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ABSTRACT

Children differ greatly in what they know and are ready to learn when they enter school. However, when 
their individual needs are assessed and addressed, even very young children can learn and can greatly 
surpass grade-level expectations. This chapter discusses the partial implementation of a research-based 
personalized mastery-based learning ecosystem (PMLE) that uses My Math Academy, a games-based 
learning program and personalized teacher resources to deliver learning outcomes for young children 
at scale. The implementation of the My Math Academy PMLE with nearly 1000 prekindergarteners at 
a high-need school district resulted in significant learning gains, including gains beyond grade level, 
despite large learner variability in students’ prior knowledge and learning progress. Teachers also felt 
empowered to deliver differentiated instruction, building on the personalized learning students experi-
enced through My Math Academy. Results showed that the PMLE framework can help close equity gaps 
and help children excel in ways that defy expectations.
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INTRODUCTION

Learner Variability

Although children develop through relatively predictable stages, as environmental influences interact 
with individual genetic variation and developmental timing, there is great individual variation in how 
children learn and acquire skills (Rose, Rouhani, Fischer, 2013; Rose, 2016; Pape, 2018). This learner 
variability means that children of precisely the same age can be at different developmental levels in 
different domains, learning different things at different rates. Each responds differently to adversity 
and support; each also demonstrates their learning differently and varies in their needs for instruction, 
support, and enrichment.

A challenge in early education is addressing learner variability at the onset of formal schooling. 
Consider the fact that many children enter kindergarten with gaps in their learning foundation that make 
it difficult for them to learn successfully in school—gaps that only widen as children move on to suc-
cessive grades (Duncan et al., 2007; Duncan & Magnusen, 2011; Seigler, 2009). This affects certain 
subgroups of children more than others, as children of color and children from low SES homes have 
been found to fall behind in disproportionate numbers when compared to their more advantaged peers 
(deBrey et al., 2019).

The recent COVID-19 pandemic has exacerbated the problem of learner variability. Near the end 
of the 2019-2020 school year, millions of children who had been attending school in person were sud-
denly expected to learn in virtual or hybrid environments due to the COVID-19 pandemic. During the 
2020–2021 school year, many of these children who had been learning remotely gradually returned 
to in-person schooling. Differences in school districts’ approaches to remote or hybrid learning, as 
well as varying family and home environments had a pronounced impact on the performance of these 
children. By the end of the 2020-2021 school year, students were, on average, found to be four to five 
months behind in math and reading (Dorn, Hancock, Sarakatsannis, & Viruleg, 2020), and while many 
students had substantial amounts of unfinished learning for their grade level, the greatest amount was 
concentrated among Black, Indigenous, and Persons of Color (BIPOC; Kuhfeld et al., 2020; Meckler & 
Natanson, 2020; Renaissance Learning, 2020). Though schools struggled to meet the needs of students 
prior to the emergence of COVID-19 (deBrey et al., 2019), the pandemic has been a catalyst for deeper 
examination of the challenge of addressing learner variability—requiring us to consider the ways in 
which traditional models of schooling have fallen short, and how we might better design programs that 
leverage all the inputs in a young child’s life (e.g., home, parents, school, community, technology, etc.) 
to ensure that their learning needs are met.

The notion that there is a preponderance of “average” children in our school system, for whom all 
instruction can be designed and delivered, is a myth (Rose, 2016; Rose, Rouhani, & Fischer, 2013). No 
two children are alike, nor do they have the same developmental or academic needs – each child’s de-
velopmental path is uniquely individual. Traditional instruction that provides the same instruction at the 
same pace to children of the same age not only fails to nurture the potential of each child, but may actually 
do harm by subjecting children to the negative long term academic effects that result from diminished or 
non-existent opportunities to master critical core content and competencies in early childhood (Claessens 
& Engel, 2013; Duncan et al., 2007; Nguyen et al., 2016). While “individualizing the curriculum” is a 
common refrain heard throughout education, the meaning behind this phrase is often unclear (Wormeli, 
2005). There are many ways to tailor the learning to the individual, including adapting content scope 
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and sequence, pace, and pedagogy. However, if standardized measures of student achievement are any 
indication (deBrey et al., 2019), adapting learning experiences across these different dimensions, si-
multaneously, for all students in a classroom is impossible in present educational paradigms. Teachers 
have tried to make this work, often by creating small groups of children who generally would benefit 
from similar instruction. However, it remains incredibly challenging for a teacher to discern in a group 
of 20-30 children—at any given moment—the prior knowledge that each child brings to bear, what they 
are learning, how well they are mastering the targeted content, and where their misconceptions might 
be developing, much less effectively address their needs. As Bloom (1968, 1971) pointed out in his 
pioneering work on mastery learning, it is possible for an expert educator in a one-to-one setting with a 
student to do this, but nearly impossible for a teacher in a traditional whole class or small group setting 
to do the same. Yet, to provide every child with an equal opportunity to succeed, we must attend to the 
variability present among learners.

Addressing learner variability requires a systematic approach that involves various key inputs in the 
child’s life. According to Bloom (1984), the four main “objects of change,” through which the child’s 
learning may be impacted, are the child, the teacher, the materials, and the environment. Adapting the 
learning experience to the individual Child means understanding the prior knowledge of the child, the 
child’s strengths, misconceptions, learning approaches and pacing needs. Though Bloom did not describe 
it this way, we would also suggest that this means designing experiences that are highly engaging and that 
can motivate the child’s interest in the topic and desire to learn it. Leveraging the design of the curriculum 
Materials means designing curriculum scopes and sequences that are explicit, granular, and able to be 
flexibly adapted to the child’s needs—giving intentional consideration to what the child knows, what 
they don’t know, and what they are most ready to learn next. Leveraging the Teacher refers to empower-
ing educators with the critical knowledge (both content area and pedagogical) needed to understand and 
deliver differentiated instruction, based on best practices a child’s unique needs and learning trajectories. 
Lastly, leveraging the Environment means recognizing that learning does not only occur in school en-
vironments, but that learning takes place in the home prior to the onset of formal schooling and has the 
potential to continue once the child has begun formal schooling, and that for parents and caregivers who 
want to help and support their children, better guidance and support is needed (Betts, 2021; Clements & 
Sarama, 2014; Sonnenschein et al., 2005). When all “objects of change” are systematically mobilized to 
meet the unique needs of the individual child, these “objects” are transformed into “agents of change” 
that can drive the acceleration and durability of learning outcomes (Betts, Thai, & Gunderia, 2021).

