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ABSTRACT

Many real-world problems can be transformed into multimodal functional optimization. Each of 
these problems may include several globally optimal solutions, rendering the solution of the problem 
progressively more difficult. In the study, the authors present a crowding artificial bee colony, called 
IABC, which exploits the concepts of crowding and explores search solutions. A crowding approach 
formed in niches is used to make it capable of tracking and maintaining multiple optima, resulting 
in good convergence of the search space with a better chance of locating multiple optima. Two new 
solution search mechanisms are proposed to increase population diversity and explore new search 
spaces. Experiments were carried out on 14 benchmark functions selected from previous literature. 
The results of the experiments show that the method is both effective and efficient. In terms of the 
quality of the success rate, the average number of optima found, and the maximum peak ratio, IABC 
performs better, or at least comparably, to other cutting-edge approaches.
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INTRODUCTION

Evolutionary algorithms have shown to be effective and robust optimization strategies in diverse 
fields (Goldberg and Richardson, 1987; Clerc and Kennedy, 2002; Huang et al., 2019; Meng et al., 
2021; Zaher et al., 2020; Gu et al., 2021). The bulk of EAs are built with the goal of convergent to 
a single global optimum. On the other hand, many issue cases in real-world optimization problems 
consist of many global and/or local minima. If the problem has many global optima or local optima 
which are good alternatives to the global optima, the evolutionary algorithm should identify all of 
the global optima or some local optima. Various types of classical techniques have been developed 
in the last decade to improve EAs’ ability to solve multimodal optimization problems, for instance 
clearing (Pétrowski, 1996), crowding (Pétrowski, 1996), fitness sharing (Pétrowski, 1996), speciation 
(Pétrowski, 1996), clustering (Yin and Germay, 1993), and restricted tournament selection (Harik et 
al., 1995; Stoean et al., 2010).
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The artificial bee colony algorithm (Karaboga and Basturk, 2008), known as ABC, is a population-
based heuristic evolutionary algorithm inspired by the honeybee swarm’s intelligent foraging 
behaviour. According to ABC, a honey bee colony contains three types of bees: employed bee, 
onlooker bees, and scout bees. Employed bees are in charge of utilizing the nectar sources detected 
before and informing viewers inside the hive about their discoveries. In the hive, onlooker bees wait 
and utilize the information provided by the employed bee colony to select a food source. Scout bees 
choose one of the least active solutions and replace it with a randomly generated new solution. It 
is referred to (Karaboga and Basturk, 2008) for the specifics of the artificial bee colony. The ABC 
algorithm has been applied to a variety of real-world problems since its inception, including chaotic 
system parameter estimation (Gu et al., 2017), reconfigurable antenna array (Kala and Sundari, 2021), 
leaf-constrained minimum spanning tree problem (Akay et al., 2021), digital IIR filters (Karaboga, 
2009; Agrawal et al., 2021), and job shop scheduling (Alzaqebah et al., 2021). Meanwhile, the ABC 
algorithm has been extended to address multi-objective, constrained optimization problem, and other 
kinds problems in various fields (Bansal et al., 2013).

In our study, we present IABC, a novel multimodal optimization algorithm that combines the 
crowding model with an improved artificial bee colony. First, a crowding scheme (the crowding 
factor set is equal to the population size) is used to extend the standard ABC algorithm to allow the 
artificial bee colony, tackling multimodal optimization. Second, to improve exploitation ability, an 
exploration search approach based on two novel search schemes is developed to increase population 
diversity in IABC and explore new search spaces. Experiments were carried out on 14 benchmark 
functions selected based on prior researches. The results of our experiments demonstrate that our 
method is both effective and efficient. In terms of the quality of the success rate, the average number 
of optima identified, success performance, and the maximum peak ratio, IABC performs better, or 
at least comparable, to other state-of-the-art approaches.

The next sections of this paper are organized as follows: in section 2, we will go through 
the ABC in great depth. The improved ABC is proposed in section 3. Benchmark problems and 
experimental results are included in section 4. In the conclusion, we conclude this article and make 
some recommendations for further research.

