
DOI: 10.4018/IJDWM.298005

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

ABSTRACT

Open domain question answering (ODQA) on a large-scale corpus of documents (e.g., Wikipedia) is
a key challenge in computer science. Although transformer-based language models such as Bert have
shown an ability to outperform humans to extract answers from small pre-selected passages of text,
they suffer from their high complexity if the search space is much larger. The most common way to
deal with this problem is to add a preliminary information retrieval step to strongly filter the corpus and
keep only the relevant passages. In this article, the authors consider a more direct and complementary
solution that consists of restricting the attention mechanism in transformer-based models to allow a
more efficient management of computations. The resulting variants are competitive with the original
models on the extractive task and allow, in the ODQA setting, a significant acceleration of predictions
and sometimes even an improvement in the quality of response.

KeyWoRDS
Bert, Deep Learning, Information Retrieval, Knowledge Management, Natural Language Processing, Question
Answering, Scalability, Speed, Squad, Transformer

INTRoDUCTIoN

The last few years have given rise to many disruptive innovations in the field of Natural Language
Processing (NLP) and allowed a significant improvement of evaluation metrics on public benchmarks
(Wolf et al., 2019). In particular, the proposal of a novel architecture called the Transformer (Vaswani
et al., 2017) and an adaptation into the versatile easy-to-use language model Bert (Devlin, Chang,
Lee, & Toutanova, 2019) have led to a series of publications generating a continual enthusiasm.
Recent transformer-based models such as RoBerta (Liu et al., 2019), XLNet (Z. Yang et al., 2019),
Albert (Lan et al., 2019) managed to outperform humans on difficult benchmarks for general language
comprehension assessment. This exploit led to the democratization of their use in many applications.
We here focus on automatic question answering where we search for the answer of a user question
in a large set of text documents (e.g. the entire English Wikipedia with millions of articles). Language
models have been proven efficient on a sub-task called extractive Question Answering (eQA),
sometimes also referred to as Reading Comprehension (RC), on the reference dataset SQuAD
(Rajpurkar, Zhang, Lopyrev, & Liang, 2016): given a question-document pair, the goal is to find the

efficient open Domain Question
Answering With Delayed Attention
in Transformer-Based Models
Wissam Siblini, Worldline, France*

Mohamed Challal, Worldline, France

 https://orcid.org/0000-0003-0558-8651

Charlotte Pasqual, Worldline, France

https://orcid.org/0000-0003-0558-8651

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

2

answer within the document. But on our target task, referred to as Open Domain Question Answering
(ODQA), the problem is more complex because for each question the search space is much larger.
Since Transformer-based readers already require a non-negligible time to process a single question-
paragraph pair, they cannot manage millions in real-time. The most common solution is to combine
eQA with Information Retrieval (IR) (Manning, Schütze, & Raghavan, 2008) to first select p relevant
documents and only apply the costly reading comprehension model on them. Such a combination
has proven itself in BertSerini (W. Yang, Xie, et al., 2019) where the widely known Lucene with
BM25 (Białecki, Muir, Ingersoll, & Imagination, 2012; Robertson et al.,1995) for the IR part was
combined with Bert for the eQA part.

In this paper, we propose to tackle the time issue from a more direct and complementary angle
which consists in using partial attention in the eQA model so that many computations can be saved
or only done once as a preprocessing. More precisely, our contributions are the following: (1) We
use a Delaying Interaction Layers mechanism (DIL) on transformer-based models that consists in
applying the attention between subparts (segments) of the input sequence only in the last blocks of
the architecture. We implement this mechanism for both Bert and Albert and refer to the variants as
DilBert and DilAlbert. (2) We study their behavior in the standard eQA setting and show that they
are both competitive with the base models. (3) We analyze the impact of delayed interaction on the
models complexity and then empirically confirm that in the ODQA setting, it allows to speed up
computations by an order of magnitude on either GPU or CPU. (4) Finally, we evaluate the models on
the reference ODQA dataset OpenSQuAD (Chen, Fisch,Weston, & Bordes, 2017) by combining them
with Answerini as W. Yang, Xie, et al. (2019). Although DilBert (resp. DilAlbert) performs slightly
worse than Bert (resp. Albert) when faced to a single relevant passage (eQA), it can outperform it in
the ODQA setting when having to select the right answer within several paragraphs.

Additionally, our code is made available with the paper1 to (i) allow the reproduction of all the
paper results and (ii) encourage new proposals by offering an ODQA pipeline similar to BertSerini
and scripts to test it interactively on Wikipedia or evaluate it on OpenSQuAD.

Background
For a long time, researchers have been interested in Automatic Question Answering (Woods & WA,
1977) to build intelligent search engines and browse large-scale unstructured documents databases
such as Wikipedia (Chen et al., 2017; J. Lee, Yun, Kim, Ko, & Kang, 2018; Ryu, Jang, & Kim,
2014; S. Wang et al., 2017; W. Yang, Xie, et al., 2019). This kind of system is often designed with
several layers that successively select a smaller but more precise piece of text. It generally starts with
a one-stage or a multiple-stage Information Retrieval step (Ad-hoc retrieval) that identifies relevant
documents for the question at hand. Then, an algorithm designed for eQA is applied to identify the
answer spans within the selected passages.

Ad-hoc Retrieval
Given a user query, searching for relevant items within a large set of documents generally consists
in: (i) applying an encoding model to all documents, (ii) encoding the query as well, (iii) applying a
ranker that produces a relevance score for each query-document pair based on their encodings, and
finally (iv) sorting the documents accordingly (Manning et al., 2008). For the encoding part, proposals
go from vocabulary and frequency based strategies such as bag-of-words or TF-IDF (Baeza-Yates,
Ribeiro-Neto, et al., 1999), to word2vec embeddings averaging (Mikolov, Sutskever, Chen, Corrado, &
Dean, 2013) to even strongly contextualized embeddings with Bert (Devlin et al., 2019; MacAvaney,
Yates, Cohan, & Goharian, 2019; W. Yang, Zhang, & Lin, 2019). For the relevance score part, the
most popular choice is a fixed similarity/distance measure (cosine or Euclidean) but researchers have
explored others strategies such as siamese networks (Das, Yenala, Chinnakotla, & Shrivastava, 2016),
histograms (Guo, Fan, Ai, & Croft, 2016), convolutional networks (Dai, Xiong, Callan, & Liu, 2018),
etc. In the recent literature (MacAvaney et al., 2019), several combinations between contextualized

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

3

embedding techniques (Elmo and Bert) and rankers (DRMM, KNRM, PACRR) have been tried. By
fine-tuning BERT for IR and exploiting the representation of its [CLS] token, the authors obtained
state-of-the-art results on several reference IR benchmarks.

