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ABSTRACT

This paper proposes an audio tampering detection method based on the ENF phase and BI-LSTM 
network from the perspective of temporal feature representation learning. First, the ENF phase 
is obtained by discrete Fourier transform of ENF component in audio. Second, the ENF phase is 
divided into frames to obtain ENF phase sequence characterization, and each frame is represented 
as the change information of the ENF phase in a period. Then, the BI-LSTM neural network is used 
to train and output the state of each time step, and the difference information between real audio and 
tampered audio is obtained. Finally, these differences were fitted and dimensionally reduced by the 
fully connected network and classified by the Softmax classifier. Experimental results show that the 
performance of this method is better than the state-of-the-art approaches.
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Audio Forensics, Deep Learning, Electronic Network Frequency (ENF)

1 INTRoDUCTIoN

With the rapid development of Internet communication technology, people get a lot of multimedia 
information on the Internet every day. Digital audio, as an essential information carrier, occupies a 
large part of the multimedia content shared and transmitted on the Internet. The emergence of many 
audio editing software makes the editing operation of digital audio very convenient, and the malicious 
editing and application of audio by some criminals may lead to some serious consequences (Qamhan et 
al., 2021). Therefore, there is a growing need for effective editing detection methods, especially when 
audio is used as an evidence in courtroom trials and in political campaigns or commercial applications.

There are two kinds of tamper detection methods for digital audio (Zakariah et al., 2018). One is 
the active detection method, which requires embedding watermark and signature in audio in advance 
to realize audio protection and detection. The other is the passive detection method, which does not 
need to embed additional information in advance and directly uses standard features contained in 
digital audio to perform tamper detection.
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In recent years, there have been many studies on passive detection of audio tampering. The audio 
features used by these passive detection methods include audio statistical features such as voice pitch 
and formant (Chen et al., 2016; Xie et al., 2018; Yan et al., 2019a), Recording Device Information(Zeng 
et al., 2020; Zeng et al., 2021), Speaker information(Wang et al., 2020; Wang et al., 2021; Zeng et 
al., 2018), background noise (Pan et al., 2012) and Electronic Network Frequency (ENF) (Grigoras, 
2005; Hua et al., 2016; Rodríguez et al., 2010). ENF is the power line transmission frequency (50 or 
60HZ), and ENF is embedded in the audio in the form of buzzing when it is recorded (Hajj-Ahmad et 
al., 2018). According to the random fluctuation of ENF around the nominal frequency (50 or 60HZ) 
(Cooper, 2009), audio forensics can be conducted, including timestamp verification (Hua, 2018; Hua 
et al., 2014), content tampering detection (Esquef et al., 2014; Rodríguez et al., 2010), recording 
position positioning (Yao et al., 2017; Zheng et al., 2017).

In this paper, we propose a digital audio tampering detection method based on the phase timing 
characterization of ENF which will help in identifying discontinuities in the ENF signal when 
audio fragments are inserted or deleted from an existing audio recording. First, we obtain the phase 
information of ENF by band-pass filtering and Discrete Fourier Transform (DFT) of the audio. 
Second, we frame the ENF phase to obtain the ENF phase timing representation. Then, we input the 
ENF phase timing representation into the Bi-LSTM neural network and output the state at each step. 
Several inputs before and after the edited part jointly determine the presence of ENF mutations. Finally, 
the tampered audio is detected by fitting a fully connected network and using a Softmax layer. The 
experimental results show that our method outperforms previous related tampering detection methods.

The contributions of this paper are as follows:

1.  The existing ENF-based audio tampering detection methods do not consider the ENF timing 
characteristics. We use the recurrent neural network to obtain the information of ENF changes 
over time and finally improve the detection accuracy.

2.  When analyzing ENF phase changes for tamper detection, it is necessary to determine whether 
the ENF phase is abnormal at a certain time. We use the Bi-LSTM network to obtain the forward 
and reverse information of the ENF phase timing representation to jointly decide whether there 
is an anomaly, reduce false positives, and obtain higher detection accuracy.

3.  Information loss in visual analysis and traditional machine learning methods may cause 
misjudgment. This paper uses the deep learning method to obtain ENF mutation information from 
the ENF phase by automatic learning method to reduce information loss and improve detection 
accuracy.

This paper is divided into five sections, including the introduction. The second section is related 
work. The third section is the audio tampering detection method proposed in this paper, including: 1. 
Framework, 2. Feature extraction, 3. Feature processing, 4. Network structure. In the fourth section, 
we use two data sets and their mixed data sets for experiment and analysis. The last section is the 
conclusion of this article and the outlook for future research.

