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ABSTRACT

Pretopology is a mathematical model developed from a weakening of the topological axiomatic. It was 
initially used in economic, social, and biological sciences and next in pattern recognition and image 
analysis. More recently, it has been applied to the analysis of complex networks. Pretopology enables 
to work in a mathematical framework with weak properties, and its nonidempotent operator called 
pseudo-closure permits to implement iterative algorithms. It proposes a formalism that generalizes 
graph theory concepts and allows to model problems universally. In this paper, the authors will extend 
this mathematical model to analyze complex data with spatiotemporal dimensions. The authors 
define the notion of a temporal pretopology based on a temporal function. They give an example of 
temporal function based on a binary relation and construct a temporal pretopology. They define two 
new notions of temporal substructures which aim at representing evolution of substructures. They 
propose algorithms to extract these substructures. They experiment the proposition on two data and 
two economic real data.

Keywords
Modelisation, Pretopological Model, Propagation Dynamics, Pseudo-Closure, Sectoral Econometrics, Structural 
Analysis, Structural Evolution, Temporal, Temporal Data

INTRODUCTION

Structural analysis of complex networks enables to explore social networks, sector economics, 
lexical taxonomies, etc. Networks are generally represented by graphs, and the aim is to study 
relevant interactions between individuals (nodes). Those interactions can be of various types such 
as dependency, influence, etc.

However, the graph theory framework does not allow to easily model relations at different levels 
(e.g. individual to group, group to group), thus limiting both modelling possibilities and levels at 
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which structural analysis can be performed (Dalud-Vincent et al., 2001). To overcome such limitations, 
(Dalud-Vincent et al., 2001) proposed to use the pretopological framework, presented in (Belmandt, 
1993; Brissaud et al., 2011) as an extension of graph theory.

The concept of pretopology was first introduced in the 1970’s (Brissaud, 1971, 1975). It results 
from a weakening of the axiomatic of topology, the latter being seen as a mathematical way to 
formalize human perception based on the concept of similarity. The notion of similarity can be 
declined mainly in two ways: proximity and approximation. Proximity can be a relation between two 
objects, an object and a set of objects, or between two sets of objects. On the other hand, given a 
discrete set E , the notion of closure ad  applied to a point x EÎ  (resp. a set of points A E  ) enables 
a simple formalization of the concept of approximation: ad x( )  (resp. ad A( ) ) is what one sees when 
looking at x  (resp. A ). Doing so, it provides a means to implement how humans are perceiving 
patterns. However, in both cases, constraints brought by the axiomatic of topology often fail to process 
real data efficiently. In particular, the idempotence of the operator ad allows to generate only one 
possible approximation of an individual or a set. Unlike topology, a pretopology is defined by a 
function called pseudo-closure which is not (necessarily) idempotent. It thus offers the opportunity 
to follow an approximation process step by step as well as to model the notion of perception threshold.

Further developed from the 1980’s (Auray et al., 1979; Duru, 1980; Hubert Emptoz, 1983), the 
pretopological framework permits to study weak topological structures, in particular discrete and 
finite structures based on models generated step by step (propagation phenomenon), and describing 
for example information spreading in complex networks.

Pretopology found its first applications in social sciences and econometrics (Auray et al., 1979; 
Duru, 1980), social networks (Basileu et al., 2012; Bui, 2018; Dalud-Vincent et al., 2001; Levorato, 
2011), pattern recognition (Hubert Emptoz, 1983), and image analysis (Arnaud et al., 1986; Lamure, 
1987; Piegay, 1997; Piegay et al., 1995; Selmaoui et al., 1993). More recently, researchers have 
brought the pretopological framework in domains such as machine learning (Le et al., 2007) or text 
exploration (Cleuziou et al., 2011).

More generally, pretopology has proved to be of great interest for building mathematical models 
adapted to data set structures in order to carry out data structural analysis, to extract tendencies 
(clustering), or to predict events (supervised classification). In those contexts, pretopology is mainly 
used to process static data. Our present contribution aims to extend the pretopological framework to 
the domain of spatio-temporal data analysis. We first establish a formalism for a temporal pretopology 
in order to build a theoretical foundation for both temporal and structural evolutions. Next, we provide 
some examples of evolution based on a temporal pseudo-closure function. Finally, we propose a first 
application of our formalism to the evolution of sectoral economics data by modelling the underlying 
dynamics through a sequence of pretopological spaces.