But there are also old and proven IR baselines like BM25 (Robertson et al., 1995), a weighted
similarity function based on TF-IDF statistics (frequencies of the question words in the documents,
and their inverse frequencies in the overall corpus), which until today remains very competitive with
neural methods (Lin, 2019). BM stands for Best Matching and the regular BM25 is extremely fast
and benefits from decades of fine engineering, for instance in its implementation in Lucene (Białecki
et al., 2012; P. Yang, Fang, & Lin, 2017, 2018).

extractive Question Answering
The extractive Question Answering task consists in identifying a question’s answer as a text span
within a rather small passage. The most popular dataset for this task is the Stanford Question Answering
Dataset (SQuAD) (Rajpurkar, Zhang, Lopyrev, & Liang, 2016) which consists in more than a hundred
thousand questions, each paired with a Wikipedia article paragraph. The state of art algorithms for
this task are transformer-based language models such as Bert (Devlin, Chang, Lee, & Toutanova,
2019) or Albert (Lan et al., 2019). They are usually composed of an input embedding layer, followed
by a succession of l encoder blocks (which implement, in particular, a self-attention mechanism)
and finally an output layer.

Self-attention and Bert Bert is built from the encoder part of the Transformer architecture
(Vaswani et al., 2017). Since its proposal, the Transformer has quickly taken over the previously
mainstream recurrent neural models in NLP. It is an encoder-decoder model that works essentially
with self-attention and attention rather than recurrent units. The advantage is that the hidden states in a
layer can be computed in parallel and not sequentially. Moreover, each state depends on a dynamically
chosen set of states from the previous layer (through attention scores), allowing to deal efficiently
with very long sequences. In order to explain how Bert works, let us describe in detail the encoder
part of the Transformer. It is designed to take as input a sequence of items (e.g. words). Each item has
an index (with respect to a global vocabulary) and a position that the model transforms into an initial
global vector (embedding layer). The sequence of initial embeddings then goes successively through
several identical blocks (encoder blocks) that implement two steps: a self-attention step and a step
with a feed-forward layer applied element-wise on the sequence. Each step is followed by a residual
connection. The self-attention mechanism consists of computing, for each item of the sequence, a
new representation that is a weighted sum of the item itself (projected with a learned “value” matrix
V) and the other items of the sequence (also projected with the “value” matrix V). The weight of
each item is called the attention score and is computed from a similarity between the considered item
(projected with a learned “query” matrix Q) and the others (projected with a learned “key” matrix K).
To be even more precise, the self-attention is multi-headed in the Transformer. It means that multiple
self-attention layers are applied to the sequence in parallel and the results are concatenated. For each
head, the “query”, “key” and “value” matrices are different. More details with explanatory figures
can be found here: https://jalammar.github.io/illustrated-transformer/.

Bert uses the Transformer’s encoder architecture and considers, as input, a sequence of words/
tokens that are the concatenation of two subsequences (called segments) with special words as
separators between them. Its embedding layer embeds the tokens’ ids, their positions, and, in addition,
their segment ids (0 or 1). This layer is followed by the sequence of encoder blocks. Bert can be used
as a general language model, which means that it has been pre-trained by its authors on general self-
supervised tasks with a large amount of text, to be later adapted and transferred to several specific NLP
tasks from text classification to question answering. The pre-training tasks are “masked language”
(trying to predict masked words from an input sentence) and “next sentence prediction” (deciding
if the sentences from the two segments are two subsequent sentences from a global text or not). In

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

4

the following paragraph, we explain how Bert can be used for the extractive question answering task
after pre-training.

Bert for extractive question answering (Figure 1) On the eQA task, Bert takes as input a
text sequence that is the concatenation of the question (first segment) and the associated passage
(second segment). The whole sequence is tokenized and a special [CLS] (resp. [SEP]) token is added
at the beginning (resp. between the question and the passage and at the end). Then, the associated
features (token ids, segments, positions...) are fed to the model. The embedding layer produces a first
sequence of embeddings which goes through the l encoder blocks to finally turn into a sequence of
contextualized vectors. Then, each final vector of the passage’s tokens go through a feed-forward
classification layer that predicts two probabilities, to be the beginning and the end of the answer span.

open Domain Question Answering
Open Domain Question answering solutions generally combine a retriever that solves the Ad-hoc
Retrieval task by selecting relevant documents and a reader that solves the extractive Question
Answering task on the selected passages. An emblematic example is DrQA (Chen, Fisch,Weston,
& Bordes, 2017), a bot developed at Facebook which is able to answer to questions by searching in
the entire English Wikipedia in real-time. It consists in a TF-IDF + cosine retriever that selects 5
relevant documents followed by a multi-layer RNN reader (Chen, Bolton, & Manning, 2016). Later,
other proposals were able to surpass its quality of answer with a paragraph reranker (J. Lee et al.,
2018; S. Wang et al., 2017) or with a “minimal” retriever preselecting small but relevant portions of
text (Min, Zhong, Socher, & Xiong, 2018). In the meantime, Bert was released and W. Yang, Xie,
et al.(2019) proposed a first successful usage for ODQA, by simply combining answerini/Lucene
with a Bert base fine-tuned on SQuAD, which achieved the new state-of-the art performance on
the reference benchmark OpenSQuAD (Chen, Fisch, Weston, & Bordes, 2017). Since then, a few

Figure 1. Architecture of Bert-like models (l blocks) applied to eQA. Start/end logits inform on the probability for a token
subsequence to be the answer.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

5

proposals (Feldman & El-Yaniv, 2019; K. Lee, Chang, & Toutanova, 2019; Ren, Cheng, & Su, 2020;
Z. Wang, Ng, Ma, Nallapati, & Xiang, 2019) have been focusing on better selection of passages and
a better pooling of answers from them.

