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ABSTRACT

An autonomous acoustic system based on two bottom-moored hydrophones, a two-input audio board, 
and a small single-board computer was installed at the entrance of a marina to detect entering/exiting 
boats. Windowed time lagged cross-correlations are calculated by the system to find the consecutive 
time delays between the hydrophone signals and to compute a signal which is a function of the boats’ 
angular trajectories. Since its installation, the single-board computer performs online prediction 
with a signal processing-based algorithm which achieved an accuracy of 80%. To improve system 
performance, a convolutional neural network (CNN) is trained with the acquired data to perform 
real-time detection. Two classification tasks were considered (binary and multiclass) to both detect 
a boat and its direction of navigation. Finally, a trained CNN was implemented in a single-board 
computer to ensure that prediction can be performed in real time.

Keywords
Autonomous Real-Time System, Deep Learning, Passive Boat Detection, Time Series Classification, 
Underwater Noise

INTRODUCTION

Since the invention of sonar, a growing interest was given to underwater sounds that radiated from 
boats. Although the first applications were related to military purposes, several studies aim at using 
the underwater sounds for non-military uses, such as maritime traffic management (Fillinger, 2009; 
Zwemer, 2018), underwater surveillance (Fillinger et al., 2010), assessment of the impact of noise 
pollution on marine life (Codarin, 2009; Holles, 2013), among others.

Since the acoustic signal produced by a ship has many sources (propeller, machinery, 
hydrodynamic, vibrations, etc.) that produced tones at different frequencies, most developed methods 
to detect, classify or track boats are applied in the frequency domain or time-frequency domain. Several 
approaches were developed to detect the harmonic frequencies in the signals and to extract the acoustic 
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signature of the ships. In many cases, these methods are based on the spectrum (Guo et al., 2020), 
DEMON spectrum (Chung et al., 2011) and Cepstrum (Das, 2013; Santos-Domínguez, 2016) and the 
automatic detection is usually performed by detecting the peaks with a threshold (Reis et al., 2019).

In recent years, deep neural networks have seen a lot of successful applications in many different 
domains. One successful deep learning architecture used in computer vision is a convolutional neural 
network (CNN). This architecture is known to automatically learn complex feature representations 
using its convolutional layers and has led to impressive results in many problems such as in image 
classification (Krizhevsky et al., 2012), speech recognition (Palaz et al., 2015) or time series 
classification (Cui, 2016; Guennec, 2016; Zhao, 2017). More recently, several studies (Li, 2019; 
Yamaguchi, 2019) aimed at detecting boats have used machine learning methods, which have the 
advantage of automatically extracting characteristic attributes to classify the data. These methods 
are often more robust to noise and do not require hand designed features. However, all the proposed 
methods performed the detection on a 2D-signal in the frequency domain of the recorded sound. In 
this article, the researchers aimed to show than the detection itself can be performed with a simpler 
1D signal that does not required the computation of the spectrum or the use of a 2 dimensional CNN. 
With a 1D signal, the detection can be performed with a time series classifier.

The research work is part of a project which aims to improve the safety management of a marina 
by automatically detect boats departure or arrival using a low-cost acoustic system based on two 
hydrophones and a single-board computer. The system is still in development and since its installation 
in July 2019, it had saved thousands of signals that need to be processed to improve the true detection 
rate. In this paper, the researchers investigated the possibility of replacing the initial algorithm with 
a trained time series classifier to perform online real-time classification with an embedded system.

The paper is organized as follows. The first section introduces the methodology to track a boat 
and gives an overview of the data acquisition process performed by the acoustic system. The next 
section describes the data preparation. The last two sections present the different classifiers evaluated 
to perform the detection on the autonomous acoustic system.

METHODOLOGY

Passive acoustic systems used to track an underwater sound are frequently based on several 
hydrophones connected to a central unit (Fillinger, 2010; Guo, 2020). In order to detect a boat without 
computing the spectrum, the time delay between the signals received by the hydrophones can be 
measured to estimate a boat’s position. Unlike the previous cited methods that use the spectrum to 
detect the presence of boats in a noisy environment, the authors of this article aimed to exclusively 
use the time delay between the hydrophones, which is faster to compute than the spectrum by the 
single-board computer on their acoustic system. In this section, the methodology to compute the signal 
and their acoustic system that have been developed to improve the security of a marina are presented.

