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ABSTRACT

The cutting and packing problem belongs to the combinatorial optimization problems; it covers a 
wide range of practical cases in industries. The present paper investigates a new real-world problem 
that needs to be solved through daily operations of cutting foam blocks in an industrial company. 
The problem is considered as one of the non-classical problems in the cutting and packing area. It 
represents a variant of the three-dimensional cutting stock problem. The originality of the studied 
problem is indicated by a specific set of constraints related to the production process and the cutting 
ways. A constructive heuristic was developed to provide cutting patterns in advance. All possible 
combinations established from the ways of cutting right rectangular prisms from foam blocks define the 
cutting patterns. This heuristic performs well and shows promising results in reasonable computational 
times to provide efficient cutting plans in order to reduce the total material loss.
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1. INTRODUCTION

In general, companies have a strong desire to be more successful than others. They usually try 
to maximize their productivity while minimize their costs. The world is characterized by a rapid 
technological advancement; so that, companies invest in sophisticated machines and obtain new 
technologies. To maintain his competitivity, the company can focus and rely on some optimization 
techniques as tools of decision-making.

A regional industrial company in Tunisia fabricates foam mattresses and always complains about 
the high level of leftover resulting from cutting patterns choosing. These patterns are not predetermined 
through scientific approach but are developed manually based on the judgment and the experience 
of the employee. The principle goal of this study paper is to find a solution of the presented foam 
company and provide the final ordered items (mattress in foam) to customers.
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We propose an optimization plan leads to generate efficient cutting patterns that will be able to 
minimize the current level of waste and therefore increase the satisfaction level of the owners. The 
final items (mattress in foam) made by guillotine cuts from bins (foam blocks), these bins in turn are 
made by tunnel. The bins of the same tunnel have the same weight and the same height but different 
lengths, so the objective is to minimize the total number of used bins (foam blocks) and therefore 
minimize the total length of tunnel (see Fig.1).

The treated problem represents one of the non-classical problems of the three dimensional (C&P) 
with additional constraints. Some constraints are solely determined by the industrial applications in 
(C&P) problem. This type of problem is important since it can help solve real industrial problems 
and minimize their costs. However, solving such practical problems is rather difficult because of the 
additional constraints encountered in the industry, such as the guillotine constraint presented in this 
paper. The considered problem presents specifications in the cutting process. Actually, the extraction 
of the final items (mattresses in foam) is made only by cuts from edge to edge. Indeed, literature 
defined this way of cut as guillotine cuts. These cuts are made by levels. The level is the number of 
phases necessary for the extraction of all the items. Fig.2. (a), (b), and (c).

Figure 1. Getting blocks from a tunnel

Figure 2. Example of cutting patterns. (a) Non-guillotine cuts. (b) 3-levels 2D guillotines cut. (c) 3-levels 3D guillotines cut.
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Based on the last typology offered by Wäscher et al., (2007), the treated problem can be conceived 
as a variant of the three dimensional cutting stock problems when dimensions are not predetermined 
in advance (variable sizes). It is a strongly NP-hard problem, which cannot be easily solved in real 
cases. It has been less studied until very recently, even though it has a wide range of real applications.

Real problems can arise as a combination of several problems, including a range of specific 
technical constraints. This accentuated the difficulty of solving these problems. As such, the studied 
problem in this paper is a novel practical case belonging to the non-classical problems. It is an 
industrial foam-cutting problem that presents particular constraints linked, on the one hand, to the 
blocks production process using big Tunnels. On the other hand linked to the cutting ways, which 
follow the guillotine constraint. Solving such a type of problem in practical cases was and is still a 
big challenge.

Some algorithms are proposed in the literature for resolving these problems. In Bang-Jensen and 
Larsen (2012), the variable size bin packing problem was treated and the authors reveal the efficiency 
of their proposed algorithms through real-life instances. Zhu et al. (2012) applied a prototype column 
generation strategy for the multiple container-loading problem. Crainic et al. (2011) presented GASP 
greedy adaptive search approach: metaheuristics able to efficiently address two and three-dimensional 
multi-container packing problems. Paquay et al. (2018) described a tailored constructive heuristic 
for real-life instances of three-dimensional (MBSBPP) in Aircraft Company. Sumetthapiwat et al. 
(2020) deal with multi stock sizes and fixed-size usable leftovers for the two-stage two-dimensional 
cutting stock problem.

