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ABSTRACT

Open domain question answering (ODQA) on a large-scale corpus of documents (e.g., Wikipedia) is 
a key challenge in computer science. Although transformer-based language models such as Bert have 
shown an ability to outperform humans to extract answers from small pre-selected passages of text, 
they suffer from their high complexity if the search space is much larger. The most common way to 
deal with this problem is to add a preliminary information retrieval step to strongly filter the corpus and 
keep only the relevant passages. In this article, the authors consider a more direct and complementary 
solution that consists of restricting the attention mechanism in transformer-based models to allow a 
more efficient management of computations. The resulting variants are competitive with the original 
models on the extractive task and allow, in the ODQA setting, a significant acceleration of predictions 
and sometimes even an improvement in the quality of response.

KeyWoRDS
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INTRoDUCTIoN

The last few years have given rise to many disruptive innovations in the field of Natural Language 
Processing (NLP) and allowed a significant improvement of evaluation metrics on public benchmarks 
(Wolf et al., 2019). In particular, the proposal of a novel architecture called the Transformer (Vaswani 
et al., 2017) and an adaptation into the versatile easy-to-use language model Bert (Devlin, Chang, 
Lee, & Toutanova, 2019) have led to a series of publications generating a continual enthusiasm. 
Recent transformer-based models such as RoBerta (Liu et al., 2019), XLNet (Z. Yang et al., 2019), 
Albert (Lan et al., 2019) managed to outperform humans on difficult benchmarks for general language 
comprehension assessment. This exploit led to the democratization of their use in many applications. 
We here focus on automatic question answering where we search for the answer of a user question 
in a large set of text documents (e.g. the entire English Wikipedia with millions of articles). Language 
models have been proven efficient on a sub-task called extractive Question Answering (eQA), 
sometimes also referred to as Reading Comprehension (RC), on the reference dataset SQuAD 
(Rajpurkar, Zhang, Lopyrev, & Liang, 2016): given a question-document pair, the goal is to find the 
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answer within the document. But on our target task, referred to as Open Domain Question Answering 
(ODQA), the problem is more complex because for each question the search space is much larger. 
Since Transformer-based readers already require a non-negligible time to process a single question-
paragraph pair, they cannot manage millions in real-time. The most common solution is to combine 
eQA with Information Retrieval (IR) (Manning, Schütze, & Raghavan, 2008) to first select p  relevant 
documents and only apply the costly reading comprehension model on them. Such a combination 
has proven itself in BertSerini (W. Yang, Xie, et al., 2019) where the widely known Lucene with 
BM25 (Białecki, Muir, Ingersoll, & Imagination, 2012; Robertson et al.,1995) for the IR part was 
combined with Bert for the eQA part.

In this paper, we propose to tackle the time issue from a more direct and complementary angle 
which consists in using partial attention in the eQA model so that many computations can be saved 
or only done once as a preprocessing. More precisely, our contributions are the following: (1) We 
use a Delaying Interaction Layers mechanism (DIL) on transformer-based models that consists in 
applying the attention between subparts (segments) of the input sequence only in the last blocks of 
the architecture. We implement this mechanism for both Bert and Albert and refer to the variants as 
DilBert and DilAlbert. (2) We study their behavior in the standard eQA setting and show that they 
are both competitive with the base models. (3) We analyze the impact of delayed interaction on the 
models complexity and then empirically confirm that in the ODQA setting, it allows to speed up 
computations by an order of magnitude on either GPU or CPU. (4) Finally, we evaluate the models on 
the reference ODQA dataset OpenSQuAD (Chen, Fisch,Weston, & Bordes, 2017) by combining them 
with Answerini as W. Yang, Xie, et al. (2019). Although DilBert (resp. DilAlbert) performs slightly 
worse than Bert (resp. Albert) when faced to a single relevant passage (eQA), it can outperform it in 
the ODQA setting when having to select the right answer within several paragraphs.

Additionally, our code is made available with the paper1 to (i) allow the reproduction of all the 
paper results and (ii) encourage new proposals by offering an ODQA pipeline similar to BertSerini 
and scripts to test it interactively on Wikipedia or evaluate it on OpenSQuAD.

Background
For a long time, researchers have been interested in Automatic Question Answering (Woods & WA, 
1977) to build intelligent search engines and browse large-scale unstructured documents databases 
such as Wikipedia (Chen et al., 2017; J. Lee, Yun, Kim, Ko, & Kang, 2018; Ryu, Jang, & Kim, 
2014; S. Wang et al., 2017; W. Yang, Xie, et al., 2019). This kind of system is often designed with 
several layers that successively select a smaller but more precise piece of text. It generally starts with 
a one-stage or a multiple-stage Information Retrieval step (Ad-hoc retrieval) that identifies relevant 
documents for the question at hand. Then, an algorithm designed for eQA is applied to identify the 
answer spans within the selected passages.