Time Delay

Let us consider two hydrophones and H H
2 1

 that are positioned at the entrance of a marina (Figure 
1). They are separated by a distance L  and we denote h t

i ( )  the signal received by the hydrophone 
H
i
. The position of the boat makes an angle α t( )  with the normal to the segment between the 

hydrophones. Considering that D L�  (far field conditions) and denoting c  the velocity of sound 
in sea water (approx. 1500 m/s), it can be shown that the sound wave emitted by the boat reaches the 
hydrophones with a time delay:

∆T t
L

c
t( ) = ( )( )� sin α 	
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One can notice that the time delay Δ𝑇 depends on the boat angular position and changes 
with the movement of the source. Thus, in order to determine the direction of a boat (arrival 
or departure), one can exclusively examine how the time delay between �h t

1 ( )  and h t
2 ( )  is 

changing over time.
The well-known cross-correlation is a measure of similarity between two signals and can be used 

to find the time delay (displacement) of one signal relative to the other. For two continuous functions 
h t

1 ( )  and h t
2 ( ) , the authors recall that the cross-correlation is defined as:

Xcorr h h h t h t dt
1 2 1 2
,( )( ) = ( ) +( )

−

+

∫τ τ
∞

∞
* 	

where ∗ denotes the complex conjugate and τ  is the displacement or lag. If the signals h t
1 ( )  and 

h t
2 ( )� are delayed by ΔT, then the cross-correlation has a maximum at τ α= = ( )∆T

L

c
� �sin . Thus, 

to track the boat’s angular trajectory α t( ) , the signals h t
1 ( )  and h t

2 ( )  are cross correlated every 
N points. Then, the argument of the maximum in the cross-correlation is detected and appended in 
an array. In this paper, this array will be called the “trajectory signal”.

Note that, in order to save computing time, the cross-correlation 𝑋c𝑜𝑟𝑟 (𝜏) does not need to be 
calculated for every lag 𝜏. Indeed, (ignoring multi-path propagation) the noise radiated by a  boat 
reaches the hydrophones with a maximum time delay equal to |Δ𝑇 | ≤  𝐿/𝑐 = 𝜏𝑚𝑎𝑥. As a  result, the 
cross-correlation can be calculated for every 𝜏 ∈  ⟦−𝜏𝑚𝑎𝑥, 𝜏𝑚𝑎𝑥⟧ and the argument of the maximum 
is only picked in this window.

Figure 2 shows an example of the described process for a recorded boat. The trajectory signal 
computed by cross-correlation has a sinusoidal shape which is consistent with the expression of the 
time delay. Moreover, the direction of the boat can be deducted from the sign of the signal before 
and after the zero-crossing. In this example, the sign of the signal changes over time from a positive 
value to a negative one. Thus, for our hydrophone configuration, this example corresponds to a boat 
on departure. It is worth noting that the shape of the trajectory signal depends on many factors such 
as the boat speed and its trajectory. Furthermore, the ambient noise and potential inferences also 
contribute to the cross-correlation and make the resulting computed final signal very noisy (see 
figure 5 for more examples).

Figure 1. The signals recorded by the hydrophones are delayed versions of the same signal
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Autonomous System and Data Acquisition
A low-cost and autonomous system (Figure 3) is under development to improve the management of 
a marina. The main purpose is to determine in real time boats departure or arrival and to quantify the 
ship traffic inside a marina. Since July 2019, the system is operational and had saved thousands of data 
that are still be processed to improve the system accuracy and robustness. The passive acoustic system 
uses two omnidirectional hydrophones (H1A, Aquarian hydrophones) that have been bottom-moored 
at the entrance of Port Brunelet marina (Figure 4) in Noumea, New Caledonia. The hydrophones 
are separated by a distance 𝐿 =  0.8 m  and are placed 2 m   below sea level. They are connected to 
an ultra-low latency audio cape (Bela: https://bela.io/products/) and a small single-board computer 
(BeagleBone Black: https://beagleboard.org/black) that perform the recording at a sampling frequency 
of 44.1 kHz. Every 186 ms, the cross-correlation between the hydrophones signals is performed and 
the corresponding maximum lag is stored in a file which is saved on a SD card after 10 minutes. The 
acoustic system is fully autonomous and relies on a solar panel that charges a battery. Thus, in order 
to save the battery and because there is no departure or arrival after nightfall, the system shuts down 
at 6pm and reboots at 7am. During daytime, the system saves 6 trajectory files per hour.