Basic definitions and Formalism

Our contribution is aimed at introducing a temporal dimension in a pretopological space. Before 
presenting our approach, we briefly recall definitions and basic concepts of a pretopological model. 
For further details, the reader can refer to (Belmandt, 1993; Brissaud et al., 2011; Bui, 2018).

Let E  be a non-empty set of individuals or objects. Let  E( )  be the set of subsets of E . Let 
us define on E an extension operator ad from  E( )  to  E( )  associated to a dual operator int.

Definition 1 (Pretopological space and pseudo-closure) E,ad( )  is a pretopological space if and 
only if ad  is an operator from  E( )  to  E( )  called pseudo-closure and verifying:

• ad Æ Æ( ) =
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• ∀ ∈ ( ) ⊂ ( )� ��A E A ad A� P ,

This definition can be given by the dual operator int  called pseudo-opening and verifying:

• int Æ Æ( ) =
• ∀ ∈ ( ) ( ) ⊂� � ��A E int A A ,

The dual operator int  verifies ∀ ∈ ( ) ( ) = ( )� � ,��A E A A int ad  where A  is the complement of 
the set A.

Remarks:

1. 	 The pseudo-closure ad is not necessarily idempotent, i.e. we have: A ad A ad ad A      ⊂ ( )⊂ ( )



⊂… , 

whereas it is the case for a topological space. This property of non-idempotence allows to design 
iterative operators and consequently iterative algorithms.

2. 	 Operators ad and int  being dual, often only ad  is actually defined.
Definition 2 Let E,ad( )  be a pretopological space, let n Î *  be a positive integer. ∀ ⊂A E , 

we designate by ad An ( ) the composition of ad  n times, i.e. ad A ad ad ad An

n times

( ) = … ( )( )( )..


.

Definition 3 (Closed subset) Let A  be a subset of E . A  is called closed subset if and only if 
ad A A( ) = .

Definition 4 (Closure) Let A  be a subset of E , the closure of A  in E ad,( )  is the smallest 
c lo sed  subse t  no t ed  F A( )  ve r i fy ing :  A F A⊂ ( )  e t  ∃ ≥p 1  s uch  t ha t 
F A ad A ad Ap p( ) = ( ) = ( )+1 .

Definition 5 (Elementary closed subset) ∀ ∈x E , we call elementary closed subset associated 
to x , noted F x( )  the closure of subset x{ } , which verifies: ∃ ≥p 1 , such that 

F x ad x ad xp p( ) = { }( ) = { }( )+1

Types Of Pretopological Spaces
Based on the definition of its pseudo-closure, a pretopological space may verify some interesting 
properties. Those properties are used to define different types of pretopological spaces (Auray et al., 
1979; Belmandt, 1993; Brissaud et al., 2011). Some of them are presented below.

Definition 6 (Pretopological space of type  ) A pretopological space E ad,( )  is of type   if and 
only if

∀ ∈ ( ) ⊆( ) ⇒ ⊆ ( )( )A B E A B ad A ad B, , (� �P �����������

Definition 7 (Pretopological space of type D ) A pretopological space E ad,( )  is of type D  if 
and only if

∀ ∈ ( ) ∪( ) = ( )∪ ( )A B E ad A B ad A ad B, ,� �P ��
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Definition 8 (Pretopological space of type DS ) A pretopological space E ad,( )  is of type DS  if 
and only if, for any set family ( )A

i i IÎ  of E , we have

ad
i I
A

i E
ad AU Ui i∈












=

∈ ( )

Definition 9 (Topological space) (E, ad) is a topological space if and only if (E, ad) is a pretopological 
space of type 

D
, verifying, in addition the idempotence axiom: ∀ ∈ ( ) ( )( ) = ( )A E ad ad A ad A� ,��

Proposition 1 Any pretopological space of type 
D

 is a pretopological space of type �V .
Example 1 (ε-neighbors pretopology) Let e  be a positive real number, d a distance measure (or 

dissimilarity etc.) defined on E . We can define a pretopological space E ad, e( )  where:
◦◦ adε ∅ ∅( ) =
◦◦ ∀ ∈ { }( ) = ∈ ( ) ≤{ }x E ad x y E d x y, / ,� � �e e

◦◦ ∀ ⊂ ( ) = ∈ { }( )xA E ad A
x A

ad x, � e eU

Property 1: E ad, e( )  is a pretopological space of type 
DS

.