The aim of the present paper is to find a good possible solution in acceptable computation time 
to a real world problem, which considers additional cutting constraint. This cut must satisfy certain 
geometric constraints and aims to reduce losses and costs.

The rest of the paper is organized as follows. In section 2, a literature review on connected 
problems is presented. In section 3, a description of the studied industrial problem of the local foam 
company is provided and reviews of some results of previous study in (Baazaoui et al. (2017)) are 
presented. In section 4, a novel constructive heuristic named levels algorithm (LA) is proposed. It 
is composed of two complementary sub-algorithms, which is appropriated to the specificities of the 
real problem. In section 5, outlines of the computational results and some comparisons are made.

2. LITERATURE REVIEW

The cutting and packing (C&P) problem is one of the well studied combinatorial optimization 
problems and it was proved as a NP-hard problem in the strong sense. The literature is rich with 
theoretical and practical studies for the classical problems of (C&P) where the bins have fixed 
dimensions. Kantorovich (1960) was the first who initiated the (C&P) problem. One year after, the 
famous method “column generation” for the (C&P) problem for the one dimentional problem was 
introduced in Gilmore and Gomory (1961). In 1965, Gilmore and Gomory extended their proposed 
method for the two dimensional problem. Subsequently, several articles have been published about 
various versions and variants of the (C&P) classical problem; Beasley (1985), Coffman et al. (1980). 
The notion of arc flux for modelling the (C&P) problem was initially presented by Carvalho (1999). 
Fekete and Schepers (1997) were the first ones who used the graph theory technique to introduce a new 
modelling approach for the orthogonal bin packing problems. They continued their studies in 2001, 
2004, and 2006 and they integrated other notions such as scheduling. Lodi et al. (2002), presented 
a brief state of the art concerning the modelization and the resolution of two dimensional problems.

Studies about the classical problem have been conducted up to the present time, namely (Martello 
et al., (2000), Fekete et al., (2007), Crainic et al., (2008), Parreño et al., (2008), Crainic et al., (2009), 
Bortfeldt and Wascher (2012), A.deQueiroz et al., (2012) and Hifi et al., (2014)), to mention a few.
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Bortfeldt and Wascher (2012) made a State of the art for different studies in the classical case, 
whereas few studies are investigated for the opposite case.

In fact, the literature presents some current papers regarding the non-classical problem of (C&P), 
where the dimensions are not predefined; the multiple-bin-size bin packing problem (MBSBPP), 
the multiple container-loading problem (MCLP) and the multiple stock sizes cutting stock problem 
(MSSCSP) are but a few examples. For a description of these problems, the reader can refer to the 
last typology of Wäscher et al., (2007). This typology represents a new coherent system of proposed 
names for different categories of (C&P) problems.

Treating and solving these practical problems are far easier in the classical problems of (C&P) 
than in the non-classical ones. In this paper Chen et al., (1995), the authors stated an analytical model; 
they proposed a MILP model with consideration of multiple object sizes, multiple containers, object 
orientations, and the non-overlapping of items in the container.

In the literature, there are a few studies for the (MBSBPP), as well as for one and two-
dimensional cases. In Alvarez-Valdes et al., (2015), lower bounds were presented in the case of the 
three-dimensional (MBSBPP). The optimization problem defined in Saraiva et al., (2015) can be 
considered as a lexicographically optimization including more than one objective: minimization 
of the total volume of used containers, minimization of the stacks volume inside each container, 
minimization of the lengths of the container patterns and minimization of the container compactness. 
The authors proposed an efficient constructive algorithm named layer-building (CLB) algorithm to 
solve the problem submitted as a challenge of Renault/ESICUP. In Paquay et al., (2018), MIP-based 
constructive heuristics was proposed for solving a real world problem of three dimensional (MBSBPP) 
proposed in air transportation.

Real problems can arise as a combination of several problems, including a range of specific 
technical constraints. This accentuated the difficulty of solving these problems. In Christofoletti 
et al., (2020), a real world problem in a small Brazilian mattress industry has been studied and 
solved (via optimization package) to reduce charges and leftover of the company. In their paper, 
Christofoletti et al.,(2020), the authors represented and integrated problem of cutting stock problem 
and lot-sizing problem.