Ad-hoc Retrieval
Given a user query, searching for relevant items within a large set of documents generally consists 
in: (i) applying an encoding model to all documents, (ii) encoding the query as well, (iii) applying a 
ranker that produces a relevance score for each query-document pair based on their encodings, and 
finally (iv) sorting the documents accordingly (Manning et al., 2008). For the encoding part, proposals 
go from vocabulary and frequency based strategies such as bag-of-words or TF-IDF (Baeza-Yates, 
Ribeiro-Neto, et al., 1999), to word2vec embeddings averaging (Mikolov, Sutskever, Chen, Corrado, & 
Dean, 2013) to even strongly contextualized embeddings with Bert (Devlin et al., 2019; MacAvaney, 
Yates, Cohan, & Goharian, 2019; W. Yang, Zhang, & Lin, 2019). For the relevance score part, the 
most popular choice is a fixed similarity/distance measure (cosine or Euclidean) but researchers have 
explored others strategies such as siamese networks (Das, Yenala, Chinnakotla, & Shrivastava, 2016), 
histograms (Guo, Fan, Ai, & Croft, 2016), convolutional networks (Dai, Xiong, Callan, & Liu, 2018), 
etc. In the recent literature (MacAvaney et al., 2019), several combinations between contextualized 
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embedding techniques (Elmo and Bert) and rankers (DRMM, KNRM, PACRR) have been tried. By 
fine-tuning BERT for IR and exploiting the representation of its [CLS] token, the authors obtained 
state-of-the-art results on several reference IR benchmarks.

But there are also old and proven IR baselines like BM25 (Robertson et al., 1995), a weighted 
similarity function based on TF-IDF statistics (frequencies of the question words in the documents, 
and their inverse frequencies in the overall corpus), which until today remains very competitive with 
neural methods (Lin, 2019). BM stands for Best Matching and the regular BM25 is extremely fast 
and benefits from decades of fine engineering, for instance in its implementation in Lucene (Białecki 
et al., 2012; P. Yang, Fang, & Lin, 2017, 2018).

extractive Question Answering
The extractive Question Answering task consists in identifying a question’s answer as a text span 
within a rather small passage. The most popular dataset for this task is the Stanford Question Answering 
Dataset (SQuAD) (Rajpurkar, Zhang, Lopyrev, & Liang, 2016) which consists in more than a hundred 
thousand questions, each paired with a Wikipedia article paragraph. The state of art algorithms for 
this task are transformer-based language models such as Bert (Devlin, Chang, Lee, & Toutanova, 
2019) or Albert (Lan et al., 2019). They are usually composed of an input embedding layer, followed 
by a succession of l  encoder blocks (which implement, in particular, a self-attention mechanism) 
and finally an output layer.

Self-attention and Bert Bert is built from the encoder part of the Transformer architecture 
(Vaswani et al., 2017). Since its proposal, the Transformer has quickly taken over the previously 
mainstream recurrent neural models in NLP. It is an encoder-decoder model that works essentially 
with self-attention and attention rather than recurrent units. The advantage is that the hidden states in a 
layer can be computed in parallel and not sequentially. Moreover, each state depends on a dynamically 
chosen set of states from the previous layer (through attention scores), allowing to deal efficiently 
with very long sequences. In order to explain how Bert works, let us describe in detail the encoder 
part of the Transformer. It is designed to take as input a sequence of items (e.g. words). Each item has 
an index (with respect to a global vocabulary) and a position that the model transforms into an initial 
global vector (embedding layer). The sequence of initial embeddings then goes successively through 
several identical blocks (encoder blocks) that implement two steps: a self-attention step and a step 
with a feed-forward layer applied element-wise on the sequence. Each step is followed by a residual 
connection. The self-attention mechanism consists of computing, for each item of the sequence, a 
new representation that is a weighted sum of the item itself (projected with a learned “value” matrix 
V) and the other items of the sequence (also projected with the “value” matrix V). The weight of 
each item is called the attention score and is computed from a similarity between the considered item 
(projected with a learned “query” matrix Q) and the others (projected with a learned “key” matrix K). 
To be even more precise, the self-attention is multi-headed in the Transformer. It means that multiple 
self-attention layers are applied to the sequence in parallel and the results are concatenated. For each 
head, the “query”, “key” and “value” matrices are different. More details with explanatory figures 
can be found here: https://jalammar.github.io/illustrated-transformer/.