This example of pre-topology was used by (Hubert Emptoz, 1983) to develop a clustering method 
having the same principle as the DBSCAN method (Ester et al., 1996). This method is based on the 
propagation of pseudo-closure from a germination point. The germination points are chosen by their 
high density around them. The definition of density used in this method is the structuring function 
also defined by (Emptoz et al., 1981).

Example 2 (k nearest neighbors (knn) pretopology) Let k  be a positive integer, d a distance 
measure (or dissimilarity etc.) defined on E . We can define a pretopological space E ad

knn
,( )  

where:
◦◦ ad

knn
Æ Æ( ) =

◦◦ ∀ ∈ { }( ) = ∈{ }x E ad x y E, /
knn

y ��is�a�k�nearest�neighbors�of�x

◦◦ ∀ ⊂ ( ) = ∈ { }( )xA E ad A
x A

ad x, �
knn knnU

Example 3 (k-adjacency pretopology) Let k  be a positive integer, d a distance measure (or 
dissimilarity etc.) defined on E . We can define a pretopological space E ad

k adjacency
, −( )  where:

◦◦ ad
k adjacency− ∅( ) = ∅

◦◦ ∀ ∈ { }( ) = ∈−x E ad x y E, { /
k adjacency

y ��is�a�knn�of�x�and�x�is�a��knn�of�y}�

◦◦ ∀ ⊂ ( ) = ∈ { }( )xA E ad A
x A

ad x, �
knn knnU

Property 2: The knn and k-adjacency pretopologies are of type 
DS

.

Let E ad,( )  be a pretopological space of type  , we have the following properties:

Proposition 2: "� ,�F F
1 2

 closed subsets of E, F F
1 2
Ç  is also closed subset.
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Proposition 3: ∀ ∈ ≠x y E x y, ,� �  such that: F x F y( ) ∩ ( ) ≠ Æ ; then ∀ ∈ ( )∩ ( )z F x F y , 

F z F x F y( ) ⊂ ( )∩ ( )( )

Let E be a finite set. Let (E,ad) be a pretopological space of type 
D

. We have the following 
property.

Property 3: The pseudoclosure is the union of the of a subset A is the union of the elementary closed 

subsets of its elements. ∀ ∈ ( ) ( ) = ∈ { }( )A E ad A
x A
ad xU ,

The continuity concept, well known in topology, has also been defined in the pretopological 
framework.

Definition 10 (Continuity) Let E ad
E

,( )  and F ad
F

,( )  be two pretopological spaces. Let h  be a 
function defined from E ad

E
,( )  to F ad

F
,( ) . h  is said to be (m, n) continuous from E  to F  

if and only if:

∀ ∈ ( ) ( )( ) ⊂ ( )( )A E h ad A ad h A
E
m

F
n , � . If m n= , we said that h  is continuous on E .

This notion of continuity defined on a poretopological space will allow to transfer structures 
between two pretopological spaces. We will use this notion to define a temporal relation allowing to 
preserve the structures between two consecutive time. We will use this notion to define a temporal 
relation allowing to preserve structures and properties between two consecutive times.

Let x E  Î  and A  a subset of E . Then ad x{ }( )  represents the elements of E  “linked” to x , 

and ad A( )  corresponds to the set of elements of E  that are “linked” to elements of A , where linked 
can be interpreted as similar to, influenced by, etc. depending on the application domain. A simple 
example often used for ad is the neighborhood. Conversely, one can build a pretopological space 
from a neighborhood relation, or more generally from a binary relation.

PRETOPOLOGY BASED ON A BINARY RELATION

We will present here a way to build a pre-topological space from a binary relation or a family of 
binary relations (neighborhood family).