ARTIFICIAL BEE COLONY

The flow chart for the artificial bee colony algorithm is illustrated in Fig. 1. It is a population-based 
numeric optimization initially presented by Karaboga (Karaboga and Basturk, 2008) inspired by the 
foraging behavior of bee swarms. The ABC algorithm model specifies three primary forms of bees in 
this algorithm: employed bees, onlooker bees, and scout bees. Employed bees have opted to exploit 
the nectar sources discovered previously, and they share their findings with onlookers inside the hive. 
The onlookers will then select whether or not to proceed to the food source. More onlooker bees 
might be attracted by good nectar sources. The onlookers may then select one of the food sources in 
the immediate region of the food source. Scout bees can generate new individuals by conducting a 
random search (Karaboga and Basturk, 2008).

Initial Population
In evolutionary algorithms, the initial population is critical and may be generated in a variety 
of methods. In this paper, each individual is produced at random. The initial population of 
solutions is populated with an SN number of randomly generated D dimensions. Let SN 
symbolize the number of food sources equal to the number of employed bees or onlooker bees, 
and letX x x x

i i i iD
= { , , }

,1 2
�  represent the population’s ith food source. The following is how 

each food source is created:
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x LB UB LB rand
ij j j j
= + − ×( ) 	 (1)

where i SN∈ { , , , }1 2� , j D∈ { , , , }1 2�  are randomly chosen indexes, rand  is a uniform random 
number in the range [0,1], and LB

j
 and UB

j
 are minimum and maximum bounds for the dimension 

j respectively.

Employed Bees
In this stage, the algorithm makes a random modification to the original food supply in order to come 
up with a new strategy. Equ.(2) is used to create the employed bees, as well as knowledge of the 
population of bees. As follows, each employed bee x

ij
 generates a new food source v

ij
 in the vicinity 

of its current position:

v x x x
ij ij ij ij kj
= + −φ ( ) 	 (2)

k rand SN= +int( * ) 1 	

where φ
ij

rand= − ×( . )0 5 2  is a uniformly distributed real random number within the range [-1,1], 
i SN∈ { , , , }1 2� , k SN∈ { , , , }1 2�  and k i≠ , and j n∈ { , , , }1 2�  are randomly chosen indexes. 
Once v

i
 is obtained, it will be evaluated and compared to the x

i
. For the minimization problem, if 

the objective fitness of v
i
 is smaller than the fitness of x

i
, v
i
 is accepted as a new basic solution. 

Otherwise the algorithm will keep working on x
i
.

Onlooker Bees
When all employed bees have completed this procedure, an onlooker bee can gather food source 
information from all employed bees and pick a food source based on the probability value associated 
with the food source, using the following expression:

p
fit

fiti
i

best

= +0 9 0 1. * . 	 (3)

where fitness
i
 is the fitness value of the solution i as determined by its employed bee. fit

best
 is the 

best solution among the present options in terms of quality. Obviously, as the maximum value of the 
food source declines, so does the likelihood of an onlooker bee choosing that food source. The 
onlooker bee then creates a new source using equation (3). The new source will be assessed and 
compared to the current major food source. It will be approved if the replacement source has a higher 
nectar amount than the primary food solution.

Scout Bees
Sources are examined to see whether they should be abandoned. If the food sources do not improve 
after a certain number of “limit” trails, the food sources will be abandoned. Its corresponding employed 
bee will become a scout and then look for a food source in the following order:

x LB UB LB rand
ij j j j
= + − ×( ) 	 (4)



Journal of Organizational and End User Computing
Volume 34 • Issue 3

4

where rand is a uniform random number in the range [0, 1].
After the new source is produced, the ABC algorithm will be iterated again. The entire process 

is repeated until the termination condition is satisfied.
Main steps of the ABC algorithm simulating these behaviors are listed below:

Figure 1. Flowchart of the ABC algorithm
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IMPROVED ARTIFICIAL BEE COLONY WITH CROWDING METHOD: IABC