Bert uses the Transformer’s encoder architecture and considers, as input, a sequence of words/
tokens that are the concatenation of two subsequences (called segments) with special words as 
separators between them. Its embedding layer embeds the tokens’ ids, their positions, and, in addition, 
their segment ids (0 or 1). This layer is followed by the sequence of encoder blocks. Bert can be used 
as a general language model, which means that it has been pre-trained by its authors on general self-
supervised tasks with a large amount of text, to be later adapted and transferred to several specific NLP 
tasks from text classification to question answering. The pre-training tasks are “masked language” 
(trying to predict masked words from an input sentence) and “next sentence prediction” (deciding 
if the sentences from the two segments are two subsequent sentences from a global text or not). In 
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the following paragraph, we explain how Bert can be used for the extractive question answering task 
after pre-training.

Bert for extractive question answering (Figure 1) On the eQA task, Bert takes as input a 
text sequence that is the concatenation of the question (first segment) and the associated passage 
(second segment). The whole sequence is tokenized and a special [CLS] (resp. [SEP]) token is added 
at the beginning (resp. between the question and the passage and at the end). Then, the associated 
features (token ids, segments, positions...) are fed to the model. The embedding layer produces a first 
sequence of embeddings which goes through the l encoder blocks to finally turn into a sequence of 
contextualized vectors. Then, each final vector of the passage’s tokens go through a feed-forward 
classification layer that predicts two probabilities, to be the beginning and the end of the answer span.

open Domain Question Answering
Open Domain Question answering solutions generally combine a retriever that solves the Ad-hoc 
Retrieval task by selecting relevant documents and a reader that solves the extractive Question 
Answering task on the selected passages. An emblematic example is DrQA (Chen, Fisch,Weston, 
& Bordes, 2017), a bot developed at Facebook which is able to answer to questions by searching in 
the entire English Wikipedia in real-time. It consists in a TF-IDF + cosine retriever that selects 5 
relevant documents followed by a multi-layer RNN reader (Chen, Bolton, & Manning, 2016). Later, 
other proposals were able to surpass its quality of answer with a paragraph reranker (J. Lee et al., 
2018; S. Wang et al., 2017) or with a “minimal” retriever preselecting small but relevant portions of 
text (Min, Zhong, Socher, & Xiong, 2018). In the meantime, Bert was released and W. Yang, Xie, 
et al.(2019) proposed a first successful usage for ODQA, by simply combining answerini/Lucene 
with a Bert base fine-tuned on SQuAD, which achieved the new state-of-the art performance on 
the reference benchmark OpenSQuAD (Chen, Fisch, Weston, & Bordes, 2017). Since then, a few 

Figure 1. Architecture of Bert-like models ( l  blocks) applied to eQA. Start/end logits inform on the probability for a token 
subsequence to be the answer.
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proposals (Feldman & El-Yaniv, 2019; K. Lee, Chang, & Toutanova, 2019; Ren, Cheng, & Su, 2020; 
Z. Wang, Ng, Ma, Nallapati, & Xiang, 2019) have been focusing on better selection of passages and 
a better pooling of answers from them.

In all of these proposals, the scaling issue is always tackled from the retriever’s perspective. Yet, 
the ODQA setting offers many opportunities to address it from the reader’s side, which is the main 
motivation behind this work.

Main FoCUS oF the ARTICLe

Delaying Interaction Layers
In the ODQA setting, the set of documents is rather static. If q  questions are asked and there are p  
documents to search the answer within, transformer-based readers will consider all the q p ́  possible 
pairs, split them into fixed-length examples and make predictions on them. Not only this is very costly 
but all computations are done interactively. More precisely, in the encoder blocks, the attention 
mechanism makes the representation of the documents tokens dependent on the question tokens, so 
there is no possibility to pre-compute intermediate representations of the database’s documents 
without knowing the question beforehand. To better face this setting, we consider a generic 
modification of the architecture of existing models to allow reducing computations and make 
preprocessing possible. The key is to “delay” the interaction between question and paragraph so that 
a part of the computations can be done independently. Also, we need to make changes (i) that are not 
specific to a given model but that can be applied to a maximum of transformer-based language models 
and (ii) that do not introduce new parameters so that we can benefit from existing pre-trained weights.

The principle of the mechanism is shown schematically in Figure 2. We consider an entry split 
between the two segments (after the first separator [SEP]). Let us denote by s

q

n dq e∈ ×   (resp 

s
p

n dp e∈ ×  ) the question segment (resp. the paragraph segment) after the embedding layer, with n
q

 
being the size (number of tokens) of the question comprising the token [CLS] and the first token 
[SEP], n

p
 the size of the passage including the last token [SEP], and d

e
 the dimension of the 

embedding space (often 768 or 512). Let us also denote by E
j

 the j -th encoder block, parameterized 
by a set of weights q

j
. We apply the k  first encoder blocks independently on the two segments to 

obtain s E E s
q k q
' ...= ( ) 

1
 and s E E s

p k p
' ..= ( ) 