2 ReLATeD woRK

The passive detection of the digital audio tamper is to detect whether the audio content is tampered 
with by using the information contained in the audio under test without a pre-embedded watermark 
and signature. The audio s n( )  to be detected can be expressed as the following superposition

s n v n x n e n g n( ) = ( )+ ( )+ ( )+ ( )  (1)
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where v n( )  represents the voice signal itself, x n( )  is the ENF component, e n( )  is the noise 
of the equipment, and g n( )  is the background noise part. Most of the existing audio passive detection 
methods of the target are performed using these four features. These include 1. noise of the equipment, 
2. background noise, 3. audio speech content, and 4. ENF.

2.1 Tamper Detection Research Based on equipment Noise
Audio recording will leave some traces of recording devices in the audio. The device information in 
the audio that has not been tampered with should be consistent. Audio forensics can be obtained by 
comparing reverb in audio or the consistency of information between environment and equipment. 
In (Capoferri et al., 2020), Capoferri judges whether the reverb in the audio to be tested is consistent 
in achieving tamper detection according to the feature of different reverb in audio recorded in 
different environments. Qamhan (Qamhan et al., 2021) classified the microphone and environment 
of recording, which can be used to analyze the consistency of microphone and environment in audio 
for tamper detection.

2.2 Research on Tamper Detection Based on Background Noise
When audio is recorded in a complex environment, the recorded audio will contain background noise 
information in the current environment. Tamper operations such as deletion and audio insertion will 
lead to the discontinuity of background noise in the audio. In order to detect the splicing operation of 
audio by using background noise and other information in audio, Meng (Meng et al., 2018) detects 
the heterogeneous splicing tampering of audio by comparing the similarity between variances of 
syllable background noise. In (Lin & Kang, 2017), Xiaodan Lin uses spectral phase reconstruction 
to counteract the influence of noise and uses the spectral phase difference before and after audio 
reconstruction and the spectral phase correlation between adjacent voiced segments to judge whether 
the audio has tampered.

2.3 Research on Tamper Detection Based on Audio Speech Content
The speech in tampered audio will have some inter-frame correlation weakening and mutation of 
audio features. Chen (Chen et al., 2016) detects tampered audio in the time domain through discrete 
wavelet packet decomposition and singularity analysis of speech signals for audio tampering operations 
of insertion and deletion. Saleem (Saleem et al., 2021) inputted the Short-Time Fourier transform 
(STFT) and Modified Discrete Cosine Transform (MDCT) spectra of audio into the convolutional 
neural network to identify Spoofed Voices. There is also much research on copy-move Forgery of 
the copy-paste type. Imran (Imran et al., 2017) used a chaotic theory to make the tampering point 
possibly exist anywhere in the audio and then detected copy-paste tampering by comparing the 
differences of the speech spectrum in the voiced part. In (Xie et al., 2018), Zhaozhi Xie combined 
gammatone feature, Mel-Frequency Cepstral (MFCCs) feature, Pitch feature, and DFT coefficients are 
four features, and C4.5 decision tree is adopted to realize copy-move tampering detection. Compared 
with the single feature, this method has a higher detection effect. Qi Yan (Yan et al., 2019b) takes 
pitch and formant sequences of voiced audio segments as features and realizes copy-move tamper 
detection through similarity comparison with the threshold. This method has high robustness to 
joint post-tamper processing operations. After most tampering operations are carried out, some 
post-processing operations often cover up tampering traces. Therefore, when such post-processing 
operations are detected in the audio, the audio may have been edited. Qi Yan (Yan et al., 2019a) used 
the Support Vector Machine (SVM) to test smoothing Operations of editing software based on the 
local variance of differential signals.
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2.4 Research on Tamper Detection Based on electronic Network Frequency
Although there are many audio tamper detection methods, the technology using electronic network 
frequency ENF is widely used in multimedia forensics (Zakariah et al., 2018). Although ENF is ideally 
a sinusoidal signal that oscillates at a nominal frequency, the actual ENF signal will fluctuate slightly 
with the change of energy supply and the load of the power grid (Saleem et al., 2021). When a segment 
is inserted or deleted from a recording, the ENF of that segment also changes. Therefore, when the 
ENF frequency or phase information obtained from the audio recording is sudden and discontinuous, 
it can be judged that the audio has been edited. In recent years, there have been many kinds of research 
on digital audio tamper detection based on ENF: Guang Hua (Hua et al., 2016) realized timestamp 
verification and tamper detection based on Absolute Error-map (AEM) between ENF signal audio 
and database. However, the ENF database is difficult to obtain, and more studies use ENF mutations 
to detect audio. Esquef (Esquef et al., 2014) detected audio tampering by extracting ENF signals 
and detecting the consistency of ENF phase changes. Rodríguez (Rodríguez et al., 2010) proposed 
the TPSW (two-pass Split Window) method to estimate the change degree of ENF background 
because the tampering operation would cause a sudden change of ENF of tampering point calculated 
instantaneous frequency by Hilbert transform. Tamper detection by analyzing the mutation point of 
instantaneous frequency. Reis (Reis et al., 2016) proposed measuring the fluctuation of ENF using 
esprit-based peak estimation features and automatically detecting the interference of ENF using the 
support vector machine (SVM). In addition to audio tamper detection, ENF signals are also used for 
recording location and audio recapture detection. Chowdhury (Chowdhury & Sarkar, 2019) used low 
Outliers and High Outliers segments based on ENF signal in audio to locate audio using the support 
vector machine. In (Lin et al., 2016), Xiaodan Lin input ENF sound spectrum as features into the 
convolutional neural network to train and classify real and recaptured audio.