In the field of biological science, the term ecosystem refers to the complex relationships and inter-
actions between living things and their environment that ensures the survival (or not) of an organism 
(Merriam Webster, 2021). In this kind of ecosystem, everything in the system is impacted by every-
thing else, and adaptivity and responsiveness are key ingredients in the success of individual living 
things. Similarly, complex relationships and interactions between learners, other individuals, and their 
environment define a learner’s Learning Ecosystem. The interconnectedness and interdependency of 
learners with their environment has been described in the work of many educational theorists, including 
Vygotsky, Bloom, Bronfenbrenner, and others. Vygotsky (1986) wrote extensively about the impor-
tance of “more knowledgeable others” in the child’s learning environment (i.e., parents, older siblings, 
caregivers, etc.), as well as teachers. Bloom (1984) described relationships between the four objects 
of change (discussed previously) which, when properly leveraged, could increase the learner’s ability 
to learn. Bronfenbrenner(1986, 1992, 1999) expanded upon these learning ecosystem frameworks and 
models to describe the complexity of the relationships contained there in more detail, positioning the 



668

Personalized Mastery-Based Learning Ecosystem
﻿

child at the center of several ever-expanding layers of influence, from proximal (e.g., parents, family), 
to distal (e.g., education policy, societal views on education, etc.). As these scholars and theorists have 
pointed out, this ecosystem can be leveraged to ensure the successful learning of the child through the 
empowerment of all the stakeholders in the child’s learning sphere to work together to respond to and 
impact the child’s learning.

In this chapter, we posit that at school entry in preschool or prekindergarten, many 3- and 4-year-olds 
are more capable than conventional wisdom leads us to believe or that common frameworks for early 
learning would suggest (e.g., Headstart Early Outcomes Learning Framework, U.S. Department of Health 
and Human Services, 2015), and we ask the reader to consider the notion that conventional preschool 
through kindergarten paradigms may, in fact, actually limit the learning that young children are capable 
of when their individual learning needs in a content area are effectively addressed. The question at hand: 
how do we identify, reinforce, and build upon the knowledge, understandings, skills and capabilities 
that already exist in children, and the adults that support them, as a basis for systematic growth? In this 
chapter, we propose the design and implementation of a Personalized Mastery-Based Learning Eco-
system (PMLE) framework for early mathematics learning as a scalable solution, grounded in Bloom’s 
four objects of change and Bronfenbrenner’s ecological systems theory that addresses learner variability. 
We know that expertly designed mastery-based personalized learning systems afforded by advances in 
technology and the availability, collection, and analysis of meaningful data, have the potential to address 
learner variability and its impact on achievement at scale (e.g., Betts, Thai, Jacobs, & Li, 2020; Bang, 
Li, & Flynn, in press; Owen & Hughes, 2019; Thai, Bang, Li, 2021). Additionally, when provided with 
actionable data, research-based strategies, and resources to meet the needs of each child, educators and 
caretakers are effectively empowered to deliver personalized instruction to diverse learners from a wide 
range of backgrounds and levels of prior knowledge. We further present findings from an implementa-
tion of a portion of that PMLE framework during the 2020/2021 COVID-19 pandemic when schooling 
was significantly disrupted. The mobilization of the child’s personal learning ecosystem ensured that 
pre-kindergarteners enter kindergarten with competencies needed for later success. Results also suggest 
that innovations with PMLEs enabled by research, technology, and data can accelerate student learning 
beyond grade-level expectations and ensure equitable instruction for every child.

BACKGROUND

The Situated Learner

Learners do not learn in a vacuum, but rather are situated within unique contexts, relationships and ex-
periences that influence their individual learning needs (Bronfenbrenner, 1986, 1999, 2005). Decades 
of research in human learning and development have shown that key to effective learning and healthy 
development is a whole child approach to education, one that begins with a nurturing family environment 
and positive school climate that affirm and support the child’s varying strengths, needs, and interests as 
they engage in learning (for summaries, see Cantor, Osher, Berg, Steyer, & Rose, 2018; Osher, Cantor, 
Berg, Steyer, and Rose, 2018). Children actively construct knowledge based on these relationships, ex-
periences, and social contexts. They learn best when they are actively engaged with more knowledgeable 
others (Vygotsky, 1986) who can guide the learning of concepts and knowledge and connect them to the 
learner’s lived experiences and prior knowledge. Thus, effective teachers—whether they be parents or 
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caregivers in the home environment, professional educators in the school environment, or other significant 
people in the child’s life—do not “deliver” information to students. Rather, they are guides and mentors 
that lead or draw forth the child’s development by setting appropriately challenging tasks in the child’s 
zone of proximal development (ZPD), watching and guiding the child’s efforts, and offering feedback 
and guidance as needed to help the child progress forward (See Fig. 1; Vygotsky, 1986).

Furthermore, human relationships are catalysts for healthy development and learning (Center on 
the Developing Child, 2016). For example, the supportive and responsive interactions children have 
with caring adults who understand their needs have a huge impact on language development (Romero 
et al., 2018), can buffer potentially negative effects of childhood adversity (Shonkoff, 2012; 2011), can 
promote the development of positive attitudes and behaviors in children, build their confidence as learn-
ers, and help address the impacts of inequality (e.g., Gay, 2010). Such research and wisdom of practice 
offer insights for educators, policy makers, and product developers about how to develop such environ-
ments. The challenge is, how do we systematically leverage an ecosystems approach that can synergize 
and empower the whole “village” – the entire community of people surrounding the learner – to work 
together to support the conditions necessary for a child’s successful learning? Even more importantly, 
how do we do this on a wide scale for every child?

Optimizing Learning through Personalized Instruction

Decades of research on learning and instruction have provided us with guidelines for practice and design 
for effective learning (e.g., Clark & Mayer, 2003; Bransford, Brown, & Cocking, 2000; Bransford et al., 
2005; Bjork & Yan, 2014; Pashler et al., 2007; Hirsh-Pasek et al., 2015). Furthermore, the design of a 
curriculum, along with the pedagogy used to deliver that curriculum, can be used to optimize learning 
by building on each child’s prior knowledge and experiences, connecting those to the big ideas within 
and across disciplines, and designing tasks that are not only engaging and relevant, but are appropriately 
challenging for the child’s level of learning readiness (e.g., Appleton, Christenson, & Furlong, 2008; 
Betts, Appleton, Reschly, & Christenson, 2010; Finn & Zimmer, 2012; Vygotsky, 1986). Providing 
opportunities for children to take risks, set goals, and monitor their own work can encourage them to 
become more self-confident, independent learners (McGuire & McGuire, 2015). Taken together, these 
are necessary ingredients to challenge and support children to perform at the best of their abilities, help 
them transfer knowledge and skills to new contexts and new content areas, and achieve.

According to Vygotsky (1986), optimal learning occurs through a partnership between the learner and 
a more knowledgeable other who has the capacity to guide, lead, and help the learner progress in ways 
that would be difficult for the learner to accomplish on their own. For example, a learner of any age, 
who already knows how to play checkers, may have some difficulty independently learning the game of 
chess, even though there are some similarities (e.g., turn-taking game, same game board, some pieces 
move similarly, etc.). The learner will learn faster with a guide who is more expert at the concept or skill 
to be learned—someone who not only explains the rules of the game, but who can play together with 
the learner, scaffolding the game itself to the learner’s level while slowly ramping up the difficulty, and 
offering guidance and strategies just as the learner is ready to understand and practice applying them. 
Vygotsky identified three “zones” that learners move through as they become more competent (See Fig. 
1). Of the three, the zone of proximal development (ZPD) describes the area where the most learning 
can occur. When learning in the ZPD, the learner tackles, in partnership with a more knowledgeable 
other, tasks and learning challenges that are just beyond what the learner can do on their own. The more 
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knowledgeable other acts as a guide, stretching the understanding and skills of the learner, and challeng-
ing them while providing support, so that the learner may succeed in the most expeditious way possible. 
In this manner, the learner learns faster than if they were attempting to learn content on their own.