1
.  We then concatenate them into 

s concat s s
q p

' ,' '= ( )  before applying the l k-  last encoder blocks to get ′′ = ( )+s E E s
l k
� �..� � ’ 

1
 which 

ultimately goes through the output layer (“QA Layer”). We refer to the first k  blocks as the non 
interaction blocks and the last l k-  as the interaction blocks. The impact of the hyperparameter k  
is studied in the experimental section. Note that the weights q

k
, ..., q

l
 involved in the computation 

of s
q
'  are the same as those involved in the computation of s

p
'  and in the computation of 

E E concat s s
k q p
 �...� � , �

1 ( )( ) in the original transformer model. We initialize these weights with the 
pre-trained models. Then, we can make the weights applied to the question evolve independently of 
those applied to the paragraph but we choose to share them instead as it keeps the number of weights 
equal to the original model. We implement the described mechanism in Python on the basis of the 
original models implementation from the transformers python library, version 2.7.0 (Wolf et al., 
2019).

Delayed interaction reduces the complexity of the first k  blocks. More precisely, self-attention 
requires a number of computations proportional to n

s
2  where n n n

s q p
    = +  is the input sequence 

length. Therefore, the implemented mechanism reduces the complexity from O n n n n
q p p q
2 2 2� � � � �+ + ×( )  
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to O n n
q p
2 2� �+( ) . Although it already makes a difference, it can be negligible in practice, because the 

paragraph is much longer than the question, and because the reduced intra-block operations are in 
fact highly parallelizable. The difference that matters takes place in the ODQA setting. Consider that 
a single encoder block has a forward complexity of C n

s
�́ 2 . Therefore, the whole encoder has a 

complexity of l C n
s

´ ´� � 2  to process a single example, and l C q p n
s

´ ´ ´ ´� � � � 2  to process a set of q  
questions and p  paragraphs (for the sake of simplicity, assume that paragraphs are cut in such a way 
that question-paragraph pairs fit in the model input size n

s
). With delayed interaction, computations 

in the first k  blocks for each question (resp. paragraph) do not have to be redone for each paragraph 
(resp. question). Therefore, the complexity becomes k C q n p n l k C q p n

q p s
× × × + ×( )+ −( )× × × ×� � � � � � � � � � � � �2 2 2 . 

Thus with p  and q  in the order of 102 , the quadratic term p q́  largely dominates and the speedup 

tends to the ratio l k
l

-  between the number of interaction blocks and the total number of blocks in 

the original model. Note that the independent paragraph processing (of complexity k C p n
p

´ ´ ´� � � 2 ) 
can be done at initialization in the ODQA setting, instead of interactively when users ask questions.

experimental Study
In our paper, the goal is to ultimately assess the interest of delayed interaction in Open Domain 
Question Answering by studying its performance on the reference dataset OpenSQuAD as W. Yang, 
Xie, et al.(2019). We start by analyzing the associated eQA sub-task (SQuAD v1.1, Rajpurkar et al. 
(2016)), in particular to know how the predictive performance is impacted with respect to the 
hyperparameter k . Then, on the ODQA task, we measure the speedup and then the predictive 
performance.

Figure 2. Delayed interaction in Bert-like eQA models: the first k  (resp. the last l k-  blocks are applied to question and 
paragraph separately (resp. to the whole).
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We consider two language models as baselines. The first one is Bert since it is the most used2 
and also the one with the largest set of different pre-trained weights. The second one, to test our 
framework in a challenging way, is Albert because it has the specificity of using the same weights 
in all of its l  encoder blocks (the weights q

j
 are the same for all j , j k∈


� ,1  and j k l∈ +


� ,1 ) 

and we want to know if this leads to an unexpected behavior or not. We refer to the variants as DilBert 
(resp. DilAlbert) which stands for “Delaying Interaction Layers” in Bert (resp. Albert).

extractive QA
For the eQA task, we train Bert, DilBert, Albert and DilAlbert on the SQuaD v1.1 train set. We 
consider the base version of each model and we initialize them with the English pre-trained weights: 
bert-based-uncased for Bert and DilBert and albert-base-v2 for Albert and DilAlbert.

The training is carried with the run_squad.py script from the transformer library using the default 
hyperparameters: 2 epochs, an input sequence length n

s
 of 384, a batch size of 12, and a learning 

rate of 3e-5. The models are evaluated on the SQuAD v1.1 dev set using the official metrics for the 
task (Exact Match and F1-score). For DilBert and DilAlbert, we make the hyperparameter k  vary 
from 0  to l -1  and analyze its impacts on the performance (Figure 3).

As a sanity check, we can observe that without delayed interaction (k = 0 ), our implementation 
of DilBert (resp. DilAlbert) provides the same results as Bert (resp. Albert). Then, as k  increases, 
the performance remains very competitive and it only decreases significantly for k l= = −11 1 .