Overall, the practical problems have specifications related to the production process, packaging, 
and sales. The studied paper presents a specification in the cutting process; more specifically, the 
extraction of the final items (mattresses in foam) are made only by cuts from edge to edge. All cuts 
must be of guillotine-type. During the last decade, some practical problems were devoted to industrial 
case studies, namely for the three-dimensional case, Silveira et al., (2013) who proposed a new Ant 
Colony Optimization (ACO) algorithm. This algorithm was proposed for a real world problem in a 
steel industry where the guillotine constraint is imposed by the cutting machine. Hongteng et al., (2016) 
proposed a three-stage heuristic algorithm for the three dimensional irregular packing problem and 
they tested it for real-life cases. Ha et al., (2017) developed a novel online packing algorithm, which 
is applicable in several real world context as the example of automated cargo loading in warehouses.

In the case of two-dimensional problem with multiple stock sizes, Park et al., (2013) illustrated 
an effective heuristic for the two-stage guillotine cut while permitting the rotation of items. In Martin 
et al., (2020) and Martin et al., (2021), models and constraint programming based algorithm are 
proposed in the case of two-dimensional guillotine cutting problems, which can be presented in a 
Real world application of glass industry.

3. PROBLEM DESCRIPTION AND PREVIOUS RESULTS

3.1 Problem Description
A Tunisian local foam company offers different sizes of mattresses in foam. Based on the information 
collected after an on-site visit, the production of foam mattresses passes through two phases. These 
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two phases have been described in Baazaoui et al. (2017). The authors defined: the production of the 
bins (foam blocks) in the sizing phase and the final extraction of the right rectangular prism (mattress 
in foam) in the cutting phase.

The production phase: foam blocks are produced by tunnel. Each block has three parameters, 
namely: the first parameter is the width of the block which is exactely same as of the tunnel; since all 
the blocks of the same tunnel have the same width. The production must be a continuous process, so 
to change its width, we have to stop the process and re-enter a new value of width. This value varies 
between 1.6 meters and 2.10 meters.

The second parameter is the height of the blocks. The tunnel has no height but it acts on the 
height of the block through its speed. This height also depends on the chemical formula used during 
the process. The blocks composed the same tunnel should have the same height. Overall, the height 
varies from 1.4m to 1.9m.

The third parameter is the length of the block, this length is not predetermined in advance before 
starting the process as the height and the width, but it is to decide within the process. We choose the 
appropriate lengths; that will be cut into sub-blocks then into matresses in the cutting phase; then, 
we cut these blocks according to these lengths. The sum of the block’s lengths is the tunnel length. 
The length of the tunnel is never a constraint of production: in fact, the production process is done 
continuously to produce a set of blocks according to the available storage space. And for economic 
reasons, this production can start only for a minimum number of blocks. Fig.3.

The cutting phase: Each produced block has to be cut into several sub-blocks. Fig.4. (a). 
Additionally, these sub-blocks must be cut into a right rectangular prism to get the final mattresses in 
foam Fig.4. (b). So, the aim of all cuts is to minimize the trim loss in each sub-block that composes 
the blocks that, in turn, compose the tunnels.

During all cuts, the following requirements must be satisfied:

•	 Only guillotine cuts are permitted; a succession of cuts go from edge to edge constitute the 
cutting configuration.

•	 There are no limits on the number of stages of the guillotine cuts.
•	 No overlapping between items (foam mattresses) which must fulfill the dimension of the 

foam blocks.

Figure 3. The production of blocks by tunnel
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The studied problem can be considered as an integrated problem of two optimization problems. 
The 3D strip packing problem (SPP) and the 3D Cutting Stock Problem with Multiple Stock Sizes. 
The 3D-SPP can be defined from the first phase; in fact, the width and the height are entered in 
advance before starting the production process while the length is to decide within the process. The 
aim is to minimize the used material so that to minimize the total length used. Wascher et al., (2007) 
defined the Strip Packing Problem similar to the packing problem. However, instead of packing the 
items in a set of bins of finite dimensions, the authors defined a single object having only one infinite 
dimension. For example, in the 3D case, this is a unique strip with determined height and width but 
a very high length assumed infinite. Therefore, it is called strip-packing problem. Therefore, the 
goal is to find feasible patterns consisting of all items that minimize the occupied area in the strip.

The 3D-CSPMSS can be defined from the second phase, so the problem is to know how to cut 
a set of small objects (foam mattresses), according to a backlog to meet, from large objects (foam 
blocks) available in the stock (produced from a tunnel). Therefore, cutting problems present two 
sub-problems: first, determine the objects of the stock to use to satisfy the order, secondly, find the 
patterns that minimize the waste.