During the early stages of the project development, a first algorithm was implemented to detect 
boats from the background noise and to determine their trajectories. The algorithm proceeds as follows. 
First, for every change of sign in the trajectory signal, a window of temporal span equal to 𝑁 centered 

Figure 2. h1,h2 and the corresponding trajectory signal for a departing boat

Figure 3. Autonomous system
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on the zero-crossing is applied. Then, in this window, the number of points having the same sign 
before and after the zero-crossing was calculated. Finally, if this number is greater than a manually 
set threshold then the algorithm predicts that a boat is departing or arriving at the marina. However, 
since the trajectory signals are very noisy and depend on the boat speed, a static threshold could not 
lead to a high true detection rate. For this reason, the accuracy of this algorithm was evaluated at 80%. 
To improve the system robustness, the data acquired by the system from July 2019 to November 2019 
was processed to train a time series classifier to perform a rapid and better prediction.

Data Preparation
For each saved file, the trajectory signal is first split up into small time series of length 322 points 
(corresponding to 1 minute of observation) and overlapping by 50 points. The length of the time series 
was set to 322 for several reasons. Firstly, depending on its speed, the departure or arrival of a boat 
takes 20 to 30 seconds, which correspond to approximately 100 – 160 points in the trajectory signal. 
Thus, a time series of length 322 points is sufficient to detect the boat’s trajectory. Secondly, the 
main disadvantage of using exclusively the cross-correlation to track boats is the difficulty to separate 
the contributions of several boats (for e.g. two boats arriving at the marina at the same time). Even 
though the trajectories of several ships can be separated if their contributions to the cross-correlation 
do not overlap (Fillinger et al., 2011), this separation needs to be done before storing the trajectory 
signal. However, in the first stage of development, the autonomous system only tracked in real time 
one boat and did not store the raw hydrophones signals. Hence, in the presence of several boats, the 
stored trajectory signal tracks the louder boat and can “jump” between the boats when one becomes 
louder than the other. As a result, taking a time series of length 322 helped decrease the likelihood 
of having several departures/arrivals during the same period of observation. However, all the time 
series that did show several boat’s trajectories were removed from the dataset (approx. 40).

Approximately 10,700 time series were manually labeled depending on their natures (background 
noise, arriving boat or departing boat). The background noise here refers to white noise, biological 
noise and all other noises that radiated from boats outside or inside the marina but that do not cross 
the acoustic barrier. In order to increase the number of time series that show a departing/arriving boat 
(under-represented classes in the dataset), the authors performed a trivial data augmentation, which 
consists of taking the opposite sign of the time series. Indeed, the angular trajectory of a departing 
boat is the opposite of that of an arriving boat. After performing this data augmentation, the trained 
CNN gives better classification performances for all classes with a significant improvement concerning 
the background class. Indeed, as previously explained, the time series in this class can highly vary in 
shape depending on the background noise. For example, for a noisy moored boat inside the marina, 

Figure 4. Port Brunelet - red dots show hydrophones position. From http://carto.noumea.nc

http://carto.noumea.nc
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the trajectory signal keeps an overall negative sign while for a boat that navigates outside the marina, 
the trajectory signal keeps a positive sign. For both scenarios, the boats clearly contribute on the 
cross-correlation but the corresponding trajectory signal does not show the typical sinusoidal shape 
that characterizes a moving boat that crosses the acoustic barrier. As a result, taking the opposite 
sign of the all the time series during training improved the overall robustness and performances of 
the model on the validation set.

After performing the data augmentation, the dataset consists of 19,844 background noise time 
series and 1,534 boat radiated noises (767 departures and 767 arrivals). Finally, the time series 
were normalized using a MinMax scaler (between 0,1). No further processing/transformation were 
performed to remove the noise or to improve the quality of the signals. Figure 5 presents some 
examples of time series per class.

Time Series Classifiers
The main objective of the project is to detect a boat from the background noise with a short 1D 
signal so that the detection algorithm is light (few weights that need to be stored in the memory of 
the single-board computer) and has a low computational complexity so that the prediction can be 
performed in real time.