In all of these proposals, the scaling issue is always tackled from the retriever’s perspective. Yet,
the ODQA setting offers many opportunities to address it from the reader’s side, which is the main
motivation behind this work.

Main FoCUS oF the ARTICLe

Delaying Interaction Layers
In the ODQA setting, the set of documents is rather static. If q questions are asked and there are p
documents to search the answer within, transformer-based readers will consider all the q p ́ possible
pairs, split them into fixed-length examples and make predictions on them. Not only this is very costly
but all computations are done interactively. More precisely, in the encoder blocks, the attention
mechanism makes the representation of the documents tokens dependent on the question tokens, so
there is no possibility to pre-compute intermediate representations of the database’s documents
without knowing the question beforehand. To better face this setting, we consider a generic
modification of the architecture of existing models to allow reducing computations and make
preprocessing possible. The key is to “delay” the interaction between question and paragraph so that
a part of the computations can be done independently. Also, we need to make changes (i) that are not
specific to a given model but that can be applied to a maximum of transformer-based language models
and (ii) that do not introduce new parameters so that we can benefit from existing pre-trained weights.

The principle of the mechanism is shown schematically in Figure 2. We consider an entry split
between the two segments (after the first separator [SEP]). Let us denote by s

q

n dq e∈ × (resp

s
p

n dp e∈ ×) the question segment (resp. the paragraph segment) after the embedding layer, with n
q

being the size (number of tokens) of the question comprising the token [CLS] and the first token
[SEP], n

p
 the size of the passage including the last token [SEP], and d

e
 the dimension of the

embedding space (often 768 or 512). Let us also denote by E
j

 the j -th encoder block, parameterized
by a set of weights q

j
. We apply the k first encoder blocks independently on the two segments to

obtain s E E s
q k q
' ...= ()

1
 and s E E s

p k p
' ..= ()

1
. We then concatenate them into

s concat s s
q p

' ,' '= () before applying the l k- last encoder blocks to get ′′ = ()+s E E s
l k
� �..� � ’

1
 which

ultimately goes through the output layer (“QA Layer”). We refer to the first k blocks as the non
interaction blocks and the last l k- as the interaction blocks. The impact of the hyperparameter k
is studied in the experimental section. Note that the weights q

k
, ..., q

l
 involved in the computation

of s
q
' are the same as those involved in the computation of s

p
' and in the computation of

E E concat s s
k q p
 �...� � , �

1 ()() in the original transformer model. We initialize these weights with the
pre-trained models. Then, we can make the weights applied to the question evolve independently of
those applied to the paragraph but we choose to share them instead as it keeps the number of weights
equal to the original model. We implement the described mechanism in Python on the basis of the
original models implementation from the transformers python library, version 2.7.0 (Wolf et al.,
2019).

Delayed interaction reduces the complexity of the first k blocks. More precisely, self-attention
requires a number of computations proportional to n

s
2 where n n n

s q p
 = + is the input sequence

length. Therefore, the implemented mechanism reduces the complexity from O n n n n
q p p q
2 2 2� � � � �+ + ×()

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

6

to O n n
q p
2 2� �+() . Although it already makes a difference, it can be negligible in practice, because the

paragraph is much longer than the question, and because the reduced intra-block operations are in
fact highly parallelizable. The difference that matters takes place in the ODQA setting. Consider that
a single encoder block has a forward complexity of C n

s
�́ 2 . Therefore, the whole encoder has a

complexity of l C n
s

´ ´� � 2 to process a single example, and l C q p n
s

´ ´ ´ ´� � � � 2 to process a set of q
questions and p paragraphs (for the sake of simplicity, assume that paragraphs are cut in such a way
that question-paragraph pairs fit in the model input size n

s
). With delayed interaction, computations

in the first k blocks for each question (resp. paragraph) do not have to be redone for each paragraph
(resp. question). Therefore, the complexity becomes k C q n p n l k C q p n

q p s
× × × + ×()+ −()× × × ×� � � � � � � � � � � � �2 2 2 .

Thus with p and q in the order of 102 , the quadratic term p q́ largely dominates and the speedup

tends to the ratio l k
l

- between the number of interaction blocks and the total number of blocks in

the original model. Note that the independent paragraph processing (of complexity k C p n
p

´ ´ ´� � � 2)
can be done at initialization in the ODQA setting, instead of interactively when users ask questions.

experimental Study
In our paper, the goal is to ultimately assess the interest of delayed interaction in Open Domain
Question Answering by studying its performance on the reference dataset OpenSQuAD as W. Yang,
Xie, et al.(2019). We start by analyzing the associated eQA sub-task (SQuAD v1.1, Rajpurkar et al.
(2016)), in particular to know how the predictive performance is impacted with respect to the
hyperparameter k . Then, on the ODQA task, we measure the speedup and then the predictive
performance.

Figure 2. Delayed interaction in Bert-like eQA models: the first k (resp. the last l k- blocks are applied to question and
paragraph separately (resp. to the whole).

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

7

We consider two language models as baselines. The first one is Bert since it is the most used2
and also the one with the largest set of different pre-trained weights. The second one, to test our
framework in a challenging way, is Albert because it has the specificity of using the same weights
in all of its l encoder blocks (the weights q

j
 are the same for all j , j k∈

� ,1 and j k l∈ +

� ,1)

and we want to know if this leads to an unexpected behavior or not. We refer to the variants as DilBert
(resp. DilAlbert) which stands for “Delaying Interaction Layers” in Bert (resp. Albert).

extractive QA
For the eQA task, we train Bert, DilBert, Albert and DilAlbert on the SQuaD v1.1 train set. We
consider the base version of each model and we initialize them with the English pre-trained weights:
bert-based-uncased for Bert and DilBert and albert-base-v2 for Albert and DilAlbert.