For k l= , there is no interaction anymore so start logits and end logits associated to paragraph 
tokens do not depend on the question and the performance dramatically drops to an exact match of 
around 13 (not reported in the Figure 3). For information, results of Dil variants with k  non interaction 
blocks are superior to a variant of the original models from which we would have completely removed 
k  blocks: for example, a Bert in which only 2 blocks are kept, trained according to the same protocol, 
obtains an exact match of only 26.4 and an F1 score of 36.2. Experiments are all carried on SQuAD 
v1.1 here because OpenSQuAD is based on it. Nevertheless, the Dil variants also apply to SQuAD 
v2.0. For instance, Albert, DilAlber t

k=6
 and DilAlber t

k=10  respectively obtain an F1-Score of 81.4, 
80.3 and 72.4 on its dev set.

Figure 3. Evolution of DilBert’s (left) and DilAlbert’s (right) Exact Match (EM) and F1-score (F1) on the SQuAD v1.1 dev set with 
respect to the number of non interaction blocks k . The performance of Bert (left) and Albert (right) are also displayed as a 
horizontal line.
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There is a slight difference between the behaviors of DilBert and DilAlbert. Whereas the latter 
seem to have a smooth evolution with respect to k , the former has two plateaus from k = 0  to k = 4  
and from k = 5  to k = 10  and a decrease of performance in between. With inspiration from Clark, 
Khandelwal, Levy, and Manning (2019), our hypothesis is that since each block in Bert has its own 
set of weights, it could be that the pre-trained attention heads in the 6th  layer have a component useful 
for the targeted eQA task.

Speedup
To analyze the speedup entailed by delayed interaction, we consider a simple open domain question 
answering setting where q � �=100  questions are asked and the RC model (e.g. Bert) searches for the 
answers in a database of p� �=100  passages. We measure the total time required by Bert, Albert, 
DilBert and DilAlbert to process all question-paragraph pairs (Table 1). For the Dil variants, we detail 
the time required in the non interaction blocks to do the independent processing on questions and 
paragraphs and in the interaction blocks to do the dependent processing on question-paragraph pairs. 
We consider two values for the number of non interaction blocks: k = 10  because it allows preserving 
most of the eQA performance and k = 11 , the largest possible value. Experiments are carried on a 
bull server with a Nvidia Tesla V100 GPU and a 5-cores/10-threads Intel Xeon Gold 6132 (2.6-3.7 
GHz) CPU. 

The empirical results confirm the theoretical intuitions of the complexity analysis. First, since 
intra-block calculations are parallelizable and a GPU has a great power of parallelization, we can see 
on GPU results that the processing time per block and per input sequence is approximately always 
the same (approximately 1e-3) whereas it depends more on the length of the sequence on CPU (about 
4e-3 for the question with a length of n

q
»�16  and 1.3e-2 for the question-paragraph concatenation 

with a length of � _ � �n s=384 ). Second, in the ODQA setting, where we look for the answer to several 
questions (q ) in a static set of paragraphs ( p ), the processing in interaction blocks takes most of the 
time because it is proportional to the number of pairs p q́ , which is much greater than p  and q . 
Thus, since original models have l = 12  interaction blocks and Dil variants only have l k-  (1 or 

2) interaction blocks, the speedup factor is close to l
l k-

 (»�6  or »�12 .

Table 1. Time consumption to search for the answer of 100 questions in 100 passages with Bert, Albert, DilBert and DilAlbert. 
“NI Q” (resp. “NI P”) refers to the time required to process the q  questions (resp the p passages) in the Non Interaction 
blocks, and “I Q-P” refers to time required to process the p q´  pairs in the Interaction blocks. We also report in parentheses 
a time consumption normalized with respect to the number of blocks ( l k  or   l k- and inputs ( p q  or p q´ � )

Bert DilBertk=10 DilBertk=11 AlBert DilAlBertk=10 DilAlBertk=11

NI Q 1.0 (1e-3) 0.9 (8.2e-4) 1.2 (1.2e-3) 1.4 (1.3e-3)

GPU NI P 0.8 (8e-4) 1.1 (1e-3) 1.0 (1.0e-3) 1.1 (1.0e-3)

I Q-P 117.9 (9.8e-4) 17.0 (8.5e-4) 9.9 (9.9e-4) 142.2 (1.2e-3) 22.4 (1.1e-3) 13.1 (1.3e-3)

Total 117.9 18.8 11.9 142.2 24.6 15.6

Speedup x1 x6.3 x9.9 x1 x5.8 x9.1

NI Q 4.2 (4.2e-3) 4.8 (4.4e-3) 4.1 (4.1e-3) 4.8 (4.3e-3)

10-threads NI P 15.4 (1.5e-2) 16.7(1.5e-2) 16.7 (1.7e-2) 17.6 (1.6e-2)