In order to further increase the detection accuracy and robustness of audio tamper methods 
based on ENF, some scholars study the characteristics of ENF to obtain better features. Karantaidis 
(Karantaidis & Kotropoulos, 2021) added a customized lag Window to the Blackman-Tukey acoustic 
spectrum estimation method to reduce the interference of speech content, making the estimated ENF 
more accurate. Guang Hua (Hua & Zhang, 2019) proposed a robust filtering algorithm (RFA) to 
enhance ENF signals in audio, making the extracted ENF signals more accurate. In (Hua et al., 2021), 
Guang Hua uses RFA to enhance each harmonic component of ENF and finally performs a weighted 
combination of harmonic components to obtain more accurate ENF estimation.

Existing tamper detection methods include audio-visual analysis or machine learning methods, 
such as tamper detection using the support vector machine (SVM) training model. These methods may 
result in information loss, thereby losing the temporal characteristics of ENF. This paper proposes 
a tamper detection method based on the change characteristics of the ENF phase timing sequence. 
Due to ENF mutation caused by editing operations, the change degree of ENF in the tamper region 
will be different from that in other standard regions. We propose a phase timing characterization in 
which each frame contains the change information of ENF within a period. Each frame was input as 
a time step into Bi-LSTM, a bidirectional LSTM neural network. LSTM network can fully consider 
the long-term dependence in time series problems, and Bi-LSTM can jointly decide whether there are 
abrupt changes and discontinuities in the ENF phase through the information before and after time 
series. Then, a Softmax classifier is used to detect tampered audio after fully connected network fitting.

Our motivation are as follows:

1.  The ENF phase change degree information where the audio is edited is different from other 
areas in the audio. Therefore, when obtaining the state of a region of the ENF phase time series, 
it is necessary to obtain the information of the previous region. LSTM network can learn the 
characteristics of long-term dependence of time series to obtain more abundant information 
about the change of ENF phase over time through the LSTM network.
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2.  Bi-LSTM network combined with the information before and after the ENF time series is used 
to determine each time step’s state jointly. Through the Bi-LSTM network, ENF phase mutation 
in audio can be jointly determined by the ENF phase sequence before and after, thus reducing 
misjudgment.

3.  Deep learning method is adopted to automatically learn effective features of audio tamper from 
a large amount of data, which has a higher degree of automation and detection accuracy than 
some threshold and visualization methods.

3 MeThoDS

The proposed audio tamper detection method based on the ENF phase sequence characterization is 
to take the information of ENF phase changes for a period of time as the characteristics of each time 
step, use the Bi-LSTM network to train and output the state of each time step, and then classify the 
tamper audio and the original audio through DNN classifier. The method is divided into three parts, 
as shown in Figure 1:

1.  Feature extraction: ENF components in audio are obtained by down-sampling and band-pass 
filtering, and then ENF phases f

0
andf

1
 are obtained by DFT transformation of ENF components 

and their first derivative.
2.  Feature processing: We conducted frame processing on the ENF phase to obtain the ENF phase 

timing sequence representation X
m ń

, which has n  frames in total, and each frame contains m  

Figure 1. The Digital audio tamper detection framework based on ENF phase timing characterization
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ENF phase points. Each frame corresponds to the input of each time step of the recurrent neural 
network to better learn the change information of the ENF phase.

3.  Neural network: When the audio is tampered with, the ENF component of the tampered part of 
the audio will mutate. We use the Bi-LSTM layer to train the ENF phase timing sequence 
representation X

m ń
 and output the state of each time step. In this way, the state of each time 

step can be jointly determined by the time series before and after the time step to obtain the 
different information containing real audio and tamper audio phases. Then through DNN fitting 
and dimensionality reduction, finally through Softmax classifier detection tampered audio.