The training is carried with the run_squad.py script from the transformer library using the default
hyperparameters: 2 epochs, an input sequence length n

s
 of 384, a batch size of 12, and a learning

rate of 3e-5. The models are evaluated on the SQuAD v1.1 dev set using the official metrics for the
task (Exact Match and F1-score). For DilBert and DilAlbert, we make the hyperparameter k vary
from 0 to l -1 and analyze its impacts on the performance (Figure 3).

As a sanity check, we can observe that without delayed interaction (k = 0), our implementation
of DilBert (resp. DilAlbert) provides the same results as Bert (resp. Albert). Then, as k increases,
the performance remains very competitive and it only decreases significantly for k l= = −11 1 .

For k l= , there is no interaction anymore so start logits and end logits associated to paragraph
tokens do not depend on the question and the performance dramatically drops to an exact match of
around 13 (not reported in the Figure 3). For information, results of Dil variants with k non interaction
blocks are superior to a variant of the original models from which we would have completely removed
k blocks: for example, a Bert in which only 2 blocks are kept, trained according to the same protocol,
obtains an exact match of only 26.4 and an F1 score of 36.2. Experiments are all carried on SQuAD
v1.1 here because OpenSQuAD is based on it. Nevertheless, the Dil variants also apply to SQuAD
v2.0. For instance, Albert, DilAlber t

k=6
 and DilAlber t

k=10 respectively obtain an F1-Score of 81.4,
80.3 and 72.4 on its dev set.

Figure 3. Evolution of DilBert’s (left) and DilAlbert’s (right) Exact Match (EM) and F1-score (F1) on the SQuAD v1.1 dev set with
respect to the number of non interaction blocks k . The performance of Bert (left) and Albert (right) are also displayed as a
horizontal line.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

8

There is a slight difference between the behaviors of DilBert and DilAlbert. Whereas the latter
seem to have a smooth evolution with respect to k , the former has two plateaus from k = 0 to k = 4
and from k = 5 to k = 10 and a decrease of performance in between. With inspiration from Clark,
Khandelwal, Levy, and Manning (2019), our hypothesis is that since each block in Bert has its own
set of weights, it could be that the pre-trained attention heads in the 6th layer have a component useful
for the targeted eQA task.

Speedup
To analyze the speedup entailed by delayed interaction, we consider a simple open domain question
answering setting where q � �=100 questions are asked and the RC model (e.g. Bert) searches for the
answers in a database of p� �=100 passages. We measure the total time required by Bert, Albert,
DilBert and DilAlbert to process all question-paragraph pairs (Table 1). For the Dil variants, we detail
the time required in the non interaction blocks to do the independent processing on questions and
paragraphs and in the interaction blocks to do the dependent processing on question-paragraph pairs.
We consider two values for the number of non interaction blocks: k = 10 because it allows preserving
most of the eQA performance and k = 11 , the largest possible value. Experiments are carried on a
bull server with a Nvidia Tesla V100 GPU and a 5-cores/10-threads Intel Xeon Gold 6132 (2.6-3.7
GHz) CPU.

The empirical results confirm the theoretical intuitions of the complexity analysis. First, since
intra-block calculations are parallelizable and a GPU has a great power of parallelization, we can see
on GPU results that the processing time per block and per input sequence is approximately always
the same (approximately 1e-3) whereas it depends more on the length of the sequence on CPU (about
4e-3 for the question with a length of n

q
»�16 and 1.3e-2 for the question-paragraph concatenation

with a length of � _ � �n s=384). Second, in the ODQA setting, where we look for the answer to several
questions (q) in a static set of paragraphs (p), the processing in interaction blocks takes most of the
time because it is proportional to the number of pairs p q́ , which is much greater than p and q .
Thus, since original models have l = 12 interaction blocks and Dil variants only have l k- (1 or

2) interaction blocks, the speedup factor is close to l
l k-

 (»�6 or »�12 .

Table 1. Time consumption to search for the answer of 100 questions in 100 passages with Bert, Albert, DilBert and DilAlbert.
“NI Q” (resp. “NI P”) refers to the time required to process the q questions (resp the p passages) in the Non Interaction
blocks, and “I Q-P” refers to time required to process the p q´ pairs in the Interaction blocks. We also report in parentheses
a time consumption normalized with respect to the number of blocks (l k or l k- and inputs (p q or p q´ �)

Bert DilBertk=10 DilBertk=11 AlBert DilAlBertk=10 DilAlBertk=11

NI Q 1.0 (1e-3) 0.9 (8.2e-4) 1.2 (1.2e-3) 1.4 (1.3e-3)

GPU NI P 0.8 (8e-4) 1.1 (1e-3) 1.0 (1.0e-3) 1.1 (1.0e-3)

I Q-P 117.9 (9.8e-4) 17.0 (8.5e-4) 9.9 (9.9e-4) 142.2 (1.2e-3) 22.4 (1.1e-3) 13.1 (1.3e-3)

Total 117.9 18.8 11.9 142.2 24.6 15.6

Speedup x1 x6.3 x9.9 x1 x5.8 x9.1

NI Q 4.2 (4.2e-3) 4.8 (4.4e-3) 4.1 (4.1e-3) 4.8 (4.3e-3)

10-threads NI P 15.4 (1.5e-2) 16.7(1.5e-2) 16.7 (1.7e-2) 17.6 (1.6e-2)

CPU I Q-P 2602.6 (2.2e-2) 323.3(1.6e-2) 159.6(1.6e-2) 2597.6 (2.2e-2) 346.8 (1.7e-2) 176.3 (1.7e-2)

Total 2602.6 342.2 181.1 2597.6 367.7 198.7

Speedup x1 x7.6 x14.4 x1 x7,1 x13.1

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

9

open Domain QA
Apart from speedup, it is necessary to check the impact of delayed interaction on the quality of
answers in Open Domain QA. We focus here, as Chen et al. (2017), on OpenSQuAD. The objective for
algorithms is to answer to questions using the entire English Wikipedia3. More precisely, the questions
are the same as the 10570 questions of SQuAD v1.1 dev set but algorithms are not provided with the
associated paragraphs. Instead, they have to search the answer in a larger set of 5,075,182 articles.