To find an algorithm that meets these two constraints and has a high detection rate, 5 classifiers 
de time series were considered: (1) the Bag-Of-SFA-Symbols in Vector Space classifier (BOSS VS) 
proposed by (Schäfer, 2015) that combines a BOSS model with a vector space model, (2) the time 
series forest classifier (TSF) proposed by (Deng el al., 2013) that employs a combination of entropy 
gain and a distance measure, (3) the KNeighborsClassifier (KNN) build on sklearn (Predregosa et 
al., 2011) that employs a DTW distance, (4) the Time-CNN proposed by (Zhao et al., 2017) and (5) a 
modified t-LeNet (Guennec et al., 2016). The Time-CNN model is composed of two 1D-convolutional 
layers with a kernel size of 7 and a sigmoid activation function. The layers use 6 and 12 filters for the 
first and second layer, respectively. Each convolutional layer is followed by an average-pooling layer 
with a pool size of 3. The classification is performed with a softmax layer. The t-LeNet model, which 
is a time-series specific version of LeNet model (LeCun et al., 1989), consists of two 1D-convolutional 
layers followed by a fully connected layer (FC) and a final Softmax classifier. For both convolutions, 
the ReLU activation function is used with a filter of temporal span equal to 5. The first convolutional 

Figure 5. Four time series examples per class
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layer uses 5 filters and is followed by a max pooling of size 2. The second convolutional layer uses 
20 filters and is followed by a max pooling of size 4 and a dropout layer with a rate equal to 0.5. The 
last layer is followed by a flattening layer and a fully connected layer. Finally, the output layer has a 
number of neurons equal to the number of classes and uses a Softmax activation. Note that the Time-
CNN and t-LeNet models have the same number of convolutional layers but the activation functions, 
number of filters and kernel sizes are different. Moreover, t-LeNet has an extra FC layer before the 
softmax layer and is trained to minimize the cross entropy loss during training while Time-CNN is 
trained to minimize the mean square error.

The problem of detecting a boat in the marina can be done using two different classification tasks. 
On the one hand, this problem can be seen as a multiclass classification with three classes: departing 
boat, arriving boat and background noise. This classification task allows the detection of the boat 
and gives its direction so that the traffic inside the marina can also be quantified. On the other hand, 
all the time series that show a boat event (regardless of the boat’s trajectory) can be grouped in the 
same class and one can consider this problem as a binary classification task (background noise vs 
boat). Even though this classification task cannot be used to quantify the traffic inside the marina, 
its simplicity compared to the multiclass classification gives an overview of the performance of the 
different classification models. For this reason, the best classifier, among the 5 tested in this article, 
was selected based on its performances on the binary classification task only. The best classifier was 
then retrain on the multiclass classification task for a deeper evaluation of its performances.

To choose the best classifier that will run on the acoustic system, all the models have been 
evaluated based on a typical train-validation-test approach. The dataset was randomly split into three 
subsets with a ratio of 60:20:20 for training, validation and testing, respectively.

The two CNN-based models were trained using the Adam optimizer with an initial learning 
rate set at 0.001 (0.0001 was also considered) and a decay of 0.9. During training, the loss (cross 
entropy for t-LeNet and mean square error for Time-CNN) is computed and heightened to force the 
model to “pay more attention” to samples from the under-represented classes. The number of epochs 
was initially set to 500 but to prevent the model from over-fitting, the training process is stopped 
when the loss on the validation set does not improve for 10 consecutive epochs. For each scenario, 
40 t-LeNets have been trained with different hyperparameters (learning rate, batch size, number of 
neurons in the FC layer for t-LeNet and kernel initializers) and their performances on the validation 
set are compared to select the best model. Finally, tables 1, 2 and 3 report the test set performance 
of the best model for each classification task.

RESULTS

Binary Classification
For this scenario, all the time series that detect a boat from the background noise (regardless of its 
direction) were grouped in the same class called “boat”. This classification task was used to select the 
best classifier among the 5 tested. A set of 4 hyperparameters with different values was considered 
during the training of the t-LeNet models: number of neurons in the fully connected layer (500, 400, 
300, 200 and 100), batch size (32 and 64), initial learning rate (0.001 and 0.0001) and kernel initializer 
(random normal and glorot uniform). Since the Time-CNN model does not have a fully connected 
layer to tune, only 3 hyperperameters were tested with the same batch size, initial learning rate and 
kernel initializer sets used to tune the t-LeNet models. The BOSS SV, TSF and KNN models were 
trained and evaluated once on the training set and on the testing set, respectively.