3.1 Feature extraction

The proposed method uses the phase characteristics of ENF, and ENF phases f
0

 and f
1
 can be 

obtained according to the method in literature (Rodríguez et al., 2010). DFTk  represents the DFT  
transformation of the signal k derivative, f

0
 represents the phase obtained by DFT 0 , and f

1
 represents 

the phase obtained by DFT 1 . Firstly, the ENF components in audio were obtained by down-sampling 
and bandpass filtering. Sampling frequencies will be set to 1000Hz and 1200Hz depending on the 
ENF nominal frequency of 50 or 60Hz. Then bandpass filtering is carried out, and a 10000 order 
linear zero-phase FIR filter is used for narrowband filtering. The center frequency is ENF standard 
(50Hz or 60Hz), the bandwidth is 0.6Hz, the passband ripple is 0.5dB, and the stopband attenuation 
is 100dB. Finally, DFT transformation is performed to obtain ENF phase after obtaining ENF 
component.

First, the approximate first derivative x n
ENFC
' 


 of ENF signal X n

ENFC



  at point n  is calculated

x n f X n X n
ENFC d ENFC ENFC
' 


 =




 − −


( )1  (2)

Where f *( )  represents the approximate derivative operation, and X n
ENFC




  represents the n-th 

point of the ENF component.
Then, Hanning window w n( )  was used to frame and window x n

ENFC
' 


 . The frame length was 

10 standard ENF frequency cycles ( 10
50

 or 10
60

), and the frame was moved to 1 standard ENF frequency 

cycle ( 1
50

 or 1
60

).

x n x n w n
N ENFC
' '


 =




 ( )  (3)

Where x n
N
' 


  represents the ENF signal after window addition, and w n( )  represents the Hanning 

window.
To obtain the phase f

0
 of ENF and the phase f

1
 of the first derivative of ENF, n-point discrete 

Fourier transform (DFT) should be executed for each frame signal x n
N
' 


  and X n

ENFC



  respectively 

to obtain ′ ( )X k  and X k( ) . Estimated frequency f
DFT1

 based on the integer index k
peak

 of ′ ( )X k  
peak points
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f
DFT k

DFT kDFT

peak

peak

1

1

2

1

0
=











p
 (4)

Where, DFT k X k
peak peak

0 


 = ( ) , DFT k F k X k

peak peak peak
1 


 = ( ) ( )′  and F k

peak( )  are scale 
coefficients.

F k
k

N
k

NDFT
DFT

( ) = 









p

p
sin

 (5)

Where N
DFT

 represents the number of discrete Fourier transform points, and k  is the index of 
peak point.

Now the ENF phase f
0

 of the conventional DTF transformation can be calculated, 

f
0
= ( )





arg X k
peak

. Through Equation (6), f
1
 can be calculated.

φ
θ ω ω

ω θ ω1

0 0

0

1

1
=

( ) − ( )



 + ( )

− ( )− ( )
arctan

tan cos sin

cos tan sin
00

1

( )















≈ −( )
−

−
+θ

θ θ
θk k

k kDFT low

high low

high low
llow











 (6)

Where, ω π
0
2 1» f f

DFT d
/ , f

d
 are heavy sampling frequency, k f N f

DFT DFT DFT d1 1= / , 

k floor k
low DFT
= 



1 , k ceil k

high DFT
= 



1 , floor a


  is the maximum integer less than a , and ceil b


  

is the minimum integer greater than b . Since the calculated f
1
 has two possible values, f

0
 is used 

as a reference, and the value closest to f
0

 in f
1
 is selected as the final f

1
.

3.2 Feature Processing
After obtaining the ENF phase information in the audio, we conducted frame processing to use the 
deep learning method better to learn abnormal information such as mutation from the ENF phase 
with different lengths. The steps are as follows
Step 1:  Set the frame length m  (phase sample points) and calculate the maximum number of phase 
points P

max
 in the data.

Step 2:  Calculate the number of frames n  according to the set frame length m  andP
max

, 

n ceil
P

m
max=











()

Step 3:  Frame the ENF phase to traverse the phase f
0 1,

 of all audio data, Calculate the frame shift. 

overlap m floor
length

n
= −

( )











f
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Step 4:  The frame is divided into two parts X X X
m n m k

frist

m n k

ond
× × × −( )= ( ), sec , and the frameshift of X

m k
frist
´  

frame is one smaller than that of X
m n k

ond

× −( )
sec  frame. k length m overlap n= ( )− −( )×f

Step 5:  Finally, ENF phase sequence characterization X X
m n m n´ ´
0 1,  can be obtained.

This paper proposes the ENF phase change feature X
m ń

 to reduce information loss and learn 
the long-term change information of the ENF phase by using the recurrent neural network. Where 
n  represents a total of n  time steps, and each time step contains m  phases. These m  phase points 
are the characteristics of the change information of the ENF phase in this period of time.