Let R  be a binary relation defined on E . We denote R R� � � � � � �x y E x y( ) = ∈{ }/ , and we 

define R0 x x( ) = { } , R R1 x x( ) = ( )  et ∀ ≥ ( ) = ( )





−p x xp p1 1, �R R R . In a similar way, we 

denote: R R− ( ) = ∈{ }1 x y E y x� � � � /  and ∀ ≥ ( ) = ( )





− − +p x xp p1 1, �R R R . We thus have: 

∀ ⊂ ( ) = ∈ ( )�A E� �/ R RA
x A

xU .

Based on the binary relation R , we can define three pretopological spaces (Belmandt, 1993; 
Brissaud et al., 2011; Hubert Emptoz, 1983) as follows.

Pretopology of p-order ascendants is the pretopological structure on E with the pseudo-
closure ad p( )  of ascendants of order p defined by: 
∀ ∈ ( ) ( ) = ∈ ∃ ≤ ≤ ( )∩ ≠ ∅{ }( ) −A E ad A x E i i p x A

p i , / , ,0 R
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Pretopology of q-order descendants is the pretopological structure on E with the pseudo-
closure ad q( )  of descendants of order q defined by: 
∀ ∈ ( ) ( ) = ∈ ∃ ≤ ≤ ( )∩ ≠ ∅{ }( )A E ad A x E j j q x A

q j , / , ,0 R

Pretopology of (p,q)-order ascendants-descendants is the pretopological structure on E with 
the pseudo-closure ad pq( )  of ascendants-descendants of order (p,q) defined by:

∀ ∈ ( ) ( ) = ∈ ∃( ) ≤ ≤ ≤ ≤ ( )∩ ≠( ) −A E ad A x E i j i p j p x A
pq i , / , , , ,�� � � �� �0 0 R Æ �� �and x AjR ( ) ∩ ≠{ }Æ

Proposition 4: Pretopology of p-order ascendants, q-order descendants and (p,q)-order ascendants-
descendants are pretopological spaces of type 

D
.

Example: E ad, e( )  is a pretopological space of 1-order descendants.

Temporal pretopological model: a new concept

The notion of continuity enables to perform a pretopological structure transfer from a set E to a set 
F. This transfer can be used to study subsets of structures changing over time.

In that section, we introduce a new concept named temporal pretopological space that aims to 
study sub-structures and relationships between elements of those substructures, which both evolve 
along a temporal dimension T n� � ,�.�.�.�,�={ }1 . That notion allows us to establish a generic formalism. 
Then we present an example of temporal pretopology built from a binary relation. We give two 
interesting examples of substructures evolving over time. The set E  stays the same but the pseudo-
closure ad

t
  may change. Our formalism is based on the definition of a temporal function f

t
  that must 

verify the continuity constraint (see definition bellow) between spaces E ad
t

,( )  and E ad
t

, +( )1 .

Definition 11 (Temporal function) f
t
 is a temporal function between time stamps t  and t +1  

defined on  E( ) , if ft  preserves the continuity condition between E ad
t t
,( )  and E ad

t t+ +( )1 1
, , 

i.e. ∀ ∈ ( )A E , ft verifies f ad A ad f A
t t t t( )( ) ⊂ ( )+1( ) .

Definition 12 (Temporal pretopological space) A temporal pretopological space over a sequence 
of time stamps T K= …{ }1, ,  is a sequence of pretopological spaces E ad E ad

K K1 1
, , , ,( ) … ( )  

w i t h  a  t empora l  func t ion  f t be tween  E ad
t t
,( )  and  E ad

t t+ +( )1 1
,  such  t ha t 

∀ ∈ … −{ } ( )( ) ⊂ ( )+t K f ad A ad f A
t t t t

1 1
1

, , , ( ).

Construction Of Temporal Pretopology Of P-Order Descendants

Let G  be a temporal pretopological space (i.e. a sequence of pretopologies) G G G GK� � ,� ,�...,�= 1 2  
where G E ad

i i
� � ,�=( ) . We can build a temporal pretopology of p-order descendants from the sequence 

of pretopologies E ad i K
i

, , , ..,( ) ∀ ∈{ }1 .

Definition 3.3 (Temporal relation of descendants) We call temporal relation of descendants the 
relation R

t
 defined by: ∀ ∈ { }( ) = ∈ ∈ { }( ){ }+x E x y E y ad x

t t
, /R

1
.