Crowding
Standard crowding proposed by De Jong (De Jong, 1975) keeps diversity resulting to make 
a good coverage within the search space. It has been applied in a variety of fields (Wang et 
al., 2021a; 2012b). This action gives a better chance of locating multiple optima. To quickly 
reintroduce the offspring to the population, we choose C individuals at random from the 
population, CF (crowding factor) individuals from the parents, and then compare the present 
person to the nearest individual P. If P’s objective function value is greater than C’s, C should 
be used instead of P; otherwise, set P. This process continues until the next generation begins. 
Standard crowding produces a lot of selection error when CF is too small. The problem may then 
be solved by putting C equal to the population size. The Crowding method can be calculated 
using the following equation:

Two Improved Solution Search Schemes
In this part, we present two novel search mechanisms based on differential evolution: 
ABC/rand1/1 and ABC/rand2/1. (De Jong, 1975) initially described differential evolution 
as a stochastic search algorithm. DE uses evolutionary operators such as selection 
recombination, and mutation operators, much as other evolutionary algorithms, including 
genetic algorithms. DE, unlike other algorithms, uses current population distance and 
direction information to steer the search process. DE is based on a system for generating 
trial vectors based on the manipulation of a target vector and a difference vector. Depending 
on the target vector chosen and the amount of difference vectors employed, different kinds 
of strategies of DE have been presented. The following is a commonly used mutation 
approach in the literature:

DE/rand/1:

v x F x x
i a b c
= + −( ) 	 (5)

where a, b, and c are mutually distinct random integer indices chosen from the range 
{1,…, SN}. F is a positive real number that represents the scaling factor or amplification 
factor. DE/rand/1 may successfully sustain population diversity, and the solution will 
difficultly trap in the search space to some locally optimum solution. Motivated by DE 
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and based on the ABC algorithm’s property, we propose the following two novel solution 
search mechanisms:

“ABC/rand1/1” v x x x
ij aj ij ij bj
= + −φ ( ) 	

“ABC/rand2/1” v x x x
ij ij ij aj bj
= + −φ ( ) 	 (6)

where a b SN, { , , }∈ 1�  are randomly chosen integers, and a b i≠ ≠ . The chosen individual must 
be ensured that none of the vectors is equal to (6).

Based on two new search schemes, a new exploration search technique is also proposed and 
incorporate into the onlookers’ part. The step of the exploration search technique can be presented 
as follow:

Improved Artificial Bee Colony Algorithm With Crowding Method
We present a crowding artificial bee colony to conduct multimodal function optimization based on 
crowding and exploratory search strategies. The core concept behind Crowding ABC is to establish 
niches using a typical crowding approach and to preserve population variety by applying exploration 
search strategies. The parent that produces the offspring is replaced in IABC. The offspring’s fitness 
will be compared to that of the closest relative in the existing population. Since standard ABC is a 
real-value algorithm, the similarity measure is Euclidean distance between two solutions. The offspring 
will therefore only take the position of the most comparable individual if it is more fit. Finally, the 
greedy selection scheme ensures that the best fond solution is kept in the end. The algorithm is 
described as follows:
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EXPERIMENTAL RESULTS AND DISCUSSION

The performance of IABC, proposed ABC modifications, and eight niching algorithms have been 
applied it to 14 standards benchmark functions (Ackley, 1987; Clerc, 1999; Deb, 1989; Li et al., 2002; 
Michalewicz and Michalewicz, 1996; Shir et al., 2010). These functions have been widely used in 
the literature. Since we do not make any modification of these functions, they are given in Table 1. 
The following eight algorithms were used as compared algorithm:

•	 CDE: The original crowding differential evolution (Thomsen, 2004).
•	 FERPSO: Fitness-Euclidean distance ratio PSO (Li, 2007).
•	 r2pso (Li, 2009): A PSO with a ring topology, where each member interacts with only its closest 

neighbor to its right.
•	 r2pso-lhc (Li, 2009): “The same as r2pso,but with no overlapping neighborhoods, hence acting 

as multiple local hill climbers, more suitable for finding global as well as local optima”.
•	 r3pso (Li, 2009): “A PSO with a ring topology, each member interacts with its immediate 

member on its left to right”.
•	 r3pso-lhc (Li, 2009): “r3pso with no overlapping neighborhoods, Basically multiple PSOs search 

in parallel, like local hill climbers. This variant is more appropriate if the goal of the optimization 
is to find global optima as well as local optima.”