Since our study specifically focuses on how partial attention can improve the reader Bert/Albert,
we do not dwell on the choice of the retriever. Instead, we choose a proven ODQA method of the
literature whose reader is based on a Transformer architecture, and replace it with our variants. The
baseline BertSerini (W. Yang, Xie, et al., 2019) is a good candidate framework as it uses a robust
retriever and Bert as a reader. Its implementation is not available so we propose our own (Figure 4).

We first apply a preprocessing step to properly index the Wikipedia dump with Lucene using the
pyserini library, version 0.9.4.0 (P. Yang et al., 2017, 2018).

As Wikipedia articles are rather long and sometimes cover multiple topics, they are difficult
to process as such for both the retriever and the reader (J. Lee et al., 2018; S. Wang et al., 2017; W.
Yang, Xie, et al., 2019), so we start by splitting them into paragraphs. We consider two strategies: (1)
Using a double newline as delimiter. We then discard all items with less than 30 characters leading to
a number of paragraphs around 29.1 million as in (W. Yang, Xie, et al., 2019). (2) Using a fixed length
of 100 words with a sliding window of 50 words as in (Z. Wang et al., 2019). We obtain close end-
to-end results with both techniques but retain the slightly better second strategy for the final pipeline.

The splitted paragraphs are then processed with the pyserini script index4 which outputs all the
necessary inverted indices for retrieval. Then, we instantiate pyserini’s retriever that relies on the
inverted indices and that uses BM25 (pyserini’s default parameters) as a relevance score s

bm25
. For

Figure 4. General architecture of the question answering pipeline used in our experiments

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

10

each question, it returns the p paragraphs with the top s
bm25

. We choose p = 29 and p = 100 as
in BertSerini. This retrieval step takes less than 0.15s on CPU with the hardware configuration
described in the previous section. Then, the reader is applied to each paragraph and produces a start
logit score s

s
 and an end logit score s

e
 for each token. To aggregate the results into a final prediction,

we consider two variants: one that excludes the retriever score and selects the text span with the

highest reader score s
s s

r
s e=
+� �

2
 across all paragraphs, and one that includes it by replacing s

r
 with

m m� � �s s
r bm
+ −()1

25
 where m is a hyperparameter between 0 and 1. A cross validation on a subset of

the SQuAD v1.1 train set questions shows that, from 0.1 to 0.9 in steps of 0.1, the value of m� � .=0 5
leads to an optimal end-to-end performance for all considered readers (Bert, DilBer t

k=10 , Albert and
DilAlber t

k=10 fine-tuned on SQuAD v1.1). We add the multilingual version of Bert (Devlin et al.,
2019; Pires, Schlinger, & Garrette, 2019) to open perspectives in other languages.

The overall pipeline is evaluated with the exact match (EM) and the F1-score (F1) between its
answer predicted from Wikipedia and the expected answer. Obviously, the task here is more difficult
than eQA since the paragraph containing the answer is not provided. Not only the IR part will select
p paragraphs that might not contain the answer, but additional difficulties emerge (detailed in the
Discussion).

To measure the impact of the retriever part, we compute the percentage of questions for which
the expected answer at least appears in the p selected paragraphs (column R in Table 2). Since the
paragraph splitting methodology and the version of pyserini were not detailed by W. Yang, Xie, et
al.(2019) we were only able to obtain the same IR performance as Bertserini for p� �=29 but we
obtained a lower R for p = 100 .

The final end-to-end ODQA results exhibit interesting properties (Table 2). Although slightly
worse on the eQA task (e.g. Figure 3), Dil variants almost always outperform original models for
ODQA when the IR score is not used, and sometimes by a significant margin (e.g. when there is a
high number of candidate paragraphs p). When exploiting the IR score, the conclusion are more
mixed.

In fact, the original models (Bert, mBert, Albert) sometimes produce noisy predictions with high
scores for passages with little relevance (i.e. a low score s

bm25
) (Xie et al., 2020; W. Yang, Xie, et

al., 2019). Delayed interaction acts like a regularization similar to dropout (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014), since the resulting architecture is the same as the
original one, except that some connections are dropped in the first k blocks. Therefore, the variants
are more subject to generalization. When using the retriever score in addition to the reader’s predictions,
all pipelines focus more on the relevant passages, which helps improving the overall performance.
In this case, the original models manage to catch up with dil variants.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

11

The results with multilingual weights are slightly worse than with English weights, but especially
for the original model. In fact, the DilmBert variant is always better than mBert. As for the results
with Albert, they are close to those of Bert but a little better in general.

The best performance (EM: 44.3, F1: 51.8) obtained in this study with a Bert base-english-
uncased, simply fine-tuned for the eQA task on SQuAD v1.1 and combined with BM25, is better
than Bertserini’s, whereas the latter uses the same basic blocks and has a higher IR (R) score. This
improvement is mainly due to engineering (documents splitting, version of Lucene), and is consistent
with observations made in the literature. For example Xie et al. (2020) also report higher results for
a BertSerini-like pipeline (EM: 41.8, F1: 49.5, R: 86.3).

To draw more robust conclusions on the comparison between Bert and Dilbert, we additionnaly
provide, in Table 3, their performance on three other datasets frequently used for ODQA (TriviaQA,
Natural Questions and WebQuestions). We consider the same trained weights for Bert and DilBert,
the same document source (the 2016 Wikipedia dump) and the same retriever (BM25) as in the
experiment with OpenSQuAD. The results are shown for the hypermeters p = 100 and m� � .=0 5 .
Except for TriviaQA when using the IR score, DilBert still perform slightly better than Bert.