CPU I Q-P 2602.6 (2.2e-2) 323.3(1.6e-2) 159.6(1.6e-2) 2597.6 (2.2e-2) 346.8 (1.7e-2) 176.3 (1.7e-2)

Total 2602.6 342.2 181.1 2597.6 367.7 198.7

Speedup x1 x7.6 x14.4 x1 x7,1 x13.1
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open Domain QA
Apart from speedup, it is necessary to check the impact of delayed interaction on the quality of 
answers in Open Domain QA. We focus here, as Chen et al. (2017), on OpenSQuAD. The objective for 
algorithms is to answer to questions using the entire English Wikipedia3. More precisely, the questions 
are the same as the 10570 questions of SQuAD v1.1 dev set but algorithms are not provided with the 
associated paragraphs. Instead, they have to search the answer in a larger set of 5,075,182 articles.

Since our study specifically focuses on how partial attention can improve the reader Bert/Albert, 
we do not dwell on the choice of the retriever. Instead, we choose a proven ODQA method of the 
literature whose reader is based on a Transformer architecture, and replace it with our variants. The 
baseline BertSerini (W. Yang, Xie, et al., 2019) is a good candidate framework as it uses a robust 
retriever and Bert as a reader. Its implementation is not available so we propose our own (Figure 4). 

We first apply a preprocessing step to properly index the Wikipedia dump with Lucene using the 
pyserini library, version 0.9.4.0 (P. Yang et al., 2017, 2018).

As Wikipedia articles are rather long and sometimes cover multiple topics, they are difficult 
to process as such for both the retriever and the reader (J. Lee et al., 2018; S. Wang et al., 2017; W. 
Yang, Xie, et al., 2019), so we start by splitting them into paragraphs. We consider two strategies: (1) 
Using a double newline as delimiter. We then discard all items with less than 30 characters leading to 
a number of paragraphs around 29.1 million as in (W. Yang, Xie, et al., 2019). (2) Using a fixed length 
of 100 words with a sliding window of 50 words as in (Z. Wang et al., 2019). We obtain close end-
to-end results with both techniques but retain the slightly better second strategy for the final pipeline.

The splitted paragraphs are then processed with the pyserini script index4 which outputs all the 
necessary inverted indices for retrieval. Then, we instantiate pyserini’s retriever that relies on the 
inverted indices and that uses BM25 (pyserini’s default parameters) as a relevance score s

bm25
. For 

Figure 4. General architecture of the question answering pipeline used in our experiments
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each question, it returns the p  paragraphs with the top s
bm25

. We choose p = 29  and p = 100  as 
in BertSerini. This retrieval step takes less than 0.15s on CPU with the hardware configuration 
described in the previous section. Then, the reader is applied to each paragraph and produces a start 
logit score s

s
 and an end logit score s

e
 for each token. To aggregate the results into a final prediction, 

we consider two variants: one that excludes the retriever score and selects the text span with the 

highest reader score s
s s

r
s e=
+� �

2
 across all paragraphs, and one that includes it by replacing s

r
 with 

m m� � �s s
r bm
+ −( )1

25
 where m  is a hyperparameter between 0 and 1. A cross validation on a subset of 

the SQuAD v1.1 train set questions shows that, from 0.1 to 0.9 in steps of 0.1, the value of m� � .=0 5  
leads to an optimal end-to-end performance for all considered readers (Bert, DilBer t

k=10 , Albert and 
DilAlber t

k=10  fine-tuned on SQuAD v1.1). We add the multilingual version of Bert (Devlin et al., 
2019; Pires, Schlinger, & Garrette, 2019) to open perspectives in other languages.

The overall pipeline is evaluated with the exact match (EM) and the F1-score (F1) between its 
answer predicted from Wikipedia and the expected answer. Obviously, the task here is more difficult 
than eQA since the paragraph containing the answer is not provided. Not only the IR part will select 
p  paragraphs that might not contain the answer, but additional difficulties emerge (detailed in the 
Discussion). 

To measure the impact of the retriever part, we compute the percentage of questions for which 
the expected answer at least appears in the p  selected paragraphs (column R in Table 2). Since the 
paragraph splitting methodology and the version of pyserini were not detailed by W. Yang, Xie, et 
al.(2019) we were only able to obtain the same IR performance as Bertserini for p� �=29  but we 
obtained a lower R for p = 100 .

The final end-to-end ODQA results exhibit interesting properties (Table 2). Although slightly 
worse on the eQA task (e.g. Figure 3), Dil variants almost always outperform original models for 
ODQA when the IR score is not used, and sometimes by a significant margin (e.g. when there is a 
high number of candidate paragraphs p ). When exploiting the IR score, the conclusion are more 
mixed. 