•	 CABC: The artificial bee colony with original search method.
•	 IABC: The artificial bee colony with new search method.

The population size, maximum number of function evaluations, and level accuracy were all set 
to be the IABC and CABC in this experiment, and the details are shown in Table 2. The population 
size for other comparable algorithms is 50. “limit” has a value of 100.

Though the population size of CABC and IABC is half of other algorithm, CABC and IABC 
have two parts: employed bee and onlooker bee. Therefore, all population size is equal to the other 
algorithms. All algorithms have the same Max_FES which is listed in Table 2. 25 independent runs 
are conducted for all algorithms.

All algorithms are coded in MATLAB 7.0, and experiments are made on Intel Pentium 3.0 GHz 
Processor with 1.0 GB of memory.

Four performance measure criteria are chosen from the literature (Li, 2007, 2009; Thomsen, 
2004) to evaluate the performance of the algorithms. These criteria are described as follows:

•	 Success rate
•	 Average number of optima found
•	 Success performance
•	 MPR (the maximum peak ratio statistic)

Success Rate
One of the most essential factors for evaluating the effectiveness of different niching algorithms is the 
success rate. The success rate is the percentage of runs in which all peaks are located successfully. 
The success rate is calculated using a degree of precision. The distance between a current solution and 
a known global peak is calculated using this parameter. If the distance is smaller than the accuracy, 
the peak can be considered if it is discovered.

We compare IABC, CABC against CDE, FERPSO, r2pso, r3pso, r2pso-lhc, and r3pso-lhc 
algorithms to demonstrate the efficacy of our proposed. Table 3 summarizes the average findings 
of 25 separate runs of the experiment. The top performance is shown by the boldface. Based on 
the identical function evaluation, the proposed algorithm has a greater success rate (Table 3). The 
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Table 1. Test functions for multimodal optimization algorithm

Name Test function Range Peaks global/
local

F1:Two-Peak 
Trap (Shir et al., 
2010)

f x
x

x
1

160

15
15

15
( )

( ),

( ),
=

− ≤ ≤

− ≤ ≤





  for 0 x 15

200

5
 for 15 x 20







0 20≤ ≤x

1/1

F2: Central Two-
Peak Trap (Shir 
et al., 2010)

f x

x

x

x

2

160

10

15

15

( )

,

( ),

( ),

=

≤ ≤

− ≤ ≤

−

 for 0 x 10

160

5
 for 10 x 15

200

5
  for 15 x 20≤ ≤











0 20≤ ≤x

1/1

F3: Five-Uneven- 
Peak Trap (Horn 
et al., 1994)

f x

x

x

3

80 2 5 5

64 2 5

( )

( . ), .

( . ),

=

− ≤ <
− ≤ <

 for 0 x 2

 for 2.5 x 5

64(7.5-x))  for 5 x

 for 7.5 x 12.5

 for 12

, .

( . ),

( . ),

≤ <
− ≤ <
−

7 5

28 7 5

28 17 5

x

x ..5 x 17.5

32( -17.5)  for 17.5  x 22.5

3  for 22.5

≤ <
≤ <

−
x

x

,

( . ),2 27 5 ≤≤ <
− ≤ ≤









 x 2

8  for 27.5 x 30

7 5

0 27 5

.

( . ),x


0 30≤ ≤x

2/3

F4: Equal 
Maxima f x x

4
6 5( ) sin ( )= π 0 1≤ ≤x 5/0

F5:Decreasing 
Maxima (Stoean 
et al., 2010)

f x
x

x
5

2

62 2
0 1

0 8
5( ) exp[ log( )

.

.
] sin ( )= − ⋅

−








⋅ π

0 1≤ ≤x
1/4

F6: Uneven 
Maxima (Stoean 
et al., 2010)

f x x
6

6 3 45 0 05( ) sin ( ( . ))/= −π 0 1≤ ≤x
5/0

F7: Uneven 
Decreasing 
Maxima (Stoean 
et al., 2010)

f x
x

x
7

2

6 3 42 2
0 08

0 854
5( ) exp[ log( )

.

