x y
i i

∈ ± ±( 
e e/ , /2 2 , 

which can be expressed as Equation 6.

H p p
x y j j j

i

,
= −

=∑ 1

2e
log  (6)

Where p
j
 is the probability of q

j
’s gray scale level. By calculating H

x y,
 of all pixels within 

I x y,( ) , the raw entropy map H ie  on scale e
i
 can be obtained. Similar with Fv , the entropy map 

will also be normalized into H ie
'

 as Equation 7.
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H H
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In order to percept different head sizes in the footage, multiple e
i
 can be applied in the extraction 

process to obtain the multi-scale entropy map. The selection of e  is determined based on the actual 
environment of footage. Since the crowd distribution of the dataset exploited in this research is 
relatively stable, the variance of head sizes is small. Values of e , 2e  and 4e  are selected as scales 
for the entropy map generation. Before merging with VGG16 features, entropy maps on multiple 
scales are integrated as H , which can be expressed as Equation 8.

H
K

H
i

K
i=

=∑
1

1

e'  (8)

Where K  is the number of scales. The introduced multi-scale entropy map extraction process 
can be illustrated as Figure 4. Once H  is obtained, it can be merged with extracted VGG16 features 
as the input F  for the back-end network. The merging procedure can be simply expressed as Equation 
9, where h  is the weight factor of H , it determines how much the H  can influence the feature map 
F .

F F Hv= + h  (9)
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3.3 The Hybrid dilated Convolution Network
The back-end network adapted a multi-stream hybrid dilated convolution network. For all four streams, 
hybrid dilated rates are set as 1, 2 and 4. The third stream applied a hybrid dilated rate of 2 and 4. 
By applying the dilated rate larger than 1, the down-sampling process can be avoided while expanding 
the perceptive field, and the internal structure of input data is preserved. Multiple dilated rates ensure 
features in various scales can be precepted. For each input F , the back-end network decodes an 
estimated density map D̂ , and the estimated count number ĉ  can be obtained with Equation 3.

4. eXPeRIMeNT ReSULTS ANd ANALySIS

The devised experiments aim to assess the effectiveness of proposed approach by comparing 
performances with others, and prove the adaption of entropy is able to improve the density map-based 
counting approach. This section introduces datasets utilized in experiments, the evaluation metrics 
of performance and comparative results on various approaches.

4.1 datasets
The ShanghaiTech dataset is firstly mentioned in the research of Zhang et al. (2016). It is most 
widely adapted for the analysis of deep-learning based crowd counting techniques (Cao et al., 2018; 
Li et al., 2018; Liu et al., 2019; Ranjan et al., 2018; Sindagi & Patel, 2017; Zhang et al., 2016). This 
dataset consists of 2 subsets, namely set A and set B. Set A comprises 300 images for training and 
182 images for testing. Set B comprises 400 images for training and 316 images for testing. Each 
image contains more than hundreds of manually labeled pedestrians, and the variation trend of crowd 
number in each image is relatively stable.

Additionally, several datasets with unique patterns are frequently adapted in various researches 
as well. UCF-QNRF is introduced in the work of Haroon et al. (2018). Since this dataset collects 
images from multiple data sources, its image quality and pedestrian number have a drastic variation 
trend. Thus, UCF-QNRF is more appropriate for testing the system’s adaptiveness than accuracy. 
The data scale of UCF_CC_50 (Haroon et al., 2013; Jiang et al., 2021) is very limited, it comprises 
totally 50 images. Therefore, UCF_CC_50 is mostly utilized in conventional approaches instead of 
deep-learning based approaches. WorldExpo’10 set (Cong et al., 2015) contains large amount of video 
data instead of static images, where a portion of video frames is manually annotated. Differed with 

Figure 4. The extraction procedure of multi-scale entropy map
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others, this set labels the Region of Interest in all footages, which can help reducing the computational 
burden during the analysis. All exploited datasets contain the manually labeled spatial position of 
each pedestrian and total head count.

This paper chooses ShanghaiTech as the primary dataset for the measurement of technical 
performance, and exploits some of above-mentioned main-stream sets to compare the effectiveness 
of different approaches. Figure 5 illustrates some random images of ShanghaiTech set, as well as the 
corresponding ground-truth and estimated density maps obtained with the devised approach. The 
image at the first row comprises an evenly distributed crowd from the over-head view, and the one 
at the bottom contains a crowd with large perspective rate. Despite the structure of footages varies 
dramatically, estimated density maps can be successfully generated. Results prove the devised approach 
is able to handle crowd observed by various camera views.

4.2 evaluation Metrics
To assess the efficiency of devised approach, measurable criteria should be adapted for the analysis. 
The main-stream evaluating metrics of deep-learning based counting approaches are Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE) of estimated and ground truth pedestrian 
counts in the entire test set. Definitions of MAE and RMSE can be expressed as Equation 10.