All the classifiers were evaluated on five metrics:

1. 	 Recall or True Positive rate which is defines as the fraction of time series from the “boat event” 
class which are correctly predicted by the model.
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2. 	 True Negative rate (TNR) which is defined as the fraction of time series from the “background 
noise” class which are correctly predicted by the model.

3. 	 Precision that quantifies the number of positive class prediction that actually belong to the “boat 
event” class.

4. 	 F1-score which combines precision and recall: 

F score precision recall precision recall1 2− = × × +( )� � � / 	

5. 	 Balanced accuracy which is defined as the average of the True Positive Rate and True Negative 
Rate.

The best t-LeNet and Time-CNN models were selected based on their F1-score on the 
validation set. Figure 6 summarizes the performances of the 5 classifiers on the same testing set. 
The BOSS SV, Time-CNN and KNN classifiers performed poorly on the classification task and 
obtained a precision score of less than 80%. The two best classifiers are TSF and t-LeNet that 
obtained a 0.895 and 0.952 precision score, respectively. Since t-LeNet obtained a better score 
on each of the 5 metrics used to compared the classifiers, it was selected to perform the boat 
detection with the acoustic system and was retrain on the multiclass classification for a deeper 
evaluation of its performances.

Figure 7 presents the binary classification results of 40 t-LeNets that have been trained with 
different hyperparameters. As a result, the chosen model was built with 200 neurons in the FC layer 
and a glorot uniform kernel initializer (also called Xavier normal initializer). An initial learning rate 
of 0.001 and a batch size of 32 was set for the training.

Table 1 shows the confusion matrix obtained with the best t-LeNet on the test set. For 304 time 
series in the boat class, 280 are correctly predicted by the model while 24 are mistaken with background 
noise. Concerning the background noise class, only 14 out of 3972 time series are mistaken with a 
departure or an arrival. This model gives a balanced accuracy of 0.96, a F1-score of 0.94, a precision 
of 0.95, a recall of 0.92 and a TNR of 0.99.

Figure 6. Classifiers performances on the testing set
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Multiclass Classification
For this scenario, the models have are trained to detect boats from the background noise and to 
determine their directions. Compared to the previous binary task, this scenario can be interesting to 
evaluate the traffic in the marina. Thus, three classes have been considered: “departure”, “arrival” 
and “background noise”. Since t-LeNet performed better than the other classifiers on the binary 
classification task, it was retrained for this task and tuned with different hyperparameters. The best 
one was chosen based on its F1-score on the validation set (see Figure 8).

Table 2 shows the multiclass confusion matrix obtained with the best t-LeNet on the test set. 
The ability of the model to identify the presence or absence of boats is indicated by the fact that only 

Figure 7. Binary classification scores for different hyperparameters obtained on the validation set [Number of neurons, batch 
size, learning rate, kernel initializers (‘RN’: random normal, ‘GU’: glorot uniform)]

Table 1. Binary classification confusion matrix on the test set

True Class Predicted Noise Predicted Boat

Noise 3956 14

Boat 24 280
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19 out of 304 time series that show an arrival or a departure are mistaken with background noise. 
Moreover, only 12 out of 3,972 time series from the background noise class are mistaken with a 
boat. As a result, this model is better at detecting a boat from the background noise than the previous 
model that performs the binary classification. Furthermore, this model is capable of predicting the 
direction of boats since there are only 6 confusions between the departure class and the arrival class.

To further evaluate the classifier performance on the test set, a one-vs-rest transformation is 
performed on the multiclass confusion matrix. Thus, for every class i a binary confusion matrix is 

Figure 8. Multiclass classification scores for different hyperparameters obtained on the validation set [Number of neurons, batch 
size, learning rate, kernel initializers (‘RN’: random normal, ‘GU’: glorot uniform)]

Table 2. Multiclass classification confusion matrix on the test set

TrueClass Predicted Departure Predicted Noise Predicted Arrival

Departure 147 10 3

Noise 5 3960 7

Arrival 3 9 132



International Journal of Data Warehousing and Mining
Volume 18 • Issue 2

11

calculated such that the class i is considered as the positive class and the classes j i≠  as the negative 
class. Finally, for each class, the balanced accuracy, precision, recall, F1-score and TNR are presented 
on Table 3. One can notice that the t-LeNet performances on the departure and arrival classes are 
substantially similar and give the following mean scores: a balanced accuracy of 0.96, a recall of 
0.91, a precision of 0.94 and a F1-score of 0.93.