.
] sin ( ( /= − ⋅

−








⋅ −π 00 05. ))

0 1≤ ≤x
1/4

F8: 
Himmelblau’s 
function (Stoean 
et al., 2010)

f x y x y x y
8

2 2 2 2200 11 7( , ) ( ) ( )= − + − − + − − ≤ ≤6 6x y,
4/0

F9: six-Hump 
camel back 
(Suman, 2004)

f x y x
x
x xy y y

9
2

4
2 2 24 4 2 1

3
4 4( , ) [( . ) ( ) ]= − − + + + − +

− ≤ ≤1 9 1 9. .x
− ≤ ≤1 1 1 1. .y 2/2

continued on following page
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proposed algorithm can locate all peaks for the functions F1 and F2 in every run. IABC can locate all 
peaks for the functions F3-F6, F8, and F9 in each run. R2PSOlhc has the highest success percentage 
for F10. IABC discovers a value of 0.84, which is lower than R2PSOlhc. In the F11-F12 range, 
our algorithm has the better performance than other algorithms. The success rate of all algorithms 
for the difficult problems F13 and F14 is zero. Table 4 shows that, with the exception of CDE, the 
average number of peaks has increased. Each algorithm’s rank is stated in brackets, with the overall 
rank listed in the last row. As can be seen in Table 3, our proposed algorithm is ranked first among 
all compared algorithms. This result shows that the proposed algorithm is more capable of escaping 
from poor local optima and locating a suitable near-global optimum, which is mainly due to the new 
search mechanism compared with other algorithms. Fig. 2 depicts a clear visual comparison of each 
function’s success rate across all analyzed algorithms.

Average Number of Optima Found and Success Performance
Because the success rate for all of the analyzed algorithms is zero, the average number of optima 
obtained is particularly relevant for comparing various niching algorithms, notably for the F7, F13, 

Table 2.The population size and the number of function evaluations in ABC

Funtion No. Population Size No. of function evaluation Level of accuracy

F1-F3 25 10,000 0.05

F4-F7 25 10,000 0.000001

F8 25 10,000 0.0005

F9 25 10,000 0.000001

F10 250 100,000 0.00001

F11 125 100,000 0.05

F12 50 20,000 0.0001

F13 250 200,000 0.001

F14 500 400,000 0.001

Name Test function Range Peaks global/
local

F10: shekel’s 
foxoles 
(Tasgetiren et al., 
2011)

f x y

i x a i y b ii

10

6 60

24
500

1

0 002
1

1

( , )
.

( ( )) ( ( ))

= −
+

+ + − + −=∑

Where a i( )=16(i mod5-2), and b i i( ) ( ( / ) )= 



 −16 5 2

− ≤ ≤65 535 65 535. , .x y

1/24

F11:2D Inverted 
Shubert function 
(Horn et al., 
1994)

f x j j x j
iji11 1

5

1

2
1( ) cos[( ) ]

�
= − + +

== ∑∏ − ≤ ≤10 10
1 2
x x,

18/many

F12; F13; 
F14: Inverted 
Vincent function 
(Thomsen, 2004)

f x
n

x
ii

n
( ) sin( . log( ))
�
=

=∑
1

10
1

Where n is the dimension of the problem

0 25 10. ≤ ≤x
i

6n

Table 1. Continued
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and F14, to evaluate the sensitivity of the proposed algorithm to variations in search scheme. The 
average number of peaks detected during 25 runs is used to compute this performance criteria. 
Table 4 shows the experience findings of this performance criteria. The boldface indicates a 
higher level of performance. Table 4 shows that the proposed algorithm may detect more peaks, 
particularly in the functions F1-F6, F8-F9, and F11. The results show that the IABC perform 
either better or comparably to the other algorithms. For F13 and F14, we can find the CDE can 
perform better than IABC, but it performs badly for other functions such as F6 and F9. In order 
to study convergence rate on the performance of proposed algorithm, the success performance 
can be described as follows:

Success performance 
Average number of  function evaluation

=
ss

 success   rate
	

Note that the success performance can only be calculated while the success rate is not 
zero. For F1-F14, Table 5 compares the success rates of IABC and other algorithms. All 
algorithms are running until it reached the level of accuracy for different functions or it reaches 
the Max_FES. Table 5 shows the outcomes. Table 5 shows that the IABC can achieve a high 
success rate with a small number of function evaluations. IABC’s niching behaviour for F8 
is seen in Fig. 3.

