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ABSTRACT

AI technologies have the potential to help deaf individuals communicate. Due to the complexity of 
sign fragmentation and the inadequacy of capturing hand gestures, the authors present a sign language 
recognition (SLR) system and wearable surface electromyography (sEMG) biosensing device based 
on a Deep SLR that converts sign language into printed message or speech, allowing people to better 
understand sign language and hand motions. On the forearms, two armbands containing a biosensor 
and multi-channel sEMG sensors are mounted to capture quite well arm and finger actions. Deep SLR 
was tested on an Android and iOS smartphone, and its usefulness was determined by comprehensive 
testing. Sign Speaker has a considerable limitation in terms of recognising two-handed signs with 
smartphone and smartwatch. To solve these issues, this research proposes a new real-time end-to-end 
SLR method. The average word error rate of continuous sentence recognition is 9.6%, and detecting 
signals and recognising a sentence with six sign words takes less than 0.9 s, demonstrating Deep 
SLR’s recognition.
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INTRODUCTION

The major mode of communication between hearing-impaired persons and other populations is sign 
language (SL), which is represented through both manual and non-manual elements. The purpose 
for creating sign language tools to enhance communication in hearing-impaired people has long been 
recognised by the scholarly community. The implementation of applications can be difficult due to 
the great number of sign languages recent breakthroughs in AI and ML have helped to automate and 
improve such systems. The expansion of sophisticated ML algorithms that reliably identify human 
actions to isolated signs or continuous phrases is known as sign language recognition (SLR).
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Because of advancements in size and comfort, wearable sensors are becoming more common in 
applications to monitor health (Kim-Campbell, et al., 2019). Wearable biosensors can use ML algorithms 
for processing signal to deliver real-time monitoring of signals. The advantages of local (in-sensor) signal 
processing in lower communication connection bandwidth and radio power requirements are advantages 
of wirelessly streaming raw data to an external compute unit (Liu-Sacks, et al., 2017). Whenever the 
basic method of a classiðer fails to acknowledge a broad number of constraints, the model’s classification 
accuracy degrades (Milosevic, Farella and Benaui, 2018). Furthermore, in-sensor model updates are 
not supported by systems capable of in-sensor training (Pancholi and Joshi, 2019).

A gesture is a physical movement of the hands, fingers, arms, and other parts of the human body 
that allows people to communicate meaning and information with one another. The data gloves method 
and the vision-based approach are two alternative approaches for human–computer interactions. 
The detection and classification of hand motions were among the investigations that looked into the 
vision-based approach. A One of the logical methods to create a convenient and adaptable interface 
between devices and users is to use hand gestures. HCI systems can use applications like virtual 
object manipulation, gaming, and gesture recognition. Hand tracking is a theoretical area of computer 
vision that deals with three key elements: hand segmentation, hand part identification, and hand 
tracking. Hand gestures are the best communicating approach and the most popular notion in a gesture 
recognition system. Hand gestures can be identified using one of the following methods: posture is 
a static hand form ratio without movement, and gesture is a dynamic hand motion with or without 
movement. Any camera may detect any form of hand gesture; keep in mind, however, that different 
cameras have varied resolution qualities. Most finger gestures can be detected by two-dimensional 
cameras in a continuous surface termed 2D.

One of the most common instances of a hand gesture system is sign language. It’s a linguistic 
system that uses hand motions in addition to other motions. For example, most hearing-impaired people 
utilise universal sign language all across the world. The three basic components of sign language are 
word level sign vocabulary, non-manual characteristics, and finger spelling. Sign language is one of 
the most effective ways to communicate with hearing-impaired people.

Object detection and object motions were among the experiments given by the researchers. 
Three-Dimensional (3D) hand tracking is a hot topic in the gaming world. Recent film releases, such 
as Avatar, revolutionised cinema at the start of the decade by integrating content development and 3D 
technology with real performers, resulting in the birth of a new genre. Following the breakthrough of 
3D movie, various electrical businesses concentrated their efforts on developing Three-Dimensional 
Television (3DTV) technology. The dome auto stereoscopic display was proposed by the researchers 
and is used to observe the position that is still constrained. Stereo and multi-view are two separate 
technologies that rely on the brain to merge the two views to produce the illusion of 3D.

The majority of studies follow a similar procedure for carrying out their experiments. Pre-
processing is the initial phase employed in most research, and it basically involves preparing the image 
for the second phase. Following that, image processing prepares to receive the entire image so that 
it can be tracked with techniques like Wavelet Transform (WT) and Empirical Mode Decomposition 
(EMD). Many classifiers, such as Neural Network (NN) and Convolutional Neural Network (CNN), are 
released by artificial intelligence, each having the ability to categorise data based on its configuration 
and capabilities. The most capable tools for extracting visual features are the WT and EMD approaches. 
Feed forward is the type of ANN utilised in some experimental research for categorization. Apart 
from CNN, it is the most efficient classifier type for gesture recognition.