We denote: R
t
x x0 ( ) = { } , R R

t t
x x1 ( ) = { }( )  et ∀ ≥ ( ) = ( )





−p x x
t
p

t t
p1 1, �R R R .
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We generalize the temporal relation of x definition by: ∀ ∈ ( ) ( ) = ∈ { }( )A E A
x A

x
t tU ,R R� .

Definition 13: (Temporal pretopological space of p-order descendants) We call temporal 
pretopological space of p-order descendants the pretopological space E ad

t
p,( )  whose pseudo-

closure is defined as: ∀ ∈ ( ) ( ) = ∈ ∃ ≤ ≤ ( )∩ ≠ ∅{ }A E ad A x E i i p x A
t
p

t
i , / , ,0 R .

ad
t
p is called temporal pseudo-closure of p-order descendants.

Figure 1 shows an example of temporal pretopological space G G G G
t t t

� � � �= { }+ +, ,
1 2

, where 
G E ad
t t
= ( )� ��, , G E ad

t t+ += ( )1 1
� � �, , G E ad

t t+ += ( )2 2
� � �,  and E � � � � � � � �= { }1 2 3 4 5 6 7, , , , , , . In that 

figure, individuals are nodes, an edge u v   ®  means that v ad u  ∈ { }( ) . Table 1 provides the 

temporal function of the descendants R
t
 and R

t+1
 between t,  t � �+ 1  and t � �+ 1 , t � �+ 2 . Figure 2 

shows the Temporal pseudo-closure of descendants of order p=1,2.
The objective of the temporal function is to allow the pseudo-closure to temporally extend up 

to its closure whilst keeping properties of the pretopological structure G .

Figure 1. Example of temporal pretopology

Table 1. Temporal functionR t  between t  and t� �+1

x 1 2 3 4 5 6 7 8 9

R t x( ) {1} {1,2} {3,4} {4} {5} {5,6,7} {7} {6,8,9} {9}

R t x+ ( )1 {1,2,3} {1,2} {1,3,4} {3,4} {5} {5,6,7} {7} {6,8,9} {9}
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DEFINITION OF NEW SUBSTRUCTURES EVOLVING OVER TIME

In some application domains, as for example in economics, it is pertinent to analyze sectoral 
dependencies, such that sectorial influences, which either change over time or remain stable over a 
period. That allows economists to predict dependencies associated to stable or evolving economic 
sectors.

In this section, we define two new notions of temporal substructures:

1. 	 Sequence associated to an elementary closed subset and that shows change in influence of a 
particular element on its p-order descendants.

2. 	 Subset of p-order descendants of an element stable over a fixed period of time k, which we call 
k-stable substructure.

In the following, E ad
t
p,( )  denotes the temporal pretopological space of p-order descendants 

where t T n� � � � ,...,∈ ={ }1 .

Evolution of an Elementary Closed Sub-Structure
In the context of structural analysis, closed subsets have often be studied in spaces with a pretopological 
structure. Moreover, such subsets have been used to build clusters or models in supervised 
classification. In the following, we define the concept of temporal closed subset associated to an 
element of the set under study, and propose an algorithm to seek such subsets.

Definition 14 (Temporal evolution of an elementary closed substructure) ∀ ∈x E , we define 
the temporal evolution of an elementary closed substructure associated to x  as the sequence of 
the elementary closed subsets associated to x  at each time stamp t  in T . In other words, the 
sequence F F x F x F x

t K
=< ( ) … ( ) … ( ) >� , , ,�

1
 where F x

t ( )  is the elementary closed subset 
associated to x  in E ad

t
,( ) .

F  is built iteratively by performing a temporal pseudo-closure at each time stamp t . Figure 3 
shows the construction of a sequence of elementary closed subsets associated to x � �=8  by the algorithm 
1.

Figure 2. Temporal pseudo-closure of descendants of order p� �,�=1 2
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Algorithm 1: Temporal evolution of an elementary closed subset 
Input:  

- E ad E ad E adn, , , , ....., ,� � � � �� �
1 2( ) ( ) ( ){ } sequence of n pretopological spaces

- x  an element
Output: 
- GP

GP = [ ] 
For each timestamp t do 
          Gp(t)= Ft (x)
End For 
Return Gp

k-Stable Temporal Substructures
A k-stable temporal substructure can be generated iteratively from a 2-stable temporal substructure.