MPR
In order to show the quality of optima, the performance metric called the maximum peak ratio statistic 
is calculated (Shir et al., 2010). The MPR value may play an important in measuring the quality of 
optima found. The MPR can be defined as follows:

Table 3. The success rate obtained by different algorithms

IABC CABC CDE FERPSO R2PSO R3PSO R2PSOlhc R3PSOlhc

F1 1.0(1) 1.0(1) 1.0(1) 0.72(4) 0.52(6) 0.48(7) 0.44(8) 0.56(5)

F2 1.0(1) 1.0(1) 1.0(1) 0.80(4) 0.64(6) 0.32(8) 0.60(7) 0.72(5)

F3 1.0(1) 0.92(2) 0.32(3) 0.00(5) 0.00(5) 0.00(5) 0.04(4) 0.00(5)

F4 1.0(1) 0.88(4) 0.28(8) 0.84(6) 0.92(3) 0.64(7) 1.00(1) 0.88(4)

F5 1.0(1) 0.92(2) 0.44(3) 0.00(6) 0.00(6) 0.00(6) 0.44(3) 0.04(5)

F6 1.0(1) 0.76(6) 0.25(8) 0.92(2) 0.72(7) 0.80(5) 0.92(2) 0.88(4)

F7 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1)

F8 0.96(1) 0.80(2) 0.00(8) 0.68(3) 0.32(5) 0.40(4) 0.24(6) 0.24(6)

F9 1.0(1) 1.0(1) 0.00(8) 0.96(3) 0.56(6) 0.68(5) 0.40(7) 0.72(4)

F10 0.84(2) 0.12(6) 0.00(7) 0.00(7) 0.56(4) 0.40(5) 0.88(1) 0.72(3)

F11 1.0(1) 1.0(1) 0.80(3) 0.52(4) 0.08(7) 0.08(7) 0.16(6) 0.24(5)

F12 0.96(1) 0.56(6) 0.64(2) 0.56(6) 0.64(2) 0.52(8) 0.64(2) 0.60(5)

F13 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1)

F14 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1)

Total 
rank 15 35 55 53 60 70 50 54
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MPR
f

F

ii

q

ii

q
= =

=

∑
∑

1

1

	

where q is the number of optima, f
i i

q{ }
=1

 are the objective value of the optima in the final population 

while F
i i

q{ }
=1

 are the values of real optima of the objective function. A larger MPR value shows 
a better performance of the algorithm. The results are shown in Table 6. As can be seen in Table 
6, we can claim that the proposed IABC method can perform better than other algorithms. In order 