In fact, the original models (Bert, mBert, Albert) sometimes produce noisy predictions with high 
scores for passages with little relevance (i.e. a low score s

bm25
) (Xie et al., 2020; W. Yang, Xie, et 

al., 2019). Delayed interaction acts like a regularization similar to dropout (Srivastava, Hinton, 
Krizhevsky, Sutskever, & Salakhutdinov, 2014), since the resulting architecture is the same as the 
original one, except that some connections are dropped in the first k  blocks. Therefore, the variants 
are more subject to generalization. When using the retriever score in addition to the reader’s predictions, 
all pipelines focus more on the relevant passages, which helps improving the overall performance. 
In this case, the original models manage to catch up with dil variants.
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The results with multilingual weights are slightly worse than with English weights, but especially 
for the original model. In fact, the DilmBert variant is always better than mBert. As for the results 
with Albert, they are close to those of Bert but a little better in general.

The best performance (EM: 44.3, F1: 51.8) obtained in this study with a Bert base-english-
uncased, simply fine-tuned for the eQA task on SQuAD v1.1 and combined with BM25, is better 
than Bertserini’s, whereas the latter uses the same basic blocks and has a higher IR (R) score. This 
improvement is mainly due to engineering (documents splitting, version of Lucene), and is consistent 
with observations made in the literature. For example Xie et al. (2020) also report higher results for 
a BertSerini-like pipeline (EM: 41.8, F1: 49.5, R: 86.3).

To draw more robust conclusions on the comparison between Bert and Dilbert, we additionnaly 
provide, in Table 3, their performance on three other datasets frequently used for ODQA (TriviaQA, 
Natural Questions and WebQuestions). We consider the same trained weights for Bert and DilBert, 
the same document source (the 2016 Wikipedia dump) and the same retriever (BM25) as in the 
experiment with OpenSQuAD. The results are shown for the hypermeters p = 100 and m� � .=0 5 . 
Except for TriviaQA when using the IR score, DilBert still perform slightly better than Bert.

Table 2. End-to-end performance (EM, F1) of our ODQA pipeline with different readers. Results when excluding (w/o) or 
including (w/) the IR score are detailed. The number of retrieved passage is noted as p. EM is the Exact Match and R is the 
retriever score.

Model EM F1 R

w/o w/ w/o w/

DrQA (Chen et al., 2017) 27.1 - - - 77.8

R3 (Wang et al., 2017) - 29.1 - 37.5 -

Par. R. (Lee et al., 2018) - 28.5 - - 83.1

MINIMAL(Min et al., 2018) - 34.7 - 42.5 64.0

Yang et al. (2019a):

Bertserini (p= 29) - 36.6 - 44.0 75.0

Bertserini (p= 100) - 38.6 - 46.1 85.8

Our results:

Bert (p= 29) 37.4 43.5 44.1 50.9 74.6

DilBert (p= 29) 38.8 42.0 46.7 50.4 74.6

Bert (p= 100) 31.8 44.3 38.0 51.8 82.4

DilBert (p= 100) 36.5 43.2 43.8 51.6 82.4

mBert (p= 29) 34.4 41.9 40.6 49.1 74.6

DilmBert (p= 29) 38.5 42.8 45.8 50.5 74.6

mBert (p= 100) 28.3 42.3 34.1 49.3 82.4

DilmBert (p= 100) 34.7 43.8 41.7 51.6 82.4

Albert (p= 29) 40.6 44.1 47.0 51.3 74.6

DilAlbert (p= 29) 39.7 43.6 47.7 51.8 74.6

Albert (p= 100) 36.2 44.9 42.1 52.1 82.4

DilAlbert (p= 100) 36.8 44.8 43.8 52.9 82.4
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Discussion
Complexity is a major industrial and societal concern that affects efficiency of systems in production 
and their carbon footprint (Thakur & Chaurasia, 2016). By approaching the ODQA problem with 
both the use of IR and modifications of the reader, we can greatly reduce computations. Dil variants, 
which can benefit from pre-trained weights already available, reduce the number of interaction blocks 
from 12  to 2  (resp. 1 ) with k = 10  (resp 11 ) reducing the cost by 85% (resp. 92%) in Bert/Albert, 

which soon will be standards in search engines. To give a point of comparison, the famous alternative 
of Bert known as DistilBert (Sanh,Debut, Chaumond, & Wolf, 2019) reduces the cost by 50% 
(essentially by going from 12 blocks to 6 blocks). On SQuAD v1, DistilBert gets roughly the same 
EM/F1 and speed as DilBert with k � ��= 6 . But DilBert can go further (its EM/F1 for k = 10  is as 
good as for k � �=6  but speed is improved). Moreover, since the Dil mechanism is generic, we applied 
it to Albert, and DilAlbert with k � ��= 10  not only gets a better EM/F1 than DistilBert, but also has 
about 4x fewer parameters and is about 3x faster in ODQA. Instead of making a comparison, a better 
idea would probably be to apply the Dil mechanism to Distilbert as nothing should prevent it. And 
nothing should either prevent the application of delayed interaction to the retriever part of the ODQA 
pipeline for cases where this one is also based on a Transformer (Z. Wang et al., 2019).