To help a child progress in the most efficient way possible, ensuring mastery, durability, and transfer-
ability of knowledge and skills, three things must be known about the child at any given moment: what 
the child already knows, what they do not yet know, and what they are most ready to learn next (e.g., 
Betts, 2019; Bloom, 1984; Vygotsky, 1986; Roll, Russell, & Gasevic, 2018; Sottilare, Graesser, Hu, & 
Holden, 2013). In response to that information, the child must be provided with (1) just-right activities 
that are in their ZPD, (2) a more knowledgeable other (e.g., parent, coach, tutor, teacher, intelligent tutor, 
software, etc.) who can recognize the child’s growing and developing understanding (or misunderstand-
ing) of content and provide just-in-time feedback and guidance, and (3) the ability to adapt or tailor 
the learning experiences, both individual activities as well as learning trajectories, to the child’s needs. 
Through these mechanisms, the child does not spend time learning content that is already known, but 
rather is directed to activities and experiences that are more likely to lead to faster growth. Unfortunately, 
children in school often spend a substantial amount of time exposed to content they either already know 
and have mastered which leads to boredom, or to content that is so far beyond their ability level that they 
become frustrated and confused while trying to learn. Due to pervasive learner variability, it is rare in a 
classroom that the learning content is presented at the “just right” level for all the learners. The content 
will inevitably be too easy for some, just right for others, and too difficult for still others. Consider a 
recent study conducted by Age of Learning, Inc., which found that 80% of teachers reported significant 
ranges of abilities in their math classrooms, such that the effectiveness of their teaching was negatively 
impacted (see Fig. 2; Sheehan & Rothschild, 2020). In sum, traditional classroom paradigms do not 
personalize learning sufficiently to effectively address learner variability.

Figure 1. Understanding of the zone of proximal development (Based on Zaretskii’s (2009) interpreta-
tion of Vygotsky). This figure demonstrates how the learner performs the action of acquiring experience 
(assimilating content knowledge and skills).



671

Personalized Mastery-Based Learning Ecosystem
﻿

Using Technology to Address Learner Variability

With the availability of technology and internet access, learning can happen anywhere, anytime—which 
allows for a rich collection of data, that when analyzed, can provide meaningful insights about learner 
engagement and performance. Betts and colleagues (2020) have discussed the powerful opportunity 
education stakeholders and technology developers have in leveraging advances in technology to collect 
data about, inform, and improve the education of our children. Educational systems that are designed to 
collect meaningful data about children’s learning performance and behaviors in the environment, and to 
analyze that data and offer real-time support in response to that data, are poised to disrupt and transform 
traditional place-based education paradigms that struggle to meet the individual needs of students. In-
formation systems can be designed to communicate data to schools, parents, children, and connect them 
in ways that have not previously been possible (Betts, Thai, & Gunderia, 2021). With the accumulating 
research on what works and how to help children best learn, research-based recommendations based on 
this data can provide actionable insights to teachers and caretakers in real-time, thereby enhancing their 
ability to further personalized instruction to address learner variability.

Personalized learning is not a new concept (e.g., Bloom, 1984), and has recently garnered increased 
attention through the lens of Smart Learning (Betts et al., 2020; Hoel and Mason 2018; Kinshuk et al. 
2016; Owen et al. 2019; Roberts-Mahoney et al. 2016). Kinshuk and colleagues (2016) defined Smart 
Learning as the “fusion of technology and pedagogy to create an ecosystem that involves active partici-
pation of teachers, parents and others in the learners’ learning process” (p. 562). More specifically, 
personalization in the age of Smart Learning means merging technology, curriculum, and pedagogy, 
to create synergies between the child, the materials, and significant individuals in the child’s learning 
sphere, so that the child’s immediate learning needs are known and met by all in real time.

The engine that drives this personalized (smart) learning, is an Adaptive Instructional System (AIS) 
that includes dynamic mechanisms to deliver instruction, provide corrective feedback, and adjust learn-
ing trajectories based on the learner’s performance in the moment (Sottilare, Graesser, Hu, & Holden, 
2013; Betts, 2019; Betts et al., 2020; Hoel and Mason 2018; Kinshuk et al. 2016; Owen et al. 2019; 
Roberts-Mahoney et al. 2016; Thai & Tong, 2019). For example, during any given interactive learning 
activity on a touchpad device, the AIS evaluates each tap and drag interaction by the learner and deter-
mines the degree of scaffolding needed to foster learner success, the learner’s level of understanding and 
demonstration of content and skills mastery, and so on. As learners’ competencies are assessed during 
learning activities, the system not only adjusts levels of feedback and scaffolding within the activity 

Figure 2. Findings of a survey with 600 parents and 600 teachers on their sentiments about learner 
variability and personalized learning (Sheehan & Rothschild, 2020)
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itself, it further dynamically adjusts the learning trajectory of future activities. The system accomplishes 
this by determining whether the learner should stay in the current activity for more practice on the pres-
ent learning objective, move forward to a new activity with a successive learning objective, or revisit 
a previous or adjacent activity designed to strengthen and review prior or related competencies. In this 
manner, the system creates and adapts individualized learning trajectories (i.e., pathways) through the 
learning content for each learner (Betts, 2019).

It is important to note here that the efficacy of such AISs in driving mastery and durability of learning 
depend largely on the strength and granularity of the scope and sequence of content that powers the system. 
Consider, an adaptive system can only be as strong or effective as the content upon which is it mapped. 
If the curricular content is too broad, or unclear, the efforts of an AIS in such a context will not result 
in meaningful or lasting student learning, regardless of how strong the adaptive system is. Many AISs, 
while claiming to be adaptive and personalized, may fail to achieve meaningful learning outcomes for 
students because the curriculum content that underpins the system is not sufficiently granular or properly 
sequenced. For an adaptive instructional system to effectively ensure durable and lasting learning—free 
from gaps and misconceptions—content area concepts and skills must be extensively unpacked and 
mapped (i.e., precursor, successor, and correlational relationships identified) to ensure that everything 
a learner could potentially know, understand, or be able to do is identified, addressed, and mastered. An 
effective adaptive instructional system then uses this extensive knowledge map to drive decision-making 
around dynamically adjusting learning trajectories to the individual’s needs (Betts, 2019).