Table 2. End-to-end performance (EM, F1) of our ODQA pipeline with different readers. Results when excluding (w/o) or
including (w/) the IR score are detailed. The number of retrieved passage is noted as p. EM is the Exact Match and R is the
retriever score.

Model EM F1 R

w/o w/ w/o w/

DrQA (Chen et al., 2017) 27.1 - - - 77.8

R3 (Wang et al., 2017) - 29.1 - 37.5 -

Par. R. (Lee et al., 2018) - 28.5 - - 83.1

MINIMAL(Min et al., 2018) - 34.7 - 42.5 64.0

Yang et al. (2019a):

Bertserini (p= 29) - 36.6 - 44.0 75.0

Bertserini (p= 100) - 38.6 - 46.1 85.8

Our results:

Bert (p= 29) 37.4 43.5 44.1 50.9 74.6

DilBert (p= 29) 38.8 42.0 46.7 50.4 74.6

Bert (p= 100) 31.8 44.3 38.0 51.8 82.4

DilBert (p= 100) 36.5 43.2 43.8 51.6 82.4

mBert (p= 29) 34.4 41.9 40.6 49.1 74.6

DilmBert (p= 29) 38.5 42.8 45.8 50.5 74.6

mBert (p= 100) 28.3 42.3 34.1 49.3 82.4

DilmBert (p= 100) 34.7 43.8 41.7 51.6 82.4

Albert (p= 29) 40.6 44.1 47.0 51.3 74.6

DilAlbert (p= 29) 39.7 43.6 47.7 51.8 74.6

Albert (p= 100) 36.2 44.9 42.1 52.1 82.4

DilAlbert (p= 100) 36.8 44.8 43.8 52.9 82.4

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

12

Discussion
Complexity is a major industrial and societal concern that affects efficiency of systems in production
and their carbon footprint (Thakur & Chaurasia, 2016). By approaching the ODQA problem with
both the use of IR and modifications of the reader, we can greatly reduce computations. Dil variants,
which can benefit from pre-trained weights already available, reduce the number of interaction blocks
from 12 to 2 (resp. 1) with k = 10 (resp 11) reducing the cost by 85% (resp. 92%) in Bert/Albert,

which soon will be standards in search engines. To give a point of comparison, the famous alternative
of Bert known as DistilBert (Sanh,Debut, Chaumond, & Wolf, 2019) reduces the cost by 50%
(essentially by going from 12 blocks to 6 blocks). On SQuAD v1, DistilBert gets roughly the same
EM/F1 and speed as DilBert with k � ��= 6 . But DilBert can go further (its EM/F1 for k = 10 is as
good as for k � �=6 but speed is improved). Moreover, since the Dil mechanism is generic, we applied
it to Albert, and DilAlbert with k � ��= 10 not only gets a better EM/F1 than DistilBert, but also has
about 4x fewer parameters and is about 3x faster in ODQA. Instead of making a comparison, a better
idea would probably be to apply the Dil mechanism to Distilbert as nothing should prevent it. And
nothing should either prevent the application of delayed interaction to the retriever part of the ODQA
pipeline for cases where this one is also based on a Transformer (Z. Wang et al., 2019).

In addition to acceleration, Dil variants are in fact competitive, in ODQA, in terms of response
quality. They can even surpass the original models when searching for answers in a wide variety of
passages. Since the SQuAD v1.1 train set is based on a few hundred of Wikipedia articles, a tuned
language models may show good eQA performance on its dev set due to over-specialization on
certain topics (Xie et al., 2020). The regularization induced by restrictions in Dil certainly reduces
the performance for the most relevant passage (Figure 3) but also unexpected behaviors on irrelevant
passages (Table 2). More explicit solutions to improve generalization and multi-passage selection
(e.g. global normalization or distant supervision) have recently been explored (Z. Wang et al., 2019;
Xie et al., 2020).

The best performance in ODQA (in particular compared to eQA) still seems a little weak today
(see the best exact match in Table 2). This can be explained by the additional difficulty of retrieval
on Wikipedia but also by limits in the evaluation. Indeed, besides the retriever’s bottleneck which
results in a 15%-18% decrease, there are questions in the SQuAD v1.1 dev set that are no longer
suitable in open domain (see Table 4).

Table 3. End-to-end performance (EM, F1) of our ODQA pipeline with Bert and Dilbert, for p=100, on three additional datasets.
Results when excluding (w/o) or including (w/) the IR score are detailed.

WebQuestions Natural Questions TriviaQA

Model EM F1 R EM F1 R EM F1 R

w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

Bert 9.8 10.6 18.2 19.7 75.0 9.7 12.6 15.1 19.0 62.0 31.9 36.3 38.9 46.7 84.2

DilBert 10.1 10.8 19.5 20.3 75.0 11.2 13.2 17.3 20.2 62.0 32.2 33.9 40.1 44.6 84.2

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

13

To end the discussion, we would like to mention a recently published approach called DeFormer
(Cao, Trivedi, Balasubramanian, & Balasubramanian, 2020). It was developed independently of
our work and we were not aware of it at the time we carried out the study. It is very close to the dil
mechanism exploited in this paper except that Cao et al. (2020) apply an additional optimization step
to make their variants closer to the original models. We obtain on SQuAD, with Bert, results similar
to them. Despite the obvious connections, our study brings additional valuable elements, for instance:
(1) We focus on the implication of a partial attention mechanism in ODQA where the acceleration
factors are very interesting. We also bring new results showing how the variants can actually be
competitive with the original models on OpenSQuAD. (2) We apply the mechanism to mBert and
to Albert. The latter is a bit special because weights are shared between blocks. Our study shows
that the mechanism is still compatible and that weights can even be shared between blocks without
interaction and blocks with interaction. In view of the anteriority of DeFormer, we may in the future
refer to the approach as DilAlbert or DeFormer-Albert.