3.3 Neural Network Structure

After filtering, DFT, and frame splitting, we obtained the ENF phase sequence representation X
m ń

, 
consisting of n  ENF phase frames with dimension m . Each frame represents the ENF phase change 
information within a period of time. As shown in Figure 2, we input it into the Bi-LSTM to obtain 
the forward and reverse change information of the ENF phase. This paper uses two Bi-LSTM blocks 
to obtain information about ENF phase changes. The Bi-LSTM block contains a bi-directional LSTM 
layer, a layernormalization layer, and the leakyrelu activation function. Layer Normalization (LN)
(Hou et al., 2019) accelerates network convergence and makes the model more stable. As a result, 
the LN Layer regularizes and makes the obtained model less likely to be over-fitted. After the Bi-
LSTM block, the fitting characteristics of the fully connected layer are used, and the Dropout layer 
is used to prevent overfitting. Finally, SoftMax is used for classification.

Figure 2. Bi-LSTM network structure
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3.3.1 LSTM and Bi-LSTM Neural Networks
Bi-LSTM network is a recurrent neural network consisting of the input, hidden, and output layers. 
As shown in Figure 2, the hidden layer of Bi-LSTM is composed of two LSTM layers. These two 
LSTM networks process the sequence forward and reverse, respectively, to simultaneously capture 
the context information of the time series.

The Recurrent neural network (RNN) has the memory function and can save the previous time 
step information. However, in practical application, RNN often faces gradient disappearance and 
explosion problems, which results in the limited information that RNN can remember. However, the 
LSTM network can remember all the information of the sequence when the extended sequence is 
input, which can solve the long-term dependence problem of time series well. The advantages of 
LSTM are due to the unique network structure of LSTM. The LSTM network is composed of multiple 
memory units, as shown in Figure 2. These LSTM cells contain three gate structures: input gate, 
forgetting gate, and output gate. The combined action of these three gates enables the LSTM network 
to retain or discard the previous state information and obtain more comprehensive sequence 
information. At time t , the input of the memory unit is the output h

t-1  and state variable c
t-1  of the 

previous time, and the input feature x
t
 of time t . After the following operations are performed by 

the LSTM cell, the outputs at time t  are h
t
 and c

t
.

f W x W h b
t xf t hf t f
= + +( )−s

1
 (7)

i W x W h b
t xi t hi t i
= + +( )−s

1
 (8)

g W x W h b
t gx t gh t g
= + +( )−tanh

1
 (9)

c f c i g
t t t t t
= +−* *

1
 (10)

o W x W h b
t ox t oh t o
= + +( )−s

1
 (11)

h o c
t t t
= ( )tanh  (12)

In the above formula, W  and b  represent the values of weights and biases of the neural network, 
and s  and tanh  represent sigmoid and Hyperbolic tangent activation functions, respectively. f

t
 

stands for forgetting gate, which determines which information to discard from the cell state. i
t

 
represents the input gate that determines what new information is put into the cell state. o

t
 indicates 

the output gate, which determines what the current cell wants to output.
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From the structure of the LSTM cell, it can be seen that one-way LSTM only can learn past 
sequence information. The hidden layer of Bi-LSTM consists of two LSTM layers, which work 
forward and backward respectively, and obtain the information before and after the time series. In 
this paper, Bi-LSTM is adopted to make the obtained state at time t  contain the information before 
and after t . The ENF information before and after time t  can judge whether there are anomalies 
and mutations jointly.

3.3.2 DNN Classifier
For the information of ENF phase change output by the Bi-LSTM network, we use two fully connected 
layers to fit it (the number of neurons is 1024,256 respectively, and the activation function is Leaky 
ReLU). A Dropout layer is added between the two fully connected layers to prevent overfitting 
(Dropout rate=0.2). Finally, tamper detection is performed through a full-connection layer (the 
number of neurons is 2, and the activation function is Softmax).

4 exPeRIMeNT AND ANALySIS

In this section, the audio tamper detection method based on ENF timing sequence representation 
proposed in this paper is verified.The contents of this section are as follows:(1) Data set and 
experimental settings.(2) The method in this paper is compared with the traditional machine learning 
method. (3) Frame length verification of ENF timing sequence change feature. (4) Verification of 
multiple temporal feature models. (5) Experimental Analysis.

4.1 Data Set and experimental Settings
To verify the effectiveness of the proposed method, we performed experiments on two data sets 
(Classical, Gaudi-DI). The Classical dataset mixes three datasets, Carioca1, 2, and New Spanish(from 
two standard Spanish datasets, AHUMADA and GAUDI). In the GAUDI-DI data set, 251 original 
audio files were selected from the GAUDI data set, and a total of 753 audio files were obtained 
through deletion and insertion tampering. The data set details are shown in Table 1

We first ran the experiment on the Classical and Gaudi-DI datasets, then mixed the two datasets 
and reran the experiment. As shown in Table 1, we divided the data set into the training set, verification 
set, and test set in the experiment. All experiments in this paper are based on Tensorflow 2.1 deep 
learning framework, using GPU for NVIDIA GeForce GTX 1080Ti. The experimental parameters 

Table 1. Data set information

The data set Classical GAUDI-DI Classical & GAUDI-DI

Edited audio 250 251 501

Authentic audio 250 502 752

Total audio 500 753 1253

Audio time 9~35s 16~35s 9~35s

The training set 319 480 800

Validation set 80 121 201

The test set 101 152 252
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are as follows: Loss function: Binary_Crossentropy; optimizer: Adam; epochs: 400; batch size: 64; 
Decay: Initial learning rate is 0.001, Halve every 60 epochs.