In sum, the components of an effective mastery-based, personalized AIS that ensures meaningful 
outcomes for the learner must include the following:

1. 	 Baseline, or diagnostic testing to ensure that the learner’s prior knowledge is assessed so that the 
learner may be appropriately placed in their ZPD within the system and that there are successive 
iterations of the learner’s ZPD

2. 	 Clear, discrete, granular learning objectives, organized and mapped according to precursor, succes-
sor, and correlational relationships, that are sequenced into educational units of increasing difficulty 
so that learning may build without gaps

3. 	 Engagement in educational units (e.g., deliberate skills practice, calculations, data interpretation, 
reading) that are focused on achieving or demonstrating proficiency with or mastery of the target 
learning objectives

4. 	 A set minimum passing standard (e.g., criterion assessment score) for each learning activity or 
experience

5. 	 Formative assessment to gauge activity completion at a preset minimum passing standard for 
mastery

6. 	 Advancement to the next educational unit given measured achievement at or above the mastery 
standard

7. 	 Continued practice or study on an educational unit until the mastery standard is reached.

(e.g., Betts, 2019; McGaghie, 2015; Sottilare & Brawner, 2018)
Driven by the interactions between the learner and an AIS with the components listed above, the 

system moves the learner through an iterative cycle of instruction, application, and practice, promoting 
the mastery of new concepts and skills. Such personalized learning approaches have proven very prom-
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ising in ensuring that individual needs are being met and learning outcomes are achieved (e.g., Betts, 
Thai, Jacobs, & Li, 2020; Bang, Li, & Flynn, in press; Owen & Hughes, 2019; Thai, Bang, & Li, 2021).

An AIS-Powered Personalized Mastery-Based Learning Ecosystem Framework

The field of Smart Learning for our youngest learners (e.g., preschool through kindergarten) is largely 
uncharted territory, as the process of designing digital adaptive instructional systems for very young 
children is hampered by interaction design challenges (Thai et al., In Press), as well as ongoing con-
cerns about young children and screen time (Council on Communications Media, 2016; World Health 
Organization, 2019). The AIS-powered Personalized Mastery-Based Learning Ecosystem discussed 
in this chapter is designed to drive scaled impact for young children. Through the PMLE, the unique 
needs of each learner are addressed by capturing individual learner data from the adaptive instructional 
experiences and materials in the digital space to empower the adults around them with (1) critical, real 
time information about the learning of the child, (2) actionable insights and recommendations for sup-
porting, fostering, and building the child’s immediate learning, and (3) fostering relationships between 
the child, parents and caregivers, and educators to better personalize learning experiences for the child 
(Betts, Thai, & Gunderia, 2021).

The Personalized Mastery-Based Learning Ecosystem is a framework with a complex adaptive in-
structional system at its core (see Fig. 3). In the specific PMLE discussed here, the AIS at the center is 
called the Personalized Mastery-Based Learning System or PMLS (Dohring et al., 2020). The PMLS 
includes all the interactive materials that when used by the child, collect the important data to drive not 
only the interactions within the PMLS, but all the interactions throughout the entire PMLE framework.

A metaphor here is perhaps useful: the PMLS is the engine, and the PMLE is the vehicle. The en-
gine (PMLS) is what allows the vehicle (PMLE) to work and accomplish its goals. The PMLE includes 
all components that exist outside of the child-facing adaptive learning system, including all the people 
(e.g., the child, peers, teachers, parents, caregivers, etc.), and the materials that comprise or guide offline 
activities (e.g., worksheets, projects, teacher-led lessons, parent-child math talks, etc.). In other words, 
the child-facing system, or PMLS, is one component (albeit a critically large one) of the broader PMLE 
framework. The Personalized Mastery-Based Learning Ecosystem shown in Figure 3 places the learner 
at the center and describes the complex interactions among the learner, all people, processes, data, and 
networked connections in the learner’s environment (Betts, Thai, & Gunderia, 2021).

CASE STUDY: THE DESIGN AND IMPLEMENTATION OF MY 
MATH ACADEMY PMLE WITH 3- AND 4-YEAR-OLDS

The My Math Academy PMLE for Early Mathematics 
Instruction with Young Children

The My Math Academy PMLE consists of three complementary components for child learning: learn-
ing supported by adaptive algorithms using child performance data, parent-supported learning, and 
teacher-supported learning. All three components are designed to work together, leading to increases in 
and acceleration of children’s mastery of early math skills and knowledge, as well as their motivation, 
confidence, and persistence in learning math.
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The goal of My Math Academy is to help all children develop a solid foundation of number sense 
and operations using adaptive, digital, games-based interactions. At the time of this writing, the child-
facing My Math Academy app features 98 games consisting of over 300 activities, covering concepts 
and skills for pre-kindergarten through second grade. The patented Personalized Mastery Learning 
System™ underlying My Math Academy is an AIS that uses initial diagnostic assessments to measure 
each child’s prior knowledge and determine where they are best placed within the program (Dohring et 
al., 2020, 2021). As the student plays and progresses through various activities and levels in My Math 
Academy, evidence of learning on each discrete learning objective is collected and analyzed. The work 
of generating in-game learning evidence is based on the model of Evidence Centered Design (ECD), a 
canonical approach to evidence-based design in educational contexts (Mislevy, Almond, & Lucas, 2003) 
that enables rigorous translation of game interactions into competencies of learning objectives (Shute & 
Kim, 2014). The PMLS’ adaptive system uses the learner’s performance to recommend learning games 
at a specific level of difficulty, based on a predetermined knowledge map of granular learning objectives 
and their prerequisite relationships (Betts, 2019). My Math Academy games present children with a series 
of well-ordered problems and provide just-in-time feedback to support mastery (Gee, 2005). Each game 
includes up to six Learning Activities at varying difficulty levels, including an in-game mastery assess-
ment called the “boss” level. Students master boss levels to demonstrate their skills and understanding, 
indicating that they are ready to move to the next game. Within each leveled activity, performance data 
is used to provide and adjust levels of appropriate scaffolding, difficulty, and formative feedback in 
real-time to the learner. Formative assessment enables ongoing feedback cycles and customized learner 
difficulty levels (Shute & Kim, 2014); the just-in-time feedback may change behaviors that are fed into 

Figure 3. Personalized Mastery Learning Ecosystem framework (PMLE) with the Personalized Mastery 
Learning System (PMLS) at the core (Betts, Thai, & Gunderia, 2021)
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the next round of formative feedback (e.g., Ke, Shute, Clark, & Erlebacher, 2019). These methods align 
with Bloom’s theory that meaningful feedback helps children recognize what they have learned well, 
reinforces key concepts, and identifies the specific concepts upon which children need to spend more 
time. These methods also align with research in learning and memory that retrieval practice and formative 
feedback are some of the most effective ways to enhance long-term memory (e.g., Bjork, 1994; Butler, 
Karpicke, & Roediger, 2008). When such feedback is accompanied with targeted lessons designed to 
unpack and address any misunderstandings, children can effectively learn and move forward (Guskey, 
1997). For more info about My Math Academy, see Betts (2019), Owen & Hughes (2019), as well as 
Betts, Thai, Jacobs, & Li (2020).