Based on the last typology stated by Wascher et al., (2007), the CSPMSS is determined as items 
are grouped in classes then, each class with a specified order has to be extracted from different types 
of stock sheets. So that the objective consists in the minimization of the total number of used sheets.

In this problem, the optimization is stated in two steps. A first decision must be taken to choose 
the length of blocks in the production phase. A second decision must be taken to choose the cutting 
pattern corresponding to the minimum waste on the cutting phase in order to cut the foam mattresses 
from the foam blocks. It should be noted that these decisions in the two phases are interdependent. 
In fact, the choice of the length of the blocks is a consequence of the cutting patterns in the second 
phase (mattresses) thus, the optimal patterns depend on the dimensions of the foam blocks.

3.2 Previous Work
This sub-section represents and defines an outline of the different variables and the mathematical 
formulation elaborated by Baazaoui et al.,(2017). In fact, the constructive heuristic proposed in this 
paper is based on the extension of the method used for the formulation of the upper bound proposed 

Figure 4. Cutting a block and sub-block. (a) Cut a foam block in sub-blocks. (b) An example of 4 mattresses obtained from cutting 
one sub-block.
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by Baazaoui et al. (2017). The feasible solution of the MILP able to provide an upper bound for the 
problem, but the attained results are only presented for properly small size instances compared with the 
company demand. Baazaoui et al. (2014) also proposed a lower bound. They used these two bounds 
to restrict the optimum value between two values and get it for some small instances.

The mathematical formulation gives a feasible solution, which take in to consideration all 
constraints, including those used for positioning and non-overlapping items. The feasible solution 
provided by this formulation constitutes a special case of placements.

Using these notations: N is a set of n pieces (items) ∀ iÎN, M is a set of m tunnels ∀ kÎM, Nk is a 
set of maximal number of nk blocks in a tunnel k, ∀ jÎNk. The length of the shorter piece i defined as 
Lmin while the length of the longest piece i defined as lmax. Bmax and Bmin correspond to the highest and 
the lowest number of sub-block j for each tunnel k. Each piece has three dimension li is the length of 
piece i, wi is the width of piece i and hi is the height of piece i. Each sub-block j of tunnel k has Wjk 
as width and Hjk as height.

Decision Variables:
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•	 Ljk ϵN, is the length of sub-block j of tunnel k.
•	 Zj k = Ljk Yjk, is a variable used for the linearization of the objective function.

As established in Baazaoui et al.,(2017), the following formulation is donated to find an upper 
bound of the predefined industrial problem:
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(1) Represents to the objective function, which aims to minimize the total volume of produced 
tunnels. (2) Are the constraints ensuring that each item (piece) must be cut. (3) Are the constraints 
ensuring that no item is assigned to an unused sub-block. (4) Are the constraints ensuring that an 
item can be cut only if the tunnel is produced. (5) Are the constraints ensuring that the tunnel k+1 is 
produced only if the tunnel k is produced. (6) Are the constraints ensure that sub-block j+1 is created 
only if the sub-block j is created. (7) Are the constraints ensuring that the number of sub-block in 
each tunnel must be between two bound values Bmin and Bmax. (8) Are the constraints ensuring that no 
sub-block has a length less than lmin and no sub-block length is bigger than lmax; (lmin is the length of 
the shorter piece; lmax is the length of the longest pieces). (9) Are the constraints stating that the sum 
of the volume of all pieces assigned to a sub-block must be lower than the volume of this sub-block. 
(10) Are the constraints ensuring that the length of the piece should not exceed that of the sub-block. 
(11) Are the constraint ensuring that if we have a maximum of one piece along the width and all 
the pieces in this sub-block are superimposed (the one upon the other), the summation of heights of 
the pieces should not exceed that of the sub-block. As shown in Fig.5. (a). (12) Are the constraint 
ensuring that if we have a maximum of one piece along the height and all the pieces in this sub-block 
are contiguous (one side by side). As shown in Fig.5. (b), the sum of widths of the pieces should not 
exceed that of the sub-block. (13) to (15) Are constraints used for the linearization of the quadratic 
term: Zj k = Ljk Yjk. (8) are the constraints used in order to respect the cut by sub-block and each sub-
block corresponds to a unique layer of superimposed items.