Definition 15 (2-stable temporal substructure) We say that A EÌ  is a 2-stable temporal 
substructure between two consecutive time stamps t  and t +1 , if and only if, ∃ ⊂B E , 
A ad B f B

t t
= ( ) = ( )

Definition 16 (k-stable temporal substructure) Let k A E≥ ⊂1,  is a temporal substructure k-stable 
iff ∃ ∈t T , such that A  is a 2-stable temporal substructure between t  and t +1 , t +1  and 
t + 2 , …, t k+ −1  and t k+ .

Definition 17 (Maximal k-stable temporal substructure) Let k A E≥ ⊂1,  is a maximal k-stable 
temporal substructure if and only if A  is a k-stable temporal substructure and B EÌ  k-stable 
temporal substructure such that A BÌ .

Those substructures can be built iteratively by applying pseudo-closure and intersection operators 
to an element x E  Î . Figure 3 shows 2 examples of 3-stable temporal substructures: 1 2,{ }  and 5 6 7, ,{ }  
; and 5 6 7 8 9, , , ,{ }  is a maximal 2-stable temporal substructure.
Algorithm 2: k-stable temporal substructure 
Input:  

- E ad E ad E adn, , , , ..... , ,
1 2( ) ( ) ( ){ } a sequence of n pretopological spaces 

- x  an element
Output: 
- GP

GP = [ ] 
i=0 
For each pretopological space do 
          If first space then 

Figure 3. Example of a sequence of temporal closed subsets associated to x� �=8
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                    Gp(i)= R i
p  (x)Ç   adi

p (x) 

                 //search of 2-stabes subset between E adi,( )  and 
E adi, +( )1
          Else  
                     Gp(i)= Find 2-stable subset between Gp(i-1) and 
E adi,( )
          End If 
          i = i+1 
End For 
Return Gp

Experimental results

Experiments were performed on several data sets: 2 data sets from the Stanford Network Analysis 
Platform (SNAP), and 2 real-word data sets related to sector influence in New-Caledonia economics 
(data set 1) and in Metropolitan France economics (data set 2) respectively. Table 2 gives a brief 
description of those data sets.

COLLEGEMSG1 is a data set containing private messages sent through an online social network 
of the University of California. Edge u v  ®  means that user u  sent a private message to user v .

EMAIL-EU2 is a set of emails exchanged by members of an European Research Institution. 
Edge u v  ®  means that individual u  sent an email to individual v .

Figure 4 shows examples of the temporal evolution of some individuals for the 2 data sets 
COLLEGEMSG and Email-UE. The algorithm highlights the evolution of interactions among a group 
of persons. We can observe that individual 3 from COLLEGEMSG data set interacts indirectly with 
individual 155 at some stage and directly some time later. Same remark for individual 194 interactions 
with individual 311 in the EMAIL-EU data set.

Table 2. Description of data

NB instances Temporality Time stamps

Economic data 1 204 Year 17

Economic data 2 1139 Year 67

College message 1899 Month 9

Email-UE 986 Day 12
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Application to Sectoral Econometrics
The economic activity of a country can be modeled by various monetary flows observed on an annual 
basis. To represent the state of their national accountings, European countries use tables displaying 
those monetary flows according to the European System of Accounts (ESA). In that system, the input-
output table (IOT) is used to ensure the consistency of national accounts. It describes and summarizes 
operations on goods and services with regard to products and industries per annum. In addition, IOT 
is used to analyze inputs-outputs in order to model sector interdependence.

Inputs and outputs are consumed and sold products by sectors, in monetary value. An industry 
frequently uses inputs produced by other industries. Similarly, the production of that industry can serve 
as inputs for other industries. A particularly simple example, provided by W. Leontief in (Leontief, 
1986), will enable us to illustrate how to construct an input-output table from goods and services 
accounts represented by 3 blocks (Figure 5).