Model Performances on Multiple Boats Trajectories
During the data preparation, the time series with multiple boat trajectories were removed from 
the training set due to the low number of instances. Among the labeled signals (Figure 9), 12 are 
representing two boats that are arriving at the marina, 14 are representing two boats that are departing 
from the marina and 14 are representing two boats that are crossing each other.

Since the trajectory signal is computed with a windowed-cross correlation between the hydrophone 
signals, the system can only tracked in real time the louder boat. Hence, in the presence of several 
boats the signal “jumps” between the boats when one becomes louder than the other. If the boats are 
sufficiently spaced from each other, their individual trajectories are clearly visible and separable, 
but otherwise the trajectory of one boat may obscure the other (for e.g. the 4th time series in the class 
“2 arrivals”).

Although the models were not trained for this scenario due to the small number of labeled signals, 
their ability to detect the boats was evaluated on this dataset that was augmented by flipping and 
reversing the time series and by adapting the ground-truth labels accordingly. The results are given 
in Table 4 and Table 5 for the binary model and multiclass model, respectively.

Table 3. Multiclass classification scores on the test set

Bal.Acc Recall Precision F1-Score TNR

Departure 0.958 0.919 0.948 0.933 0. 998

Noise 0.968 0.997 0.995 0.996 0.938

Arrival 0.958 0.917 0.930 0.923 0.998

Figure 9. Time series with multiple boats
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The model trained to perform a binary classification (noise vs boat) is able to detect the boats 
with only 14 time series with multiple boats that are mistaken with a background noise. The model 
that performs the multiclass classification is also able to detect boats. When several boats sail in the 
same direction, the model tends to determine the right direction of navigation. When two boats are 
crossing each other in opposite directions, the model predicts either a departing or arriving boat, which 
was expected. If the time series are grouped together in the same class regardless of the direction of 
navigation, the performances of the multiclass model are similar to those of the binary model with 14 
time series among the 160, which are confused with noise. These results show that the two models 
are able to detect the presence of boats for this scenario but that they cannot determine the direction 
of navigation or the number of boats that are passing simultaneously since they were not trained for 
this task. It can be problematic to accurately quantify the traffic in the marina because the count of 
departures/arrivals during the day may be wrong.

In order to train a model that is able to detect multiple boat, a large amount of data is needed. 
To increase the number of signals that show several boats simultaneously, 3,000 random boat 

trajectories with noise have been simulated with the equation ∆T t L

c
t( ) = ( )( )� sin α  (see Figure 10). 

All the cases have been considered for the simulations, namely, two boats departing, two boats arriving 
or two boats crossing each other. A t-LeNet model was trained to predict 3 classes (“noise”, “1 boat” 
and “2 boats”) with only simulated time series for the “2 boats” class and only real time series acquired 
by the acoustic system for the other two classes in the training set. By testing the performances (Table 
6) on real time series, the results showed a lot of confusion between the classes “1 boat” and “2 
boats”, which is probably due to the fact that the simulated data of several boat trajectories are not 
sufficiently close to the real data (different noise, non-rectilinear trajectories, etc.). However, it can 
be noted that no real test time series belonging to the “2 boats” class is confused with noise, which 
shows that the simulated data used during the training step helped to reduce the false negative rate 
of the classifier.

The results obtained with the simulated data tends to indicated that the detection of multiple boats 
might be possible if enough and accurate data are obtained by the system. However, during the data 
preparation, 21 days of recorded signals have been processed and manually labeled. Among the data, 
only 40 time series show multiple boats, which proves that this scenario does not happen very often 
in a small marina. For an accurate detection inside a larger marina where the traffic might be higher, 
more data will be needed to train a model. To acquire this data, the model that performs the multiclass 