This linear program with an objective function aims to the minimization of the total material 
loss and constraints meet all specifications of the practical problem. The presented modelization 

Figure 5. Possible extreme placement cases; Baazaoui et al. (2017) (a) The pieces are one upon the other. (b) The pieces are one 
beside the other.
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examines the two possible extreme cases stated by constraints (11) and (12) as shown in (Fig.5). The 
upper bound also respects the cutting made by sub-blocks (as a specification of the practical problem) 
where each sub-block coincides with a unique layer of the superimposed items.

This formulation provides results for fifty pieces with a run time fewer than two minutes. The 
described bound provides outputs in a reasonable runtime in a small instances case.

In Baazaoui et al. (2017), the comparison between results from the lower and the upper bound for 
the same instances shows equal values of length but different run times. This experiment has shown 
that the optimal value is obtained for instances composed of up to 10 pieces regardless of their types.

The effectiveness of this bound still limited in the case of larger instances, which exceeding fifty 
items. The purpose of the next section is to propose a constructive heuristic inspired from the upper 
bound in order to extend the resolution for larger instances and meet the demands of the company 
for different periods.

4. CONSTRUCTIVE LEVELS ALGORITHM

The representation of the industrial problem with its cutting specificity have inspired us to propose 
the method of levels placement. As described before, to meet the nature of cutting process, the cuts 
follow the guillotine constraint. In addition, the cut is performed using some parallel horizontal 
blades to obtain the sub-blocks and additional blades to obtain the final ordered items. In fact, all 
cuts should be guillotine.

The principle contribution in this paper manifested in the presentation of a new efficient and 
appropriate constructive heuristic based on two principal algorithms to find a good pattern that 
takes into account all the specifications of the real problem. The idea is to fragment the initial three-
dimensional guillotine-cutting problem into one-dimensional guillotine problem and two-dimensional 
guillotine problem.

The literature presents some heuristics based on levels. These heuristics, like wall building 
and layer building, are known as a construction heuristic. They involve arranging the same type of 
boxes in rows or columns and placing them in the empty spaces in the bins. For all possible patterns 
(placement positions), a list of empty spaces is established; after each placement, new spaces are 
generated. In fact, the packing of boxes is accompanied by a sorting criterion in order to define an 
order for different types. In the literature, in 1980, George and Robinson were the first to present the 
example of wall building placement; this heuristic is based on a predetermined procedure to select 
the boxes. Zhao et al. (2014) presented a general review for the heuristics that derives from that 
presented by George and Robinson (1980).

In Correcher et al., (2017), GRASP algorithm was proposed, including constructive approaches 
to obtain solutions meet all the constraints for a real world problem in the car manufacturing industry. 
In this approach, firstly, pieces are loaded into layers, then these layers are loaded into stacks and 
finally stacks are put inside containers.

The proposed constructive heuristic of placement starts with a clustering phase, where all similar 
pieces are grouped into the same cluster. Pieces in the same cluster have similar lengths, which is 
useful to build the sub-blocks. Fig. 6. (a).

We consider a case of a single tunnel with parameters (H;W); H can take values from 1.4 meters 
to 1.9 meters and W can take values from1.6 meters to 2.1 meters.

Taking into account the guillotine constraint (in our case: the cut at each step from edge to edge) 
and the cutting of sub-blocks, we propose to build these sub-blocks.

In fact, the length of the sub-block corresponds to the longest piece placed in its levels. Fig.6. 
(b). These levels are constructed according to the method described hereafter.

The Fig.6. (a) represents an example of placement (cutting pattern). In fact, it is composed of 
two sub-blocks; the first sub-block is composed of two levels and the second is composed of three 
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levels. The length of each sub-block corresponds to the longest piece (foam mattress) placed in its 
levels. The Fig.6. (b) shows a top view of the Fig.6.(a). It clarifies the composition of sub-blocks.

After clustering, we place the pieces according to these two algorithms (algorithm 1 and algorithm 
2). The first is a general algorithm that describes the choice of (Hj; Wj) with minimum trim loss, and 
the building of different blocks constituting the tunnel. The second algorithm represents a description 
of the level placement and the composition of sub-blocks.