Figure 4. Examples of elementary temporal closed subsets

Figure 5. Input-output table
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The following study deals with the input-output tables of New Caledonia per annum between 
1999 and 2015. Each IOT contains the 12 industries defined in Table 3.

According to Figure 6, the 17 tables have been normalized. We recall here the way pretopologies 
of descendants were generated from the data. For each sector, the annual average threshold enables 
to decide whether a sector k impacts another sector j. This influence is taken into consideration if 
the value in the normalized table A j k s

k
,( )> , where s

k
 is the average threshold of the industry k  

at year n. An oriented graph is built for each year n , based on the thresholds for that year. If the 
normalized intermediate consumption of a sector k  comes from another sector j  with a value greater 
than the threshold (of sector k ), then an edge j k   is added to the graph.

We applied the algorithm on each vertex in the pretopology of descendants representing the 
normalized IOT from 1999 to 2015. For example, in Figure 7 and Figure 8[REMOVED REF FIELD], 
by applying successively the pseudo-closure (from 1999 up to 2014), one can find the pattern 
11 12 10, ,{ }  in all IOTs.

Table 3. Industries in New Caledonia

Industry Vertex number

Agriculture, hunting, forestry, fishing, lifestock farming 1

Food industry 2

Nickel industry 3

Other industries 4

Energy 5

Building and public works 6

Trade 7

Transports and telecommunications 8

Banks and insurances 9

Services mainly towards companies 10

Services mainly towards households 11

Administration 12

Figure 6. Example of setting of the I/O table
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According to domain experts, the proposed method enables to highlight an evolution of New 
Caledonia economics characterized by the development of a local processing industry over the two 
last decades.

Expert’s Interpretation
At the end of the 1990’s and at the beginning of the 2000’s (cf. Figure 7), “other industries” (4) were 
mainly oriented towards mining (3) and administration (12). That corresponded to either subcontracting 
mining activities or technical activities such as maintenance or else for administrations. The bank 
sector (9) also benefitted from (4).

Next, the sector of “other industries” (4) has grown significantly thanks to, on one hand, the 
construction of 2 world-class metallurgical sites (Vale NC and Koniambo Nickel), and on the other 
hand a political willingness to create a local industry to substitute imports. That political orientation 
was accompanied by tariff barriers, even by quotas, in order to favor the local processing industry 
which products are more expensive than imported ones. The political aim also intended to create 
numerous jobs in New Caledonia.

That explain why, ten years later (cf. Figure 8), production of other sectors such as trade (7) could 
then depend on diverse local industries (4) (year 2014). On the contrary, the later could depend on 
the production of sectors such as the Building and Public Works sector (6) (year 2013).

Figure 7. (a) Examples of temporal closed elementary subsets

Figure 8. (b) Examples of temporal closed elementary subsets
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Figure 9[REMOVED REF FIELD] shows examples of maximal k-stable substructures from 3 
different sectors. Sector 2 (food industry) influenced sectors 11 (services mainly towards households), 
12 (administration), 10 (services mainly towards companies), and 4 (other industries) between 1999 
and 2015. In addition, we can notice that sector 4 is indirectly impacted by the 3 sectors involved in 
the example of Figure 9.

Conclusion and Perspectives

We have established a first formulation of the concept of temporal pretopological space. More precisely, 
from an example of temporal relation, we have defined the temporal pretopological space of p-order 
descendants. We introduced two new notions of temporal substructures, generated by applying a 
temporal pseudo-closure, and that could be extracted to analyze data from a structural point of view.

The present works opens numerous perspectives. One could be to optimize the two algorithms 
before applying them to large data sets. Another direction could be to study the properties of temporal 
pretopological spaces. A further objective could be to combine structural analysis of individual 
influences and characteristics describing individuals, which might also change over time. Exploration 
of substructures combined to pattern extraction (especially itemsets) could then lead to a cross analysis. 
In the example of economic data, an important point for economists is the impact of the influence 
threshold between sectors. It could thus be pertinent to define temporal pretopological structures with 
weighted influences instead of keeping only influences greater than a threshold.

Finally, in the present work, temporal pretopology is generated from an example of binary relation. 
Another interesting approach would be to define other criteria enabling to search for substructures 
in data issued from a family of binary relations or family of neighborhoods.
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