4.2 The Proposed Method is Compared with Traditional Machine Learning Methods
In this section, we will conduct DFT and Hilbert transforms for the filtered ENF components according 
to the automatic detection method in literature(Wang et al., 2018) respectively to obtain ENF phases 
f
0

, f
1
, and f

hil
, and then calculate the mean values of the changes of the three features F

0
, F

1
, and 

F
hil

. Finally, an SVM classifier is used for training and testing. At the same time, we set the frame 
length of the ENF phase sequence characterization frame proposed in this paper as 85 phase points 
and calculate the total frame number as 25 to obtain features X

85 25
0
´  and X

85 25
1
´ . Input X

85 25
0
´  and 

X
85 25
1
´  respectively into the Bi-LSTM network proposed in this paper for training and testing (see 

Figure 2). We spliced the features of each time step of feature X
85 25
0
´  and X

85 25
1
´  to obtain feature 

vector X
2125
0 and X

2125
1  with length of 2125, and carried out experiments with Convolutional Neural 

Network (CNN, 4 convolution layers, 2 maxpooling layers, and finally DNN classifier was used for 
classification). The experimental results are shown in Table 2 and Figure 3

Table 2. Classification results of the proposed method and the traditional method

Feature Method Classical(%) GAUDI-
DI(%)

Classical&GAUDI-
DI(%)

F
0

SVM (Rodríguez et al., 2010) 92.08 88.16 90.48

F
1

SVM (Rodríguez et al., 2010) 95.05 88.16 90.48

F
hil

SVM (Reis et al., 2016) 83.17 88.16 84.13

F FF
hil0 1

SVM (Wang et al., 2018) 95.05 90.13 96.03

X
2125
0 CNN 96.04 90.13 96.03

X
2125
1 CNN 96.04 89.47 96.43

X
85 25
0
´ Bi-LSTM 97.03 90.13 96.83

X
85 25
1
´ Bi-LSTM 97.03 90.79 97.22
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Table 2 and Figure 3 are the classification results of the phase sequence characteristics of ENF 
proposed in this paper and the automatic detection methods in literature (Wang et al., 2018). As shown 
from Table 2 and Figure 3, this article proposed that the audio tamper detection method is superior 
to the traditional machine learning method. In a mixed data sets up to 97.22% accuracy, we use the 
neural network automatically learning from ENF temporal variation characteristics of better learning 
to ENF phase mutation information due to tamper with the operation.

Comparing the classification effects of the two methods on three data sets with different data 
volumes, the Bi-LSTM method proposed by us is superior to the SVM method in the case of the 
same features. In the case of three data sets, when the feature source is f

0
, the improvement is 4.95%, 

1.97%, and 6.35%. When the feature source was f
1
, the elevations were 2.01%, 2.63%, and 6.74%, 

respectively. Compared with the fusion features in literature(Wang et al., 2018), there are also 1.98%, 
0.66% and 1.19% improvements. Compared with the convolutional neural network, the detection 
accuracy of the Bi-LSTM network used in this paper is superior to CNN in all three data sets. The 
results show the effectiveness of the detection method proposed in this paper. The ENF timing 
sequence representation X

m ń
 information loss is small, and the deep learning method can learn 

more ENF mutation characteristics to achieve a higher audio tamper detection effect.

4.3 eNF Timing Sequence Characterization 
Verification with Different Frame Lengths
This part will verify the frame length of the ENF phase timing characterization proposed in this paper. 
According to the maximum number of phase samples obtained from the feature processing part and 
the most extended audio duration in the data set, a phase sample point of about 0.017s can be calculated. 
The frame length of ENF phase timing sequence characterization of f

0
 and f

1
 was set to 5-95 samples 

(the interval was ten samples, 0.085-1.7s, the interval was 0.17s) for experiments. The model used 
(shown in Fig. 2) consists of two Bi-LSTM blocks followed by two fully connected layers (512,256 
neurons). The activation function is Leaky ReLU), and dropout (rate=0.2) is also used between two 
fully connected layers, which are finally sorted by SoftMax. The experimental results are shown in 
Table 3 and Figure 4

Figure 3. Classification curves of the proposed method and the traditional method