Algorithm 1. The general algorithm

Input: pieces i=1,.., N of clusters k=1,.., K
          R [l]: residue in each level l (l=1,.., L)
Output: (H j

; W
j
) with minimum Total Residue

1: For each (H 
j
 ; W

j
) do

2:                         Total Residue ¬ 0 
3:      For each level l do
4:                     Residue ¬ R [1]
5:                     Sub-block¬ 1 
6:             For each pieces i of cluster k do 
7:                         Repeat (Function of level placement)
8:                                  Residue ¬ Residue + R [l]
9:           Until (h 

i k l
 (of the last placed piece) + sum of the 

           height of all horizontal levels)>H 
j
 ) or (w 

i k l
 

           (of the last placed piece) + sum of the width of all  
           vertical levels)>W

j
)

10:                      Long-Sub-block ¬ the longest piece in all  
                         these levels 
11:                      Sub-block¬ Sub-block+1 
12:                      Gather the Sub-blocks to form Blocks with  
                         length between [L

MIN;
 L

MAX
]

13:         End for 
14:      End for
15: End for 
16: Total Residue ¬ Residue 
17: Compare total residue of all (H 

j
; W

j
) 

Figure 6. Building sub-blocks. (a) Example of the composition of the sub-blocks. (b)The top view of the two sub-blocks.
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Algorithm 2. The Function of level placement

Data:  
 (xi

; z
i
): the coordinates of the left lower point of the last 

placed piece. 
CP1: (x

i
 + w

i
; z

i
): the corner point according to the width

CP2: (x
i
; z

i
 + h

i
): the corner point according to the height

RH: the residue according to the horizontal level placement
RV: the residue according to the vertical level placement
list1h: list of pieces ordered by decreasing h
list2w: list of pieces ordered by decreasing w.
Input:   (H 

j
; W

j
) 

            Pieces i=1,.., N of clusters k=1,.., K 
Output: corresponding level (vertical or horizontal) placement  
1: For each piece i of cluster k do 
2:       Place the piece from list1h 
3:       Update (x

i
, z

i
)

4:       Compute CP1: (x
i
 + w

i
; z

i
) and CP2: (x

i
; z

i
 + h

i
)

5:      If (more than one candidate piece with same height)
              we choose the piece with the longest width  
         End if 
6:      Compute {RH= W * CP2 – total area of all pieces in the 
        direction of CP1}  
7:      Place the piece from list2w 
8:     If (more than one candidate piece with same width)
              we choose the piece with the longest height 
        End if 
9:     Compute {RV= H * CP1 – total area of all pieces in the 
       direction of CP2} 
10:   If (RV 3 RH) 
            Return horizontal placement  
        Else Return vertical placement 
11:  End if 
12: End for

During the placement, first, for the horizontal placement, we use the pieces from the list1h and 
in the case where we have more than one candidate piece (with the same height), we take the piece 
with the longest width. However, for the vertical placement, we use the pieces from the list2w, and 
in the case where we have more than one candidate piece (with the same width), we take the piece 
with the longest height.

4.1 Illustrative Example
A theoretical example including seven pieces is presented here to clarify the proposed approach of 
placement. Suppose that: H=10 and W=10.

The first list ‘list1h’ includes pieces ordered by non-increasing order of their height hi piece (h, 
w): (7,2) (6,5), (4,5) (4,4) (3,2) (3,1) (2,2).

The second list ‘list2w’ includes pieces ordered by non-increasing order of their width wi piece 
(h, w): (6,5) (4,5) (4,4) (3,2) (7,2) (2,2) (3,1).

In the first iteration of the algorithm, we place the piece (7, 2) at the first corner and we eliminate 
this piece from the two lists. We have two sets of candidate pieces: or horizontally from list1h in EP1 
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or vertically from list2w in EP2. According to the first list ordered by decreasing hi we can place in 
order if possible the pieces (place from the remaining pieces in the entire list but essentially that the 
selected pieces have a lower or equal height than of the first piece placed in the layer. In the case 
when we have more than one piece with the same height, we select from the second list ‘list1hw’). 
Therefore, we can place (6, 5), (3, 2), (3,1) but, we can’t place (4,5) and (4,4) in EP1. Now we can 
calculate the residue R1= W* EP2 – (area of all placed pieces) = 7*10- (14+30+6+3) = 17. Then 
we get the horizontal placement in Fig.7. (b).

According to the second list ordered by decreasing wi we can place in order (with wi lower or 
equal than 2. In this case, we have three candidates pieces with wi=2) according to the second list 
‘list2wh’ we choose (3, 2) in EP2 so, after this placement all H is occupied and we get now the second 
possible layer with vertical cut. The residue R2= H* EP1 – (area of all placed pieces) = 10*2- (14+6) 
= 0. So we get the vertical placement in Fig.7. (c).