Table 4. Binary model - confusion matrix on multiple boats data

True Class Predicted Noise Predicted Boat

2 Arrivals 4 48

Crossing 5 51

2 Departures 5 47

Table 5. Multiclass model - confusion matrix on multiple boats data

True Class Predicted Departure Predicted Noise Predicted Arrival

2 Arrivals 15 3 34

Crossing 22 6 28

2 Departures 31 5 16
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classification will be implemented into the autonomous acoustic system and its prediction will trigger 
the recording of the raw signals perceived by the hydrophones. These signals will subsequently make 
it possible to classify boats with their acoustic signatures by detecting characteristic peaks in the 
spectrum and will increase the size of the presented dataset. By adding several noises radiated from 
different boats, it will also be possible to simulate a very large variety of H1 and H2 signals perceived 
by the hydrophones that present several boat trajectories. By using the same algorithm used in the 
system that computes the trajectory signal from H1 and H2, it will be possible to simulate times 
series with multiple boats that are more accurate than the previous simulated signals that have been 
used to train the model in this section. The future acquired data could be used to train a model to 
make a multiclass classification that takes into account the detection and the direction of navigation 
of one or more boats.

Trained CNN Implementation on a Single-Board Computer
The t-LeNet model which performs the multiclass classification was selected to replace the signal 
processing-based algorithm that was used during the first stage of development of the system. To 
ensure that a trained CNN can run on a small single-board computer, the CNN was loaded on a 
raspberry PI 3 model B+ running with the PI OS operating system (previously called Raspbian). 
The board equips a Broadcom BCM2837B0 SoC which has a quad-core ARM Cortex-A53 cluster, 
running at 1.4GHz. To measure the execution time, only one CPU core of the Raspberry Pi was 
used by the TensorFlow library when performing the CNN inference operations. The inference time 
to perform the classification of one time series was measured 10,000 times in a control loop. As a 
result, the mean inference time to predict whether a boat is departing or is arriving at the marina is 

Figure 10. Comparison of real data and simulated data

Table 6. Multiple boat trajectories model – confusion matrix on test data.

True Class Predicted Noise Predicted 1 boat Predicted 2 boats

Noise 3955 14 3

1 boat 16 253 35

2 boats 0 96 64
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9.75ms. This result shows that the prediction can be done in real-time with an embedded system. 
Further works will be needed to implement the CNN in our developed software (memory allocation, 
task parallelism, etc.) but the CNN prediction will be used as a trigger to record the raw hydrophones 
signals when a boat is detected.

CONCLUSION

In this paper, the authors have presented their autonomous system, which is based on two hydrophones 
connected to a two-input audio board and a small single-board computer. The article describes how the 
system uses the hydrophone signals to build a passive acoustic barrier that detect the boat traffic inside 
a marina. The signals from the hydrophones are cross-correlated by the system to find the time delay 
and to compute a signal that depends on the boat trajectory. By examining how this signal is changing 
over time, the system can detect a boat and its direction. The presented method can be considered 
as a dimensionality reduction technique where the two 1D signals recorded by the hydrophones at 
a frequency of 44.1 kHz are reduced to a single 1D signal of 322 points for one minute of listening. 
This reduction greatly simplifies the problem because the signal can be calculated in real time on a 
single-board computer. Moreover, the detection itself can be carried out more rapidly on a 1D signal 
than on a 2D spectrum, which is necessary in the case of a detection applied in the time-frequency 
domain as it can be seen in the literature.

Initially, a threshold-based detection algorithm was implemented into the acoustic system to 
detect boats in real time. To improve the robustness of the system, the researchers have processed 
21 days of saved signals and manually labeled them depending on their natures (background noise, 
arriving boat and departing boat) to train several different classifier. As a result, the built dataset 
consists of 21,378 time series with 19,844 background noise and 1,534 boat radiated noise. Three 
different time series classification tasks are experimented and the results presented show that the 
signal calculated by cross-correlation, which is a function of the trajectory of the boat, is sufficient to 
detect the presence of a boat in the marina and its direction with an accuracy of 0.96 with a t-LeNet 
model. The scenario where several boats are crossing or following each other can be problematic for 
the precise quantification of traffic in the marina because the trajectory signal tracks only one boat 
at a time. This problem is addressed and an experiment conducted with simulated time series with 
multiple boat trajectories showed that the false negative detection rate could be drastically reduced 
with enough and accurate data. Prospects for improving the simulations are presented.

The next step in the development of the acoustic system is the implementation of the trained 
CNN on the already developed software. The result of the classification performed by the CNN will 
be used as a trigger to automatically save the hydrophone signals when a boat is detected. The goal is 
to acquire enough data to perform ship signature classification and to detect intruder inside a marina.
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