My Math Academy Teacher-Support Features

As previously discussed, the data collected from the My Math Academy games are analyzed to provide 
actionable insights and individualized activity recommendations to the teacher as well as parents or 
caregivers. For the teacher, these recommendations may range from ideas for small group instruction to 
independent offline activities or personalized enrichment for students. Each recommendation is generated 
by the data collected about the student and targeted toward the student’s zone of proximal development. 
In this manner, the role of the PMLS in the broader PMLE is to act as a “vigilant, automated, teaching 
assistant with its eye constantly evaluating the progress of learners, while providing both detail and 
evidence of that learning to teachers” (Betts, Thai, & Gunderia, 2020, p. 37) for every child. This intel-
ligent assistant records and analyzes the learner’s interactions, and provides the adults in the learner’s 
life with a comprehensive picture of the learner’s progress, as well as what the learner is most ready to 
learn next. The teacher-reporting features provide critical information that allows for more immediate, 
tailored, data-driven instruction—regardless of how many students are in the classroom—empowering 
teachers to individualize the curriculum for all. To parents and caregivers, the PMLS provides meaningful 
information about the child’s progress in accessible language, recommendations for parent-child shared 
math activities, and even modeling of “math talks” to help parents and caregivers better understand how 
to communicate with their children about numeracy (Susperreguy & Davis-Kean, 2016).

While the My Math Academy PMLE is designed to provide comprehensive support for both teach-
ers’ instructional decision making as well as interactions between the child and parent or caregiver in 
the home environment, only the development and implementation of the teacher support features are 
discussed in the present chapter. More information about parent and caregiver support features can be 
found in Betts, Thai, & Gunderia (2020).

Information and insights are provided to teachers through the Teacher Portal, which includes a dash-
board of real-time student progress data and supplemental materials based on each student’s progress. 
The primary purpose of the dashboard is to provide teachers with critical real-time data and insights 
that can be used by the teacher to differentiate instruction according to individual student needs (see 
Figs. 4, 5). The reporting features of the dashboard enable the teacher to monitor students’ progress 
individually or as a whole class, and can also be filtered into teacher-created groups. Usage (i.e., time 
spent in game and learning activities) and progress (i.e., learning activities mastered) are displayed for 
whole class and for individual students. This snapshot view provides teachers with a quick overview 
of students’ status (e.g., inactive, in progress, etc.), as well as how they are performing on specific in-
system learning objectives. Teachers can also view data about each student’s progress against common 
standards frameworks (e.g., Common Core State Standards, state standards, etc.), understand how 
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students are performing with respect to grade-level expectations, and can access recommendations for 
grouping students at similar levels based on their in-system performance (i.e., ready to learn, need for 
review, reinforcement, or intervention). More importantly, the dashboard provides actionable insights to 
the teacher in the form of recommended topics and activities of high value for individual and/or small 
groups of students, as well as detailed guidance for how these activity recommendations may be flexibly 
integrated into classroom instruction (Fig. 5).

Developing Teacher Content Area Knowledge and Pedagogical Expertise

Teachers’ knowledge of mathematics content and pedagogy are known to be directly correlated with 
student learning gains (Baumert et al., 2010; Hill, Rowan, & Ball, 2005; Opperman, Anders, & Hachfeld, 
2016). However, many preschool and prekindergarten teachers are lacking not only the required mathemat-
ics content and pedagogical knowledge, but also the confidence and self-efficacy needed to effectively 
teach critical early mathematics competencies to their students (Copley, Clements, and Sarama, 2004). 
In many countries, preschool and prekindergarten teachers are not even required to engage in special 
training designed to develop their mathematics content knowledge, pedagogical expertise, or to increase 
teacher confidence in teaching early childhood mathematics. Teachers often rely solely on their own 
experiences in learning mathematics as a guide (Ginsberg et al., 2008; Sarama & Dibiase, 2004). Con-
sequently, it is common for many early childhood teachers to avoid the explicit teaching of mathematics, 
instead preferring to only employ informal instructional strategies for mathematics instruction, or to 
place more focus on the development of their students’ literacy knowledge and skills (Copley & Padron, 

Figure 4. Sample dashboard display of usage and progress for whole class and for individual students. 
This snapshot view provides teachers with a quick overview of students’ status (e.g., inactive, in progress), 
how they are doing on their respective Learning Objectives, overall usage across classrooms, and recom-
mended activities for individual or groups of students, and other key items that require teacher attention.
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1998, Lee & Ginsberg, 2007). In other cases, many early childhood educators place more emphasis on 
whole child pedagogy that develops social-emotional competencies, rather than the explicit teaching of 
mathematics content and skills (Jenkins et al., 2018).

Given the correlation between teachers with deep mathematics content area and pedagogical knowl-
edge and student achievement, and the fact that many teachers possess limited expertise in this area, a 
key purpose of the Teacher Portal is to build teacher mathematics knowledge and pedagogical expertise. 
To build teachers’ mathematics content area knowledge, the My Math Academy Teacher Portal provides 
explicit detail on each granular learning objective to be mastered. To support and develop teachers’ 
pedagogical knowledge, the dashboard provides explainers for each activity that describe and model 
how the concept or skill is being taught in the system, why it is being taught in a particular way, and how 
the design of the activity works to eliminate the formation of misconceptions and strengthen learners’ 
conceptual understanding. The dashboard further provides individualized recommended offline activities 
that teachers can do with a single student or group of students, based on their immediate needs as assessed 
in real-time by the adaptive system. These recommendations provide further explanation designed to not 
just help the teacher deliver differentiated and targeted instruction, but to additionally help the teacher 
understand why the instruction should be delivered in the suggested manner. Because the system provides 

Figure 5. Sample view of the teacher dashboard that provides details about specific lessons a student is 
current working on, and recommended offline activities that teachers can do with the student, aligned 
with what that student is currently learning in My Math Academy learning games.
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real-time, specific, detailed information about the immediate needs of each student in the classroom, the 
Teacher Portal—by design—increases teacher capacity to meet the individual needs of every student in 
the classroom, simultaneously and dynamically. As a result, students who need remediation, reinforce-
ment, or enrichment, receive it just as such instruction is likely to make the most impact. Furthermore, 
students who are capable of moving forward more quickly are not held back to established grade level 
expectations that may be inadvertently limiting their achievement. Rather, they too receive individual-
ized opportunities for acceleration that keep them in their respective zones of proximal development.

Through the information, recommendations, supports, and scaffolds that these dashboard features 
provide, teachers are also positioned as “learners in the system,” professionally developing and growing 
their expertise as they work with their students. In sum, the PMLE framework not only meets the indi-
vidual learning needs of students, it also helps teachers become more expert at teaching early childhood 
mathematics. This increase in teacher expertise has the potential to benefit all children in the classroom, 
as well as students the teacher will teach in the future.

The Implementation Pilot of My Math Academy PMLE with 
Harlingen Consolidated Independent School District, Texas

The purpose of this pilot was to evaluate the extent to which the My Math Academy PMLE can empower 
and accelerate early math instruction for children ages 3 and 4 from low SES families in real learning 
contexts. The child-facing system and teacher support components were the focus of this pilot. Future 
research will focus on testing the parent/caregiver-facing component and the ecosystem as a whole.

Over the course of the 2020–2021 school year, many of the millions of children who were learning 
remotely due to the COVID-19 pandemic gradually returned to in-person schooling. In anticipation of 
the extraordinary challenges that characterized the 2020–2021 school year, many educators and admin-
istrators across thousands of districts in the United States searched for effective educational resources 
to support learning and teaching. One such district was the Harlingen Consolidated Independent School 
District (HCISD) in Texas. Harlingen is a city (population ~86,000) where 82% of the population are 
identified as Hispanic or Latino, and about 33% of the families have income below the poverty level 
(US Census Bureau, 2019). About 80% of the students in the district are eligible to participate in the 
free and reduced-price meal program (McFarland et al., 2019), and in fall of 2020, 61% of children in 
pre-K were classified as “at-risk,” meaning that they did not perform satisfactorily on a readiness test 
or an assessment administered during the school year.