By comparing R1 and R2, the first cut should be vertical, so that the first layer is vertical and 
we cut the two pieces ((7, 2) and (3, 2)) according to Fig.7. (c).

For the second step, we have these two new lists. Updated of ‘list1h’: (7,2) (6,5), (4,5) (4,4) 
(3,2) (3,1) (2,2).

Updated of ‘ist2w’: (6,5) (4,5) (4,4) (3,2) (7,2) (2,2) (3,1).
Moreover, H=10, W=8. In the second iteration of the algorithm, we place the piece (6, 5) at the 

first corner and we eliminate this piece from the two updated lists. We have two sets of candidate 
pieces: either horizontally in the new EP1 or vertically in the new EP2.

According to the first updated list ordered by decreasing hi we can place (3, 1) and (2, 2) but, 
we can’t place (4, 5) and (4, 4) because their widths (5 and 4) are greater than the total remaining W 
=8. Finally, in this case, we have R1=W * EP2 - (area of all placed pieces) = 8*6-(30+ 3+ 4) =11. 
So the second horizontal possible placement shown in (Fig.8. (a))

According to the second updated list ordered by decreasing wi we can place the piece (4, 5) or 
(4, 4) so we place the piece (4, 5) because it has the longest width and. The residue R2= H* EP1 
– (area of all placed pieces) = 10*5- (30+20) =0. By comparing R1 and R2, the second cut is also 
vertical. Fig.8. (b).

Updated of ‘list1h’: (7,2) (6,5), (4,5) (4,4) (3,2) (3,1) (2,2).
Updated of ‘ist2w’: (6,5) (4,5) (4,4) (3,2) (7,2) (2,2) (3,1).
At the third step: H=10 and W= 3, we can’t place the piece (4, 4) in this remaining plaque. 

Therefore, this piece needs a new plaque. We perform the same process for the other pieces: Horizontal 
cut according to h1 and R1=3*3-(3+4) = 2. Fig.9. (a).

Figure 7. The first horizontal and the vertical possible placements. (a) The coordinates of the piece. (b) The horizontal placement. 
(c) The vertical placement.
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The remaining pieces can’t be placed in the vertical layer. So, we can’t do a vertical cut. As result 
our plaque is composed of three cuts (two verticals and one horizontal Fig.9. (b)).

In the next section, we will provide results for real instances taken from the industrial case 
study demand.

5. COMPUTATIONAL EXPERIMENTS

Our proposed algorithm was implemented in Java. Computations were carried out on a computer with 
a 1.9 GHz Intel Pentium i3 CPU, 4 GB of RAM and running a Windows 7, 64 bits OS. We tested 

Figure 8. The second horizontal and the vertical possible placements. (a) The horizontal placement. (b) The vertical placement.

Figure 9. The last possible placement and the final cutting pattern. (a) The horizontal placement. (b) The final cutting pattern
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real instances given by a Tunisian industrial company. We treat a demand for one period of time; 
this demand consists of 450 pieces (items). By applying our method, this demand was distributed in 
six clusters by grouping them. Next, we introduced a table representing the different results (number 
and sort of blocks used, number of sub-blocks, the corresponding length of each sub-block, and the 
percentage of trim loss in each sub-block).

This method aims to find the corresponding (H; W; L) that able to minimize the total waste while 
respecting the guillotine constraint of the practical problem. We are able to obtain the cutting patterns 
for 450 pieces with an execution time of fewer than one minute. (Table 1).

The cutting of foam in different departments of the company is automated; it is done by 
programmed machines, while the cutting of mattresses and cushions is manual; it is based on the 
judgment and the experience of the employee who tries to minimize the trim loss of foam and satisfy 
the demand.

In fact, we take some different instances from the industrial demand. Based on the volume 
defined as (LT* H*W). We compare the results of our heuristic application (LA) level algorithm to 
the industry results.

In Table 2, the different instances taken from real world applications correspond to the number 
of pieces (foam mattresses) demanded in each instance. The proposed algorithms were able to reduce 
the loss material by up to 9.6% on average, and to automatize the cut operations in this department.

To evaluate the performance of our proposed level algorithm (LA), we performed a comparative 
study and we re-implemented our heuristic with a few number of mattresses taken randomly from 
a part of the company demand with the proposed upper bound carried out by CPLEX in Baazaoui 
et al.,(2017).