In addition to acceleration, Dil variants are in fact competitive, in ODQA, in terms of response 
quality. They can even surpass the original models when searching for answers in a wide variety of 
passages. Since the SQuAD v1.1 train set is based on a few hundred of Wikipedia articles, a tuned 
language models may show good eQA performance on its dev set due to over-specialization on 
certain topics (Xie et al., 2020). The regularization induced by restrictions in Dil certainly reduces 
the performance for the most relevant passage (Figure 3) but also unexpected behaviors on irrelevant 
passages (Table 2). More explicit solutions to improve generalization and multi-passage selection 
(e.g. global normalization or distant supervision) have recently been explored (Z. Wang et al., 2019; 
Xie et al., 2020).

The best performance in ODQA (in particular compared to eQA) still seems a little weak today 
(see the best exact match in Table 2). This can be explained by the additional difficulty of retrieval 
on Wikipedia but also by limits in the evaluation. Indeed, besides the retriever’s bottleneck which 
results in a 15%-18% decrease, there are questions in the SQuAD v1.1 dev set that are no longer 
suitable in open domain (see Table 4).

Table 3. End-to-end performance (EM, F1) of our ODQA pipeline with Bert and Dilbert, for p=100, on three additional datasets. 
Results when excluding (w/o) or including (w/) the IR score are detailed.

WebQuestions Natural Questions TriviaQA

Model EM F1 R EM F1 R EM F1 R

w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

Bert 9.8 10.6 18.2 19.7 75.0 9.7 12.6 15.1 19.0 62.0 31.9 36.3 38.9 46.7 84.2

DilBert 10.1 10.8 19.5 20.3 75.0 11.2 13.2 17.3 20.2 62.0 32.2 33.9 40.1 44.6 84.2
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To end the discussion, we would like to mention a recently published approach called DeFormer 
(Cao, Trivedi, Balasubramanian, & Balasubramanian, 2020). It was developed independently of 
our work and we were not aware of it at the time we carried out the study. It is very close to the dil 
mechanism exploited in this paper except that Cao et al. (2020) apply an additional optimization step 
to make their variants closer to the original models. We obtain on SQuAD, with Bert, results similar 
to them. Despite the obvious connections, our study brings additional valuable elements, for instance: 
(1) We focus on the implication of a partial attention mechanism in ODQA where the acceleration 
factors are very interesting. We also bring new results showing how the variants can actually be 
competitive with the original models on OpenSQuAD. (2) We apply the mechanism to mBert and 
to Albert. The latter is a bit special because weights are shared between blocks. Our study shows 
that the mechanism is still compatible and that weights can even be shared between blocks without 
interaction and blocks with interaction. In view of the anteriority of DeFormer, we may in the future 
refer to the approach as DilAlbert or DeFormer-Albert.

Conclusion
Delayed interaction allows to accelerate the very famous Transformer by about an order of magnitude 
and does not need any additional pre-training. We can establish a link between our work, focused 
specifically on the impacts for ODQA, and a more general research direction consisting in speeding 
up deep language models using partial attention (Zaheer et al., 2020). There remains paths to explore 
in order to improve our work. One of them is to enhance learning by following ideas from Z. Wang 
et al. (2019); Xie et al. (2020), i.e. carrying a multi-passage fine-tuning. Another natural direction 
is to address the issue of memory management. Specifically, storing pre-computed representations 
of documents can become expensive for large-scale databases. It would be interesting to evaluate 
the impact of compressing them with sparsification techniques (Sun, Guo, Lan, Xu, & Cheng, 2016; 
Zhao et al, 2020) or binarization (Tissier, Gravier, & Habrard, 2019).
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Table 4. Examples of questions expected answers and predicted answers by one of the ODQA pipeline on OpenSQuAD. The 
answers here are all correct, but the metric does not reflect it.

Question Expected Answer Predicted Answer EM F1

When did Zwilling and Karistadt become active at 
Wittenberg?

June 1521 mid-1521 0 0

The Los Angeles Angels of Anaheim are from which 
sport?

MLB Major League 
Baseball

0 0

How many fumbles did Von Miller force in Super 
Bowl 50?

2 two 0 0

What is the AFC short for? American Football 
Conference

Asian Football 
Confederation

0 0.33

How many graduate students does Harvard have? 14000 15000 0 0

What position did Newton play during Super Bowl 
50?

quarterback QB 0 0
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