Given the crucial role of early mathematics skills and knowledge in later academic success (Watts, 
Duncan, Clements, & Sarama, 2018) the early childhood education administrators in Harlingen specifi-
cally sought resources that could address the following needs: 1) inspire a love of math in their youngest 
learners (ages 3–4), 2) equitably strengthen these young children’s foundational math knowledge, and 3) 
equip educators with insights about each learner’s strengths and weaknesses as well as tools to provide 
personalized instruction for each student. They identified Age of Learning’s My Math Academy as the 
resource that could address their needs, as it was found to be effective in helping young learners (Thai, 
Bang, & Li, 2021; Bang, Li, & Flynn, in press; “Age of Learning”, 2022). Harlingen piloted My Math 
Academy in 77 early childhood education classrooms during the 2020–2021 school year. Like many 
school districts across the country, Harlingen began the school year with all students learning remotely, 
and teachers worked with individual students’ families to ensure that each child could log in to the 
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program from home. By the end of the school year, approximately 67% of the students had returned to 
in-person instruction while 30% continued in remote schooling.

Nearly 1000 pre-K students used My Math Academy as supplemental mathematics instruction during 
this pilot. A subgroup of 129 three-year-old children were enrolled in a program partially funded by the 
U.S. Department of Health and Human Services’ Head Start program (pre-K3). The remaining (847) 
children were 4-year-olds in regular prekindergarten program (pre-K4). While all pre-K students had 
access to the program for the entire school year, they began using the program at different times during 
the school year, with 8% starting in September and the majority starting between October and December 
of 2020. Teachers were asked to encourage each student to use My Math Academy for 45 minutes per 
week over multiple days (e.g., 15 minutes per day for three days a week). Each student had access to a 
district-issued iPad that had My Math Academy installed, and students used their individual accounts 
to log in, either at school or at home.

Prior to the start of implementation, teachers received a two-hour live virtual training on My Math 
Academy, which included video introductions (3–9 minutes each) of how My Math Academy works, 
the students’ first-time user experience, and an overview of the Teacher Portal (student account manage-
ment, exploring Dashboards, and how to get started). In between the videos, teachers participated in short 
virtual breakout rooms or answered reflection questions. During the implementation period in Novem-
ber, teachers participated in another one-hour virtual webinar to gain a more in-depth understanding of 
students’ initial placement into the My Math Academy system, develop their skills in making effective 
use of the Teacher Portal, and gain facility in interpreting the Student Stats Dashboard in the Teacher 
Portal. Teachers also gained access to resources outlining how My Math Academy correlates with the 
Texas Essential Knowledge and Skills (TEKS) curriculum standards used by the district.

General Results

Learner Variability in Prior Knowledge

Children differed greatly in their prior knowledge at the onset of the school year. Consider a single class-
room of 24 4-year-olds at HCISD in which students were of similar socio-economic background (Fig. 6). 
Their progress in mathematics – as measured by My Math Academy – varied widely across four grade 
levels from preschool to second grade. This learner variability poses a huge challenge for any teacher 
who wishes to meet each child’s needs. To fully support each child’s academic progress, teachers must 
first understand the ways in which learners vary. This challenge is exacerbated by the fact that the depth 
and breadth of this information about what children know and do not know at 3 and 4 years of age is 
not usually available. Furthermore, when assessed, learners are typically measured against grade level 
standards in school settings, in which a fixed range of knowledge/skills that children should acquire at 
each age and grade is assumed.

Across the pre-K cohort at HCISD, in-system measures showed that 26% of students started the My 
Math Academy program having already mastered all pre-K skills and were already working at the kin-
dergarten or first grade level. Of the remaining 74% of students who had not, 54% had none or very few 
foundational math skills, 13% had some pre-K skills, and 7% had mastered nearly all pre-K skills enabled 
these observable, verifiable data obtained by My Math Academy about what students know and can do 
freed teachers from subjective impressions about student behaviors and enable them to fully understand 
each child’s needs and to leverage each child’s strengths to support their learning without grade level or 
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curriculum limitations. As we built teachers’ capacity to effectively support learner variability in their 
classrooms, it is crucial that we supply them with reliable, granular measures to understand each child’s 

learning progress, including what each could do, was ready to learn, and was making current progress 
with, as well best practices and strategies specifically designed to address each child’s strengths and 
weaknesses.

Learning Gains Defy Expectations

Toward the end of the school year, some children transitioned to in-person schooling while others re-
mained learning from home. Children who were learning from home spent significantly less time with 
My Math Academy, which expectedly impacted their ability to progress in the program. On average, 
pre-K students used My Math Academy for 30.09 weeks (SD = 7.18) over the course of the 2020–2021 
school year. They spent on average 15.18 hours (SD = 11.19) and completed an average of 201.02 
Learning Activities (SD = 142.54).

Results showed that with usage, pre-K3 and pre-K4 students demonstrated substantial increases in 
their math knowledge over the course of the school year during which they used My Math Academy. 

Figure 6. Example of learner variability in prior knowledge and progress made by students in a pre-K4 
classroom at the end of the school year. Skills students came in knowing – as measured by the initial 
placement diagnostic assessments embedded within My Math Academy – are represented in yellow bars 
(Prior Knowledge). Skills students acquired – as measured by embedded assessments within My Math 
Academy – are represented in green (Mastered). Skills that students were currently working on are in 
blue (In Progress), and those that students may be struggling with (i.e., students fail back to an earlier 
skill in the program) are in orange.
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Most notably, many children demonstrated gains beyond their grade level. In the classroom illustrated 
in Figure 7, by the end of the school year, two pre-K4 students in this example class completed or nearly 
completed the second-grade content, of which the benchmark skill was to perform three-digit subtraction 
with regrouping using the standard algorithm. Additionally, half of these students had started on first 
grade content, and nearly all were able to complete the pre-K content.

Across the district, data from My Math Academy indicated that pre-K3 and pre-K4 students tripled 
and doubled their skills, respectively. Students made significant progress on their grade-level standards 
as well as on standards beyond their assigned grade levels. By the end of the school year, 71% of pre-K4 
students had demonstrated mastery beyond pre-K skills. Most notably, 51% of them were working on 
content at the kindergarten level, and 20% were on first or second grade level (17% at first grade and 
3% at second grade levels). For the pre-K3 students, 37% had demonstrated mastery on all pre-K skills, 
with 34% of them working on kindergarten content and 3% were working on first grade content. This 
placed an average pre-K4 student at the middle of K level and an average pre-K3 student at the begin-
ning of K level on number sense and operations, suggesting that the pre-K students were advancing 
nearly a year beyond their grade level by the end of the school year. It is worth pointing out that these 
tremendous gains were seen in a year when many students across the United States were falling a year 
or more behind grade level expectations (Dorn, Hancock, Sarakatsannis, & Viruleg, 2020; Kuhfeld et 
al., 2020; Meckler & Natanson, 2020; Renaissance Learning, 2020).