Table 4. The number of optima found by different algorithms

IABC CABC CDE FERPSO R2PSO R3PSO R2PSOlhc R3PSOlhc

F1
Mean 2.00 2.00 2.00 1.6400 1.3600 1.4000 1.4400 1.3600

Std 0.00 0.00 0.00 0.6377 0.7572 0.6455 0.5066 0.4899

F2
Mean 2.00 2.00 2.00 1.8000 1.5200 1.2000 1.6000 1.7200

Std 0.00 0.00 0.00 0.4082 0.7141 0.6455 0.5000 0.4583

F3
Mean 5.00 5.00 4.2000 0.7600 1 0.5600 3.1200 2

Std 0.00 0.00 0.6455 0.7234 0.7071 0.5831 0.9274 0.8660

F4
Mean 5.00 4.88 3.7200 4.8400 4.9200 4.6400 5.00 4.8800

Std 0.00 0.00 1.0214 0.3742 0.2769 0.4899 0.00 0.3317

F5
Mean 5.00 4.92 4.1600 1.0400 1 1 4.3600 2.7200

Std 0.00 0.00 0.9434 0.2000 0 0 0.6377 0.9363

F6
Mean 5.00 4.76 3.8800 4.9200 4.7200 4.7600 4.9200 4.8800

Std 0.00 0.00 0.9274 0.2769 0.4583 0.5228 0.2769 0.3317

F7
Mean 1.00 0.84 0.6400 1 1 1 1 1

Std 0.00 0.00 0.4899 0 0 0 0 0

F8
Mean 4 3.80 0.2800 3.6400 2.9600 3.1200 2.9600 3.1600

Std 0 0.4082 0.6782 0.5686 0.8888 0.8327 0.7348 0.5538

F9
Mean 2 2.00 0 1.9600 1.4800 1.6400 1.3200 1.7600

Std 0 0.00 0 0.2000 0.6532 0.5686 0.6272 0.4359

F10
Mean 24.4400 19.8800 12.4000 5.7600 24.5200 23.8800 24.8800 24.6800

Std 1.3868 2.0273 2.3094 1.8321 0.5859 1.0924 0.3317 0.5568

F11
Mean 18 18 17.8000 17.4400 14.7600 15.5200 16.2000 15.7200

Std 0.00 0.00 0.4082 0.5831 1.5620 1.3880 1.3844 1.8376

F12
Mean 5.9200 5.44 5.6000 5.2000 5.4800 5.3200 5.4400 5.4000

Std 0.2769 0.7118 0.5774 0.9574 0.7703 0.8021 0.8206 0.8165

F13
Mean 30.9600 30.1200 33.6000 21.8400 22.5200 22.4800 22.9200 24.0800

Std 1.7436 1.5895 1.4720 2.4440 3.1770 2.8449 2.8272 3.1081

F14
Mean 124.6000 118.2800 152 68.3600 39.4400 43.6800 44.4000 46.7200

Std 5.4083 5.3270 4.0415 6.7693 5.5534 5.0060 4.3108 6.1273
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Figure 2. Overview of success rate of each algorithm (0 refers to the worst and 1 to the best algorithm)

Figure 3. The niching behavior of IABC on F8; (a) function evaluation =1; (b) function evaluation = Max_FES./4; (c) function 
evaluation =Max_FES./2; (d) function evaluation =Max)FES
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to show the final population distribution of IABC algorithm, snapshots of IABC on all test function 
are shown in Fig. 4.

CONCLUSION

To tackle the multimodal challenge, this research proposes crowding and two novel search 
techniques, which are integrated with an artificial bee colony, dubbed IABC. The crowding 
approach is used to retain genetic variation, resulting in improved search space convergence 
and a better possibility of finding multiple optima. To increase the variety, two novel solution 
search mechanisms, “ABC/rand1/1” and “ABC/rand2/1,” are presented. Experiments were 
carried out on 14 benchmark functions selected from prior research. Our results show that the 
proposed algorithm performs better than other algorithms mainly due to the improved search 
operator. On these functions, IABC can reliably discover several global optima. In comparison 
to other current algorithms, IABC performs better, or at least comparable, in terms of success 
rate quality, average number of detected optima, success performance, and maximum peak 
ratio. In the future, we plan to apply the proposed algorithm to other kinds of optimization 
problems. Moreover, we would like to design other effective search operators to enhance the 
performance of the proposed algorithm.
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Table 5. The success performance of different algorithms

IABC 
(e+03)

CABC 
(e+03)

CDE 
(e+03)

FERPSO 
(e+03)

R2PSO 
(e+03)

R3PSO 
(e+03)

R2PSOlhc 
(e+03)

R3PSOlhc 
(e+03)