International Journal of Digital Crime and Forensics
Volume 14 • Issue 1

13

Table 3 shows the experimental results of tamper detection classification on the Bi-LSTM network 
of ENF phase sequence characterization X

m ń
 of different frame lengths obtained by using ENF 

phase f
0

 and f
1
. Figure 4 shows the curve of X

m ń
 detection accuracy changing with frame length 

on the three data sets. It can be seen that when the frame length m of X
m ń

 is 25 phase points (about 
0.425s), the detection accuracy is high. When the frame length is 85 phase points (about 1.445s), the 
accuracy tends to decrease. The proposed method in this paper takes the change information of the 
ENF phase as the feature of each time step, uses the Bi-LSTM network to train and output the state 
of each time step, and then classifies tamper audio and original audio by DNN classifier. The results 
show that the proposed method can better obtain the difference of ENF phase between real audio and 
tampered audio through the state of each time step, and the number of phase points of each time step 
should be 25-85 (0.425s~1.445s).

Table 3. Accuracy of ENF phase timing sequence characterization for f
0

 and f
1

 phases with different frame lengths (5-95 
samples)

m n´ of 

X
m ń

Classical(%) GAUDI-DI(%) Classical&GAUDI-DI(%)

m n f
0

f
1

f
0

f
1

f
0

f
1

5(0.085s) 411 93.07 94.06 83.55 84.87 93.65 94.05

15(0.255s) 137 95.05 93.07 89.47 90.79 94.84 95.63

25(0.425s) 83 96.04 97.03 90.79 90.79 96.43 96.43

35(0.595s) 59 96.04 96.04 90.79 90.79 96.83 96.43

45(0.765s) 46 97.03 96.04 90.79 91.45 96.03 96.83

55(0.935s) 38 96.04 96.04 90.79 90.13 96.43 96.43

65(1.105s) 32 97.03 95.05 90.13 90.13 96.03 95.63

75(1.275s) 28 96.04 97.03 90.13 90.79 96.43 96.03

85(1.445s) 25 97.03 97.03 90.13 90.79 96.83 97.22

95(1.615s) 22 96.04 97.03 90.13 89.47 95.24 95.63

Figure 4. Accuracy curves of ENF phase timing sequence characterization on three data sets (5-95 samples).
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Meanwhile, from Figure 4 of the experiment in the previous section, we can see that the detection 
accuracy of F

1
 features obtained by ENF phase f

1
 on the Classical data set is significantly better 

than that of F
0
 features obtained by phase f

0
. However, the accuracy of ENF phase f

0
 and f

1
 on 

the mixture of GAUDI-DI and two data sets is similar. Similarly, it can be seen from the figure in 
this section that there is little difference in classification effect between ENF phase f

0
 and f

1
 

characterization features by using the method proposed in this paper. Phase f
1
 is the high-precision 

phase feature obtained by the first derivative of the ENF signal. ENF mutation in phase f
1
 has higher 

precision than phase f
0

, which makes ENF mutation information carried in feature F
1

 more 
prominent, making ENF phase f

1
 have a better effect when the amount of data is small (Rodríguez 

et al., 2010). However, as the amount of data increases, the network has more information, making 
the difference between real audio and tampered audio more obvious (Najafabadi et al., 2015). However, 
the ENF phase timing sequence characterization X

m ń
 information proposed in this paper has less 

loss. The Bi-LSTM neural network can better learn such differences and ENF phase mutations. 
Therefore, f

0
 and f

1
 of ENF phases can achieve good results in the three data sets.

4.4 Verification of Multiple Recurrent Neural Network Models
This section verifies the timing model used for the audio tampering detection method proposed in 
this paper. We input the ENF phase timing sequence representationsX X X

25 83 55 38 85 25´ ´ ´, , , with frame 
lengths of (25(0.425s), 55(0.935s), 85(1.445s) into various recurrent neural networks (RNN, GRU, 
LSTM, Bi-RNN, Bi-GRU, Bi-LSTM) for training and testing. The model we verified is shown in 
Figure 2, and only the cyclic neural network layer is replaced when testing different models. The 
experimental results are shown in Table 4, Table 5, and Figure 5.

Table 4. ENF time sequence characterization of f
0

 phase with frame length 25,55,85 in different cyclic neural network 
experiment results

Classical(%) GAUDI-DI(%) Classical&GAUDI-DI(%)

Frame length m 25 55 85 25 55 85 25 55 85

RNN 91.09 95.05 97.03 90.79 90.79 90.13 93.65 96.43 96.43

GRU 93.04 96.04 97.03 90.79 90.13 90.79 95.63 96.03 96.03

LSTM 97.03 96.04 97.03 90.13 90.79 90.79 95.63 96.83 96.43

Bi-RNN 91.09 95.05 96.04 90.13 90.79 90.13 94.05 96.03 96.43

Bi-GRU 95.05 96.04 97.03 90.79 91.45 90.13 95.24 96.03 96.43

Bi-LSTM 96.04 96.04 97.03 90.79 90.79 90.13 96.43 96.43 96.83
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Table 4, Table 5, and Figure 5 show the classification effects of ENF phase timing sequence 
characterization X

m ń
 (m=25,55,85) trained with phases f

0
 and f

1
 using different cyclic neural 

networks. As can be seen from Figure 5, when feature X
25 83´  is used, the classification effect of 