Conclusion
Delayed interaction allows to accelerate the very famous Transformer by about an order of magnitude
and does not need any additional pre-training. We can establish a link between our work, focused
specifically on the impacts for ODQA, and a more general research direction consisting in speeding
up deep language models using partial attention (Zaheer et al., 2020). There remains paths to explore
in order to improve our work. One of them is to enhance learning by following ideas from Z. Wang
et al. (2019); Xie et al. (2020), i.e. carrying a multi-passage fine-tuning. Another natural direction
is to address the issue of memory management. Specifically, storing pre-computed representations
of documents can become expensive for large-scale databases. It would be interesting to evaluate
the impact of compressing them with sparsification techniques (Sun, Guo, Lan, Xu, & Cheng, 2016;
Zhao et al, 2020) or binarization (Tissier, Gravier, & Habrard, 2019).

FUNDING AGeNCy
Publisher has waived the Open Access publishing fee.

Table 4. Examples of questions expected answers and predicted answers by one of the ODQA pipeline on OpenSQuAD. The
answers here are all correct, but the metric does not reflect it.

Question Expected Answer Predicted Answer EM F1

When did Zwilling and Karistadt become active at
Wittenberg?

June 1521 mid-1521 0 0

The Los Angeles Angels of Anaheim are from which
sport?

MLB Major League
Baseball

0 0

How many fumbles did Von Miller force in Super
Bowl 50?

2 two 0 0

What is the AFC short for? American Football
Conference

Asian Football
Confederation

0 0.33

How many graduate students does Harvard have? 14000 15000 0 0

What position did Newton play during Super Bowl
50?

quarterback QB 0 0

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

14

ReFeReNCeS

Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999). Modern information retrieval (Vol. 463). ACM Press.

Białecki, A., Muir, R., Ingersoll, G., & Imagination, L. (2012). Apache lucene 4. In Sigir 2012 workshop on
open source information retrieval (p. 17). ACM.

Cao, Q., Trivedi, H., Balasubramanian, A., & Balasubramanian, N. (2020). Deformer: Decomposing pre-trained
transformers for faster question answering. doi:10.18653/v1/2020.acl-main.411

Chen, D., Bolton, J., & Manning, C. D. (2016). A thorough examination of the cnn/daily mailreading
comprehension task. In Proceedings of the 54th annual meeting of the association for computational linguistics
(volume 1: Long papers) (pp. 2358–2367). doi:10.18653/v1/P16-1223

Chen, D., Fisch, A., Weston, J., & Bordes, A. (2017). Reading wikipedia to answeropen-domain questions. In
Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long papers)
(pp. 1870–1879). doi:10.18653/v1/P17-1171

Clark, K., Khandelwal, U., Levy, O., & Manning, C. D. (2019). What does bert look at? An analysis of bert’s
attention. In Proceedings of the 2019 acl workshop blackboxnlp:Analyzing and interpreting neural networks for
nlp (pp. 276–286). doi:10.18653/v1/W19-4828

Dai, Z., Xiong, C., Callan, J., & Liu, Z. (2018). Convolutional neural networks for soft-matching n-grams in
ad-hoc search. In Proceedings of the eleventh acm international conference on web search and data mining (pp.
126–134). doi:10.1145/3159652.3159659

Das, A., Yenala, H., Chinnakotla, M., & Shrivastava, M. (2016). Together we stand: Siamese networks for similar
question retrieval. In Proceedings of the 54th annual meeting of theassociation for computational linguistics
(volume 1: Long papers) (pp. 378–387). doi:10.18653/v1/P16-1036

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019 conference of the North American chapter of the
association for computational linguistics: Human language technologies, volume 1 (long and short papers)
(pp.4171–4186). Academic Press.

Guo, J., Fan, Y., Ai, Q., & Croft, W. B. (2016). A deep relevance matching model for ad-hocretrieval. In
Proceedings of the 25th ACM international on conference on information and knowledge management (pp.
55–64). ACM.

Feldman, Y., & El-Yaniv, R. (2019). Multi-hop paragraph retrieval for open-domain question answering.
doi:10.18653/v1/P19-1222

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-
supervised learning of language representations. arXiv preprintarXiv:1909.11942.

Lee, J., Yun, S., Kim, H., Ko, M., & Kang, J. (2018). Ranking paragraphs for improving answer recall in open-
domain question answering. doi:10.18653/v1/D18-1053

Lee, K., Chang, M.-W., & Toutanova, K. (2019). Latent retrieval for weakly supervised open domain question
answering. doi:10.18653/v1/P19-1612

Lin, J. (2019). The neural hype and comparisons against weak baselines. In ACM SIGIR Forum (Vol. 52, pp.
40–51). doi:10.1145/3308774.3308781

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., . . . Stoyanov, V. (2019). Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692.

MacAvaney, S., Yates, A., Cohan, A., & Goharian, N. (2019). Cedr: Contextualized embeddings for document
ranking. In Proceedings of the 42nd international ACM SIGIR conference on research and development in
information retrieval (pp. 1101–1104). ACM.

Manning, C. D., Schütze, H., & Raghavan, P. (2008). Introduction to information retrieval. Cambridge University
Press. doi:10.1017/CBO9780511809071

http://dx.doi.org/10.18653/v1/P16-1223
http://dx.doi.org/10.18653/v1/P17-1171
http://dx.doi.org/10.18653/v1/W19-4828
http://dx.doi.org/10.1145/3159652.3159659
http://dx.doi.org/10.18653/v1/P16-1036
http://dx.doi.org/10.1145/3308774.3308781
http://dx.doi.org/10.1017/CBO9780511809071

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

15

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111–3119).
Academic Press.