These gains seen in My Math Academy aligned with district measures of achievement. During the 
school year, the district administered the CIRCLE (Center for Improving the Readiness of Children for 
Learning and Education) Progress Monitoring assessment three times to pre-K students (beginning, 
middle, and end of school year). The CIRCLE assessment is a screening and progress monitoring tool 
with well-established reliability and validity when used with 3- and 4-year-olds in that it relates to other 
tests and predicts child outcomes (Landry, Assel, Williams, Zucker, Swank, & Gunnewig, 2014; As-
sel et al., 2020). Results from the CIRCLE assessment confirmed that students who regularly used My 
Math Academy were highly likely to be “on track” for their grade level in math at the end of the school 
year. More specifically, 89% of students who used My Math Academy (and 98% of students who used 
it regularly, who averaged 40 minutes per week and mastered at least 15 skills in My Math Academy) 
were on track on overall math skills at the end of the school year, as compared to 77% of students who 
did not use My Math Academy who were considered to be “on track.”

Encouragingly, these learning gains persisted over the summer. During fall of 2021, the pre-K students 
(then kindergarteners) took the NWEA MAP Growth assessment, a validated adaptive interim assess-
ment that measures whether a student performs on, above, or below grade level in K-12 subjects against 
the national average (NWEA, 2020). This was the first time the district administered this assessment. 
Results showed that the now kindergarteners performed above the national average in mathematics. 49% 
of them scored above the 60th percentile; 27% scoring above 80th percentile. They also have the greatest 
percentage of students performing above the national average compared to any other grade levels within 
the district, who did not use My Math Academy. Contrast this with fall 2020, where 62% of the same 
children (then in PreK) were classified as “at-risk.”

This result is remarkable considering that the COVID-19 pandemic has generally led to decline in 
scores elsewhere, especially for disadvantaged students (e.g., Kuhfeld et al., 2020). Considering also 
that disadvantaged children are at risk of entering kindergarten behind their more advantaged peers, 
and that this learning opportunity gap has been consistently observed to persist through later schooling 
and into adulthood (e.g., Duncan et al., 2007), results from HCISD suggest that when students’ learning 
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needs are met, disadvantaged children can defy expectations and succeed—not only in meeting, but in 
transcending established grade-level expectations.

Teacher Feedback on Implementation

Survey and interview data collected from teachers confirmed the learning gains shown by in-game prog-
ress. Teachers reported that students learned a great deal from My Math Academy, and their feedback 
remarked on how often we underestimate children’s ability:

When they start off in pre-K, we don’t know what they can and cannot do, and we are so set in our own 
ways in teaching, like, this is what they need to know. Yet with your program [My Math Academy], we 
could see seven students [at my school] who excelled higher than we could ever have imagined. And we 
would not have known without this program.

Teachers also found the data and resources in My Math Academy empowering, enabling them to 
gain a deeper understanding of individual students’ math progress and to effectively tailor instruction 
to individual students:

The data is so useful. I can level my students right, in tiers. I can see the lessons that they are doing 
or see what lessons they’re struggling [with]. I would write down those lessons and try to get them in 
interventions, one-on-one practice with them. And I really liked the examples, like “oh, use counters to 
help students . . .” And it works, so definitely, it did help me differentiate my instruction with my students.

This feedback emphasized that differentiated instruction must be built on what students already know, 
which serves as the foundation upon which to increase their math knowledge, each at their own pace. 
To do so, teachers must understand what each student is capable of and have the resources needed to 
provide students with individualized support. Because the resources provided by My Math Academy 
empowered teachers to address learner variability, they found that the program provided students an 
equal chance of experiencing academic success in a school year disrupted by the pandemic (see survey 
results in Figure 7 below).

They described how the My Math Academy program helped them close the gaps exacerbated by the 
COVID-19 pandemic:

The app was great because it allowed students to move forward at their own level, so my [higher level] 
students were able to move forward and allowed my slower students to really practice their skills without 
being rushed to the next skill.

What I like about My Math Academy is that it builds on their knowledge, and it goes up from what they 
know as an individual… It works for any kid. [As] long as they’re playing it on a daily basis, you can 
see the growth.

For such a program to be effective, the program must also be able to support educators in creating 
learning environments that promote the well-being of children and fosters students’ positive attitudes 
toward learning. Over 90% of teachers reported that My Math Academy had a “positive” or “very positive” 
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impact on students’ attitudes and behaviors that facilitate their participation and enhance their chances of 
academic success (DiPerna & Elliott, 2002). They reported that My Math Academy increased students’ 
interest, enjoyment, and self-confidence in learning math, and that it improved students’ engagement in 
learning math and their focus and attention during math lessons. Beyond targeting each child’s unique 
needs, teachers mentioned that My Math Academy’s design features, including how math is situated in 
relatable scenarios with lovable characters, helped children remain engaged with the learning process. 
For example, one remarked:

My Math Academy got some of my reluctant math learners to be excited about practicing math.

Key Findings

First, teachers found the data and resources in My Math Academy empowering, enabling them to tailor 
instruction and gain a deeper understanding of individual students’ math progress. Second, teachers in-
dicated that My Math Academy is a tool that enables them to equitably provide every child with an equal 
chance of success. Third, teachers reported that My Math Academy had a significant positive impact on 
students’ interest, enjoyment, and confidence in learning math. In addition, teachers and administrators 
were surprised to see so many of their students not only on track for their grade level, but to observe a 
number of students greatly surpass conventional expectations for this age group. Carmen Alvarez, the 
Director of Early Childhood Education for Harlingen explained,

The teachers were surprised by what the children were able to do. The skill that really comes to mind is 
the skill of addition and subtraction with regrouping. That’s usually a skill that’s not introduced until 
late second grade, early third grade, and our pre-k students, about 20 of them, were able to do that skill. 
The teachers were very surprised. I think sometimes we limit what our children can do, but My Math 
Academy is really opening their eyes to the potential of the math skills that some children [have]… but 

Figure 7. Teacher ratings in response to “Please select one answer choice per statement that best rep-
resents you and your students?” on a scale from 0-3 (0 = strongly agree, 1 = agree, 2 = disagree, 3 = 
strongly disagree). N = 51.
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we had no way of knowing that until we started looking at the data that My Math Academy provided for 
us. (Alvarez et al., 2021, June 17)

Both the data and the anecdotal evidence from Administrators and teachers showed when all of the 
children’s individual mathematics learning needs were met, remarkable outcomes could be achieved. 
Harlingen CISD now has a new problem: preparing for incoming kindergarteners that are either on track 
or ahead of grade level expectations—a problem they have not encountered before. In a district where 
many students are considered “at risk,” teachers spend much of the kindergarten year remediating for 
concepts and skills that children need, but do not have. Not so for the kindergarten class of 2021-22. 
According to Alvarez, “this is going to be a different challenge for us this next school year. I know we 
hear a lot about the academic slide, but that’s obviously not happening here at Harlingen. Kindergarten 
math for next year is going to look totally different because the children are coming with a very different 
skillset – not only with the skills, but what they can do with their math” (Alvarez et al., 2021, June 17). 
Based on this success, the Harlingen school district now has 5,200 students and 300 teachers using My 
Math Academy and the PMLE framework (Alvarez, 2022).