LSTM and Bi-LSTM networks is superior to other circulating neural networks. When feature X
85 25´  

is used, the total number of frames is reduced, and the effect of other recurrent neural networks is 
also significantly improved. ENF phase timing with a frame length of 25 indicates that X

25 83´  has 
more frames than X

55 38´  and X
85 25´ . Since the LSTM network deals with long-term dependence, 

the phase information of multiple time steps in front of the ENF phase mutation region can make the 
ENF phase mutation more obvious.

As can be seen from the results of the mixed data set in Figure 5, the classification effect of the 
three features with different frame lengths in the Bi-LSTM network is more stable than other circulating 
neural networks. The classification accuracy is better than other neural networks. The bidirectional 
LSTM network can make the state of each time step jointly determined by the time series before and 

Table 5. ENF time sequence characterization of f
1

 phase with frame length 25,55,85 in different cyclic neural network 
experiment results

Classical(%) GAUDI-DI(%) Classical&GAUDI-DI(%)

Frame length m 25 55 85 25 55 85 25 55 85

RNN 91.09 95.05 97.03 90.13 91.45 90.79 95.63 96.03 96.43

GRU 94.06 96.04 97.03 90.13 90.79 90.13 95.63 96.03 96.43

LSTM 97.03 97.03 97.03 90.79 90.13 90.79 95.63 96.43 96.83

Bi-RNN 93.07 96.04 96.04 90.79 90.79 90.79 95.63 95.63 96.43

Bi-GRU 95.05 96.04 97.03 90.13 90.13 90.79 96.03 96.03 96.83

Bi-LSTM 97.03 96.04 97.03 90.79 90.13 90.79 96.43 96.43 97.22

Figure 5. Classification effect curves of X
25 83´ , X

55 38´  and X
85 25´  of features of f

0
 and f

1
 in different data sets
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after (Xu et al., 2019). The network can more comprehensively obtain the ENF phase difference of 
authentic audio and tampered audio. It will make the detection more accurate. Therefore, we conclude 
that the Bi-LSTM network is suitable for training the ENF phase timing sequence characterization 
proposed in this paper.

4.5 experimental Analysis
We carry out three groups of experiments: 1. Comparison between the proposed method and the 
traditional machine learning method. 2. Frame length verification of ENF phase timing sequence 
characterization. 3. Verification of multiple cyclic neural networks. In experiment 4.1, we compared 
the audio tamper detection method proposed in this paper based on Bi-LSTM with the automatic 
detection method proposed in the literature (Wang et al., 2018). The results show that feature X 
proposed in this paper has less information loss. The Bi-LSTM network can learn the ENF phase 
mutation better, making the proposed method significantly better than the traditional machine learning 
method. Experiment 4.2 gave ENF phase timing to characterize X with different frame lengths and 
used LSTM network training for audio tamper detection. The experimental results show that when 
the audio data is 9~35s, the frame length of the ENF phase timing change feature should be set within 
0.425s~1.445s. In experiment 4.3, we used six cyclic neural networks (RNN, GRU, LSTM, Bi-RNN, 
Bi-GRU, Bi-LSTM) for training and testing. LSTM network is good at dealing with the long-term 
dependence problem in time series, and the bidirectional cyclic neural network can make the state of 
each time step jointly determined by the time series before and after. Bi-LSTM network can obtain 
the information before and after the ENF mutation point and jointly determine whether there is an 
anomaly (Xu et al., 2019). Therefore, the Bi-LSTM network is more suitable for processing the ENF 
phase time series characteristics proposed in this paper.

5 CoNCLUSIoN

This paper proposes an audio tamper detection method based on the ENF phase and Bi-LSTM. First, 
the ENF component in audio is obtained by down-sampling and band-pass filtering, and DFT obtains 
the ENF phase. Then, the ENF phase is divided into frames. Each frame is represented as the ENF 
phase change degree within a period to obtain the ENF phase sequence characterization. Finally, the 
Bi-LSTM neural network is used for training. After dimensionality reduction and complete fitting of 
each time step output by the Bi-LSTM network, the Softmax classifier is used to classify and detect 
the edited audio. Experimental results show that this method has higher detection accuracy and is 
better than the existing audio tamper detection methods. Future work will focus on more robust audio 
tamper detection methods. In addition, audio tamper detection methods will be designed to locate 
tampered locations in audio.
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