Min, S., Zhong, V., Socher, R., & Xiong, C. (2018). Efficient and robust question answering from minimal context
over documents. In Proceedings of the 56th annual meeting of the association for computational linguistics
(volume 1: Long papers) (pp. 1725–1735). doi:10.18653/v1/P18-1160

Pires, T., Schlinger, E., & Garrette, D. (2019). How multilingual is multilingual bert? In Proceedings of the 57th
annual meeting of the association for computational linguistics (pp. 4996–5001). doi:10.18653/v1/P19-1493

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions for machine comprehension
of text. In Proceedings of the 2016 conference on empirical methods in natural language processing (pp.
2383–2392). doi:10.18653/v1/D16-1264

Ren, Q., Cheng, X., & Su, S. (2020, April). Multi-Task Learning with Generative Adversarial Training for
Multi-Passage Machine Reading Comprehension. Proceedings of the AAAI Conference on Artificial Intelligence,
34(05), 8705–8712. doi:10.1609/aaai.v34i05.6396

Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., & Gatford, M. (1995). Okapi at TREC-3.
Nist Special Publication Sp, 109, 109.

Ryu, P.-M., Jang, M.-G., & Kim, H.-K. (2014). Open domain question answering using wikipedia-based
knowledge model. Information Processing & Management, 50(5), 683–692. doi:10.1016/j.ipm.2014.04.007

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter. arXiv preprint arXiv:1910.01108.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929–1958.

Sun, F., Guo, J., Lan, Y., Xu, J., & Cheng, X. (2016). Sparse word embeddings using l1-regularized online
learning. In Proceedings of the twenty-fifth international joint conference on artificial intelligence (pp. 2915–
2921). Academic Press.

Thakur, S., & Chaurasia, A. (2016). Towards green cloud computing: Impact of carbon footprint on environment.
In 6th international conference on cloud system and big data engineering (confluence) (pp. 209–213). Academic
Press.

Tissier, J., Gravier, C., & Habrard, A. (2019). Near-lossless binarization of word embeddings. Proceedings of
the AAAI Conference on Artificial Intelligence, 33, 7104–7111. doi:10.1609/aaai.v33i01.33017104

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention
is all you need. arXiv preprint arXiv:1706.03762.

Wang, S., Yu, M., Guo, X., Wang, Z., Klinger, T., Zhang, W., . . . Jiang, J. (2017). R-3: Reinforced reader-ranker
for open-domain question answering. arXiv preprint arXiv:1709.00023.

Wang, Z., Ng, P., Ma, X., Nallapati, R., & Xiang, B. (2019). Multi-passage bert: A globally normalized bert
model for open-domain question answering. doi:10.18653/v1/D19-1599

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., . . . Rush, A. M. (2019). HuggingFace’s
Transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.

Woods, W. A. (1977). Lunar rocks in natural English: Explorations in natural language question answering.
Academic Press.

Xie, Y., Yang, W., Tan, L., Xiong, K., Yuan, N. J., Huai, B., & Lin, J. et al. (2020, April). Distant supervision
for multi-stage fine-tuning in retrieval-based question answering. In Proceedings of The Web Conference 2020
(pp. 2934-2940). doi:10.1145/3366423.3380060

Yang, P., Fang, H., & Lin, J. (2017, August). Anserini: Enabling the use of Lucene for information retrieval
research. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval (pp. 1253-1256). doi:10.1145/3077136.3080721

http://dx.doi.org/10.18653/v1/P18-1160
http://dx.doi.org/10.18653/v1/P19-1493
http://dx.doi.org/10.18653/v1/D16-1264
http://dx.doi.org/10.1609/aaai.v34i05.6396
http://dx.doi.org/10.1016/j.ipm.2014.04.007
http://dx.doi.org/10.1609/aaai.v33i01.33017104
http://dx.doi.org/10.1145/3366423.3380060
http://dx.doi.org/10.1145/3077136.3080721

International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

16

Wissam Siblini, after obtaining a Master of Engineering Degree from Ecole Centrale de Nantes (France) and a
Master of Science Degree from the University Claude Bernard in Lyon (France), did a PhD thesis at the University
of Nantes in partnership with Orange Labs in Lannion. His research focused on extreme multi-label classification
and dimensionality reduction. Since he completed his PhD in 2018, he has been doing applied research at Wordline
on Fraud Detection, Natural Language Processing, and Computer Vision.

Mohamed Challal, after obtaining a Master of Engineering Degree from Insa Lyon (France), started working at
Societe Generale, Corporate and Investment Banking, as a Research And Development Engineer. His research
mainly focusses on Natural Language Processing.

Charlotte Pasqual is a member of the Worldline Expert Community and of the Emerging Solutions and Market
Insights team at Worldline Labs. She wrote her Masters’ thesis in 2006 at the Fraunhofer Institute about motion
detection using background estimation models and obtained the Master of Engineering Degree at ENSIIE. She
joined the Worldline R&D team in 2010, where her main interests are natural interfaces and seamless experiences.
She is currently leading a research program about natural language processing applied to customer journeys.

Yang, P., Fang, H., & Lin, J. (2018). Anserini: Reproducible ranking baselines using Lucene. Journal of Data
and Information Quality, 10(4), 1–20. doi:10.1145/3239571

Yang, W., Xie, Y., Lin, A., Li, X., Tan, L., Xiong, K., . . . Lin, J. (2019). End-to-end open-domain question
answering with bertserini. arXiv preprint arXiv:1902.01718.

Yang, W., Zhang, H., & Lin, J. (2019). Simple applications of bert for ad hoc document retrieval. arXiv preprint
arXiv:1903.10972.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized
autoregressive pretraining for language understanding. In Advances in neural information processing systems
(pp. 5753–5763). Academic Press.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., & Ontanon, S. (2020). Big bird: Transformers
for longer sequences. Advances in Neural Information Processing Systems, 33.

Zhao, C., Hua, T., Shen, Y., Lou, Q., & Jin, H. (2021) Automatic Mixed-Precision Quantization Search of BERT.
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence Main Track, 3427-3433.
doi:10.24963/ijcai.2021/472

eNDNoTeS

1 https://github.com/wissam-sib/dilbert
2 https://huggingface.co/models
3 For comparability reasons, we consider a dump from December 2016 as proposed by Chen et al. (2017).
4 https://github.com/castorini/pyserini

http://dx.doi.org/10.1145/3239571
http://dx.doi.org/10.24963/ijcai.2021/472