F1 0.091 0.075 0.102 4.3389 4.2269 3.9375 5.4772 3.300

F2 1.211 1.225 3.270 2.9675 3.1937 1.8125 4.1633 5.1194

F3 4.407 4.6098 7.2312 0.00 NA NA 4.450 NA

F4 4.6183 5.6869 8.0642 4.4381 4.1108 5.0687 3.616 4.3727

F5 4.789 5.225 7.8454 NA NA NA 3.6818 3.350

F6 5.052 5.9987 8.5071 5.3847 3.8028 5.010 3.9304 4.1818

F7 NA NA NA NA NA NA NA NA

F8 7.5674 7.390 NA 6.8029 6.6437 6.605 7.2333 6.000

F9 6.3319 5.385 NA 6.4875 7.1428 5.8764 6.355 6.1916

F10 71.18 66.250 NA NA 49.8214 49.500 45.9090 49.0556

F11 46.544 58.795 85.400 63.562 63.250 47.625 60.250 62.5417

F12 7.7358 9.0423 12.225 12.880 9.9312 8.1923 7.0125 9.1133

F13 NA NA NA NA NA NA NA NA

F14 NA NA NA NA NA NA NA NA
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Figure 4. Snapshots of IABC on all test functions
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Table 6. MPR values gained by different algorithms

IABC CABC CDE FERPSO R2PSO R3PSO R2PSOlhc R3PSOlhc

F1
Mean 1 1 1 0.8221 0.6710 0.7155 0.6888 0.6444

Std 0 0 0 0.3175 0.3842 0.3143 0.2814 0.2721

F2
Mean 0.9999 0.9999 0.9999 0.9110 0.7732 0.6310 0.7777 0.8444

Std 0.0000 0.0000 0.0000 0.1814 0.3476 0.3137 0.2777 0.2545

F3
Mean 0.9999 0.9850 0.8521 0.1693 0.2214 0.1302 0.5888 0.3851

Std 0.0000 0.0514 0.1183 0.1638 0.1573 0.1355 0.1940 0.1740

F4
Mean 1 0.9680 0.7440 0.9680 0.9839 0.9280 1 0.9760

Std 0.0000 0.0748 0.2042 0.0748 0.0553 0.0979 0.0000 0.0663

F5
Mean 1 0.9750 0.8016 0.3108 0.2997 0.2997 0.9079 0.6453

Std 0.0000 0.0719 0.2142 0.0550 0 0.0000 0.09170 0.1772

F6
Mean 1 0.9520 0.7759 0.9840 0.9439 0.9520 0.9839 0.9760

Std 0.0000 0.0871 0.1854 0.0554 0.0916 0.1045 0.0553 0.0663

F7
Mean 0.2880 0.2420 0.1843 0.2880 0.2880 0.2880 0.2880 0.2880

Std 0.0000 0.1078 0.1411 0.0000 0.0000 0 0.0000 0.0000

F8
Mean 1 0.9499 0.0699 0.9100 0.7399 0.7799 0.7399 0.7900

Std 0.0000 0.1021 0.1696 0.1422 0.2222 0.2081 0.1837 0.1384

F9
Mean 1 0.9999 0 0.9800 0.7399 0.8199 0.6599 0.8800

Std 0.0000 0.0000 0 0.1000 0.3265 0.2843 0.3135 0.2179

F10
Mean 0.9781 0.7983 0.4984 0.2335 0.9811 0.9559 0.9953 0.9876

Std 0.0547 0.0801 0.1265 0.0738 0.0232 0.0431 0.01338 0.0220

F11
Mean 1 0.9999 0.9888 0.9689 0.8199 0.8622 0.8999 0.8733

Std 0.0000 0.0000 0.0926 0.0324 0.0867 0.0771 0.0769 0.1021

F12
Mean 0.9867 0.9067 0.9333 0.8667 0.9133 0.8866 0.9066 0.9000

Std 0.0461 0.0526 0.0227 0.1596 0.1283 0.1336 0.1367 0.1361

F13
Mean 0.8600 0.8367 0.9333 0.6066 0.6255 0.6244 0.6366 0.6688

Std 0.0484 0.1186 0.0962 0.0679 0.0882 0.0789 0.0785 0.0863

F14
Mean 0.5769 0.5476 0.7037 0.3164 0.1825 0.2022 0.2055 0.2162

Std 0.0250 0.0442 0.0409 0.0313 0.0257 0.0232 0.0199 0.0284
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