Table 3 presents the results of the LA and the UB. For each instance, the table shows the value 
of the total length used and the execution time (in seconds). In the last column, the gap between the 
LA and the UB is given.

For these small instances taken randomly, the proposed heuristic gives results within a small 
lapse (fewer than 2 seconds) and for all the instances, it is less than the UB. For the first instance, 
the gap is equal to zero and conforms to the optimal solution. The results of the UB are better than 
those of our algorithm LA with a maximum gap of 36%. Except one instance gives better results 
than those of the UB.

CONCLUSION

In this work, we deal with one of non-classical practical problems in a local foam company in the 
area of cutting and packing. The described problem can be conceived as an integration problem of 
strip packing and multiple stock size cutting problem, which are defined, in the literature, as ones of 
the NP-hard problems. The treated problem presented some specifications related to the production 
process and the cutting ways. In this work, we extend the results of the upper bound, which is limited 
to small instances.

The UB represents a feasible solution to the treated problem. The results from the UB show 
that we are able to find the solution for 50 items (pieces) in lapse fewer than 2 minutes. Besides, it 
provides an optimal solution for up to 10 pieces with different types. To extend the resolution for 
larger instances, this study proposed a constructive heuristic based on levels placement to meet the 
guillotine constraint for the industrial problem. Results from the heuristic shows that we can have a 
placement for 450 pieces in duration fewer than one minute. The proposed level heuristic can reduce 
the trim loss by up to 9.6%.

In future work, we plan to adapt our proposed algorithms to solve this industrial problem for the 
case of more than one tunnel.
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Table 1. Computational results for 450

Number and type of blocks used 
Block (H;W;L) Number of sub-blocks used Ljk :length of each sub-block (cm)

Percentage of trim 
loss 

(Waste)

(140;160;300) 3
100 
100 
100

11.87 
13.03 
7.678

(140;160;300) 3
100 
100 
100

12.85 
12.85 
12.85

(140;160;300) 3
100 
100 
100

12.85 
12.85 
12.85

(140;160;300) 3
100 
100 
100

12.85 
12.85 
70.14

(140;160;290) 3
90 
100 
100

28.57 
37.50 
9.375

(140;160;300) 3
100 
100 
100

19.42 
4.710 
81.25

(140;160;300) 3
100 
100 
100

58.25 
15.55 
7.125

(140;160;310) 3
100 
100 
110

5.151 
48.40 
12.36

(140;160;310) 3
100 
100 
110

51.69 
19.50 
18.891

(140;160;330) 3
110 
110 
110

21.46 
15.62 
15.62

(140;160;330) 3
110 
110 
110

36.36 
31.25 
31.25

(140;160;330) 3
110 
110 
110

31.25 
31.25 
31.25

(140;160;330) 3
110 
110 
110

31.25 
31.25 
31.25

(140;160;330) 3
110 
110 
110

31.25 
31.25 
31.25

(140;160;320) 3
110 
100 
110

31.25 
5.951 
14.57

(140;160;350) 2 100 
250

28.43 
14.05

(140;160;342) 2 192 
150

7.270 
42.70

(140;160;320) 2 150 
170

24.11 
20.68

(140;160;302) 2 152 
150

14.69 
3.154

The total length of the tunnel used (LT) for the production of these blocks and the cutting of 450 mattresses is 5994 cm.
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Table 2. Comparative results with the industry method

Different demands

Tunnel’s 
Length 

(Employee’s 
method) 

LT
cm

Total volume 
of composed 

blocks 
H*W*LT

Cm3

Tunnel’s 
Length 

(LA 
heuristic) 

LT
cm

Total volume 
of composed 

blocks 
H*W*LT

Cm3

Improve 
(%)

100 1666 160*170*1666 1740 140*160*1740 13.9%

200 2000 150*180*2000 2200 140*160*2200 8.7%

300 4666 140*160*4666 4500 140*160*5400 3.5%

450 6116 150*160*6116 5994 140*160*5994 8.5%

500 6765 150*190*6765 7454 140*160*7454 13.4%

Table 3. Gap between the proposed method and the upper bound

Instances
Length (cm) Time (s)

Gap = (LA-UB)/UB
UB LA UB LA

5 200 200 0.56 0.29 0

10 250 340 0.7 0.62 0.36

20 331 320 0.95 0.91 -0.03

30 431 520 2.42 0.86 0.21

40 511 555 15 0.88 0.086

50 596 740 22 1.2 0.242

60 637 1085 103 1.64 0.70
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