The idea that conventional early childhood education paradigms may be limiting the achievement 
of our youngest learners is a new one. More often, concerns (understandably) have largely focused on 
children who enter early school without the critical prior knowledge needed to take advantage of the 
academic learning that takes place in school. Additionally, concerns over children who struggle to mas-
ter critical core competencies in these early years have centered on what schools and teachers should 
or could be doing to address this problem. As a result, classroom instruction may focus more on these 
emerging math skills, even if not all students require or benefit from it. Yet, the implementation of My 
Math Academy in Harlingen shows that even children designated as “at risk” were capable of defying 
conventional expectations for their age and developmental level. All children deserve to have their needs 
met – whether their needs arise from gaps in their foundation, or the need for more exposure to core 
concepts, more time to learn, more practice to develop fluency, or more acceleration. By the end of 
the school year, 20% of four-year-olds and 34% of three-year-olds in Harlingen were already at least a 
grade level beyond their assigned grade level in number sense and operations, defying the grade-level 
expectations we as educators and policy makers have set. This suggests that we may be under-valuing 
the potential of our students.

SUMMARY AND CONCLUSION

Given that learner variability exists and has intensified in light of the recent COVID-19 pandemic, ac-
cepting it as a normal and predictable part of teaching means that we must proactively plan for and even 
celebrate variations in children. As we look forward, we need to work toward solutions to unlock the 
potential of every child and ensure that each child achieves proficiency in basic skills. This means access 
to high-quality research-based and data-informed instructional systems, universal access to devices and 
bandwidth to access such systems, and importantly, the development and support for ecosystems that 
build capacity among parents before formal education and for teachers after that. Results from the pilot 
of the My Math Academy PMLE at Harlingen CISD has shown us that when provided with personalized 
instruction that meets the immediate needs of individual learners, even the youngest students are able to 
exceed conventional grade-level expectations. We must learn to think differently about how to educate 
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our children, meet their needs, and challenge our own age-based and grade-based assumptions about 
what children are capable of when their needs are fully met—before and after formal schooling begins.

As we develop greater understanding of what children are capable of in the earliest grades, it will 
also be critical to understand the ways in which digital programs can provide learning solutions at scale. 
The PMLE framework has shown incredible promise in meeting the challenge of learner variability. We 
know that our education system needs to foster a positive school climate and supportive instruction and 
services that provides settings designed to foster strong relationships, family engagement, and meaningful 
instruction that targets the needs of the whole child. In this chapter, we describe an approach that uses 
research-based and data-informed practices to create an ecosystem in which the child is at the center. A 
well-designed adaptive instructional system aimed at collecting meaningful data, dynamically adapting 
personalized learning trajectories, scaffolding in real-time to meet individual needs, with well-designed 
reporting and recommendation systems for teachers, driven by student performance and behavioral data, 
can empower learning growth and positive connections to mathematics in children. Teacher resources 
that provide real-time data about the learner and actionable insights that can be delivered to the teacher 
in the moment, just when the child needs it, as well as help grow the teachers’ knowledge and skills, 
building teachers’ awareness of key misconceptions, and how to address them. This approach leverages 
the potential of big data and related advances in machine learning and learning analytics to identify 
trends and patterns in children’s learning and behavior to help us better understand how kids learn math, 
what learning trajectories promote the most growth, and at what developmental ages children are most 
capable of learning various content.

This chapter has discussed a framework for a PMLE with My Math Academy and the implementation 
of part of the ecosystem (the student and teacher components). Other models should also be considered 
and evaluated, such as the usage of edtech to increase parents and caretakers’ capacity to support the 
child prior to the onset of formal schooling, especially in low-SES and non-English speaking environ-
ments, non-school childcare settings, or in rural areas where formal preschool is not available (i.e., 
Shamir et al., 2019). Family resource portals can deliver real-time data about the child, provide parents 
with tailored recommended activities to do with the child, foster positive associations with math through 
meaningful interactions between kids and parents/caregivers. Such home-based interactions are an es-
sential component of the PMLE framework, as research has shown that the home learning environment 
and parental engagement are critical for children’s development of early math skills (Epstein & Sanders, 
2002; Fantuzzo, McWayne, Perry, & Childs 2004 ; Jeynes, 2012; 2017) and for children’s positive con-
nections to math and self-confidence around math (e.g., Garcia & Weiss, 2017). Future research will 
need to include the home environment and the synergies among all components within the ecosystem 
(i.e., including home-school connection, offline interactions, etc.).

Investing in early childhood is more important than ever before (Heckman, 2012; Omidyar Network, 
2019; also see Chapters 1-3 of this volume). As research has shown, early math success predicts not only 
later academic achievement, but outcomes well into adulthood, including the likelihood of graduating 
from high school and college completion (Duncan et al., 2007; Duncan & Magnuson, 2011, 2013, etc.). 
When we ensure children  succeeds early, we positively change the trajectory of their entire lives. When 
we harness the power of science, technology, and design for scale, we can pave the way for innovative 
early childhood solutions that positively impact a new generation of early learners.
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KEY TERMS AND DEFINITIONS

Adaptive Instructional Systems: A class of software that is used to optimize instruction for a learner 
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Learner Variability: The individual variations that occur among learners due to the naturally dif-
ferentiated development of young children, their family background, the environment they grow up in, 
and the experiences they have. These variations impact how children learn and acquire skills.

Mastery Learning: An approach to instruction proposed by Benjamin Bloom (1984) that requires 
students to acquire knowledge and demonstrate mastery of a skill before moving on to successive ones, 
and that delivers instruction through appropriately individualized scaffolds, feedback, and enrichments.

Objects of Change: A term coined by Benjamin Bloom (1984) in his seminal paper referring to 
the four factors that when modified or enhanced would have the greatest potential to increase student 
achievement. The four objects of change are the learner, the instructional materials, the teacher quality 
and methodology, and the learner’s environment (at home, school, and socially).

Personalized Learning: An approach to instruction that aims to customize instruction for each student 
based on each student’s unique skills, abilities, preferences, background, and experiences.

Personalized Mastery-Based Learning Ecosystem (PMLE): The PMLS plus all components 
that exist outside of the PMLS, including all the people (e.g., the learner, peers, teachers, parents, and 
caregivers, etc.) and offline materials (e.g., worksheets, projects, teacher-led lessons, parent-child in-
teractive content, etc.). The PMLE encompasses and is driven by and informs the PMLS (Betts, Thai, 
& Gunderia, 2021).

Personalized Mastery-Based Learning System (PMLS): An adaptive instructional system developed 
by Age of Learning that includes the instructional design, data collection, analytics, and information 
delivery mechanisms (i.e., through dashboards) to assess in real-time what the learner already knows, 
doesn’t know, and most ready to learn next, and deliver appropriate instruction and scaffolding at a 
granular skill level (Dohring et al., 2020, 2021).