MAE
M

c c

RMSE
M

c c

i

M

i i

i

M

i i

= −

= −( )











=

=

∑

∑

1

1

1

1

2





� (10)

Where M  is the total number of footages within the test set, c
i
 indicates the ground-truth of 

total head count, and c
i

  is the estimated pedestrian number of image i . For the same dataset, the 
approach with smaller MAE and RMSE indicates better performance.

Figure 5. (a) Original images; (b) Ground truth maps; (c) Estimated maps
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4.3 experimental Results
In the first experiment, crowd count ĉ  is estimated for all images within the test sets of ShanghaiTech. 
The Figure 6 illustrates the comparative results between the ĉ  and ground-truth c  of some images. 
The result indicates the proposed approach is capable of estimating the count on footages with various 
view perspectives and crowd density.

The MAE and RMSE are calculated with the proposed estimation approach on both A and B 
subsets of ShanghaiTech. Main-stream networks including MCNN, CP-CNN, IC-CNN and CSRNet 
are implemented on the same dataset to compare the performance. As listed in Table 1, the proposed 
network obtained the lowest MAE and RMSE on both subsets. The results indicate the introduced 
approach outperformed others. Since the proposed approach has the similar VGG-16 feature extraction 
process and the back-end network as CSRNet, the better performance indicates the entropy map 
indeed improved the accuracy of estimation.

Figure 6. Sample Images of ShanghaiTech set, corresponding ground truth and estimated crowd count

Table 1. Estimated Counting Results of multiple approaches

ShanghaiTech Subset A ShanghaiTech Subset B

Approaches MAE RMSE MAE RMSE

MCNN 110.2 173.2 26.4 41.3

CP-CNN 73.6 106.4 20.1 30.1

IC-CNN 68.5 116.2 10.7 16.0

CSRNet 68.2 115.0 10.6 16.0

Proposed 67.8 114.2 10.1 14.3
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The performance on other datasets is analyzed as well. For UCF_CC_50 set, the proposed 
approach has higher MAE and RMSE than CP-CNN and IC-CNN. Since UCF_CC_50 set has only 
50 images, the result indicates the proposed approach doesn’t have the highest efficiency on dataset 
with small scale. On the contrary, the devised approach has lower MAE and RMSE than CSRNet, 
which proves the adapted entropy map feature is capable of enhancing the counting performance on 
small scale training data. For the WorldExpo’10 set, only annotated data is exploited to evaluate the 
performance. The result indicates the devised approach has higher effectiveness than CSRNet and 
most approaches on the video data. Comparative experiments are further conducted between proposed 
approach and networks involved with contextual features such as SANet and CAN. The result shows the 
performance of proposed approach is slightly lower than SANet and CAN, which indicates the higher-
level contextual features performs better than statistical features on density map-based approaches. It 
can be expected that by merging the entropy into contextual features, the counting accuracy can be 
further enhanced if the computational efficiency is ignored. For the model complexity, the extraction 
process of entropy did increase the computational time. However, the impact is primarily on the 
training phase. The detecting phase only suffered with an inferior increasement of processing time.

5. CoNCLUSIoN

In this paper, an entropy feature augmented density map estimation network is proposed for the 
pedestrian counting in high crowd density. This paper attempts to explore the information entropy’s 
capability of improving the accuracy of the density map’s estimation. In the devised network, the input 
image is separately processed with a fine-tuned VGG16 network and information entropy calculation 
model to extract features in multiple scales. The merged features are decoded with a multi-stream 
hybrid dilated convolution network to produce the estimated map. As experimental results indicate, 
by adapting additional information entropy feature to the CSRNet-based network structure, the 
estimation performance is substantially increased on images and videos with extremely high crowd 
density. However, the statistical entropy feature doesn’t outperform the contextual features. One 
potential optimizing strategy is to merge entropy feature with contextual features. This could further 
improve the accuracy of estimation by sacrificing a portion of processing speed. The future work 
will be concentrated on the integration of information entropy and other features while maintaining 
the computational efficiency.

Table 2. Results on set UCF_CC_50 and set WorldExpo’10

UCF_CC_50 WorldExpo’10

Approaches MAE RMSE MAE RMSE

MCNN 377.6 509.1 11.6 16.3

CP-CNN 295.8 320.9 8.9 11.2

IC-CNN 260.9 365.5 10.3 14.5

CSRNet 266.1 397.5 8.6 10.8

SANet 258.4 334.9 8.2 10.1

CAN 212.2 243.7 7.4 9.8

Proposed 262.8 385.6 8.3 10.2
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