Hand gesture recognition applications can facilitate interaction with the non-impaired through 
sign language translation, which is the principal mode of communication for the partially deaf (Xu 
Zhang-Xiang Chen, et al., 2011). Hand gesture recognition has also showed promise in a number of 
upcoming applications, such as interactions with smartphones, virtual reality (VR) (Yang-Xu, et al., 
2021) and then in selection control to prevent searching visually.
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Sign language, which comprises of intricate gesture linguistics, is the major mode of 
communication for hearing-impaired people. The majority of people who aren’t visually handicapped, 
on the other hand, don’t understand sign language. As a result, the hearing impaired and the majority 
of the non-hearing impaired population have a considerable communication gap. Because hearing 
challenged people utilise sign language in everyday contexts, computer vision-based techniques are 
ineffective due to privacy concerns, lighting sensitivity, and higher energy usage (Pan-Tsai, et al., 
2020). Artificial intelligence voice recognition (Sagayam and Hemanth, 2016), based on the current 
state of the aforesaid approaches. Previous studies have primarily focused on some particular sign 
language technologies (Zhao and Allison, 2019) and sign language translation (Badi and Hussein, 
2014). The purpose of our research is to design the wide range of recent revolutionary recognition of 
hand gesture and wearable interfaces as well as the present problems that prevent practical application 
(Reyana-Krishnaprasath, et al., 2020).

Wearable devices that use surface electromyography to detect muscle activity could be useful in the 
development of hand motion recognition applications. For gesture classification, such devices often use 
machine-learning models, either locally or remotely. Most devices with local processing, on the other hand, 
are unable to train and update the machine-learning model while in use, resulting in inferior performance 
in real-world situations. We present a wearable surface electromyography biosensing system with in-sensor 
adaptive learning capabilities that is based on a screen-printed conformal electrode array. Our system uses 
a neuro-inspired hyperdimensional computing approach for real-time gesture classification, as well as 
model training and updating under multiple arm postures and sensor replacements.

Consider how difficult it would be to type on a computer without a keyboard, play a video game 
without a controller, or drive a car without a steering wheel. One of the purposes of a new device 
developed by engineers at the University of California, Berkeley, that recognises hand motions using 
electrical signals detected in the forearm is to do just that. Wearable biosensors and artificial intelligence 
(AI) are combined in this system, which could one day be utilised to control prostheses or interact with 
nearly any form of electronic device. Detection, Tracking, and Recognition are the three levels that 
make up the notion of recognising movements made with hands and/or other body parts. We employ 
customised interfaces to capture these movements, then use computer vision and deep learning algorithms 
to deduce the underlying pattern. There are currently various gesture-interface products on the market 
from Big Tech firms such as Intel, Apple, and Google for use in applications such as home automation, 
commerce, virtual/augmented reality games, consumer electronics, and navigation, among others.

Nature has endowed humans with a voice that allows them to engage and communicate with one 
another. Unfortunately, due to hearing and speaking impairments, not everyone has this capacity. Most 
people who are not familiar with sign language find it difficult to speak with the person without the 
use of an interpreter. As a result, there is a need to develop a technique that converts signals in hand 
gestures and the speaker’s voice into simple text or audio that can aid real-time communication. As a 
result, we discover that a new strategy based on these new depth sensing devices, applied to machine 
learning, stochastic processes, and vision, is needed.

Wearable sensing electronic systems (WSESs) have sparked interest due to advancements 
in new materials and soft and stretchable circuits for a variety of applications, including health 
monitoring, disease diagnosis, personalised healthcare, on-demand treatment, assistive device, 
human–machine interface (HMI), and virtual and augmented reality. [The sensor unit, power unit, 
wireless communication unit, data collection/storage/transmission unit, and data processing unit are 
all common components of a WSES. Each of these components must be intelligent and intelligent 
in order for WSES to be used on a big basis. First, sensors must be sensitive, dependable, robust, 
and wearable, with high-quality sensing data being a requirement for WSES to work well. Second, 
there are three ways for powering devices currently available: self-powering, integrated battery, and 
wireless power. Third, data from the sensor system can be saved in the WSES’ memory or wirelessly 
sent to an external device (i.e., tablet or cellphone). Note that in some circumstances, external sources 
(e.g., special equipment for spectroscopy data acquisition) are still used to capture sensing signals, 
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which compromises the wearability of the devices. Fourth, data processing can be configured in an 
online or offline mode within the WSES using external devices (i.e., cloud computing or cellphone).

On the one hand, optimising each component in the WSES on many aspects has resulted in 
numerous accomplishments, including carefully fitted materials, high permeability for wearing, long-
term stability, and carefully constructed soft circuits, among others. The WSES, on the other hand, 
is still relatively unknown as a healthcare device or for other purposes. This is most likely because, 
despite the fact that a significant volume of raw data may be easily collected, the relevant information 
output from contemporary WSES still falls short of consumers’ expectations. This is especially true 
when multiple sensor arrays with various data modalities are combined into a single system. As a 
result, within the paradigm of traditional data processing techniques, interpreting a vast volume of 
multimodal data becomes problematic. A promising strategy is to extract as much information as 
possible from the gathered raw data utilising current WSES without further complicating the device 
structure designs. Fortunately, with the rapid rise of artificial intelligence, new data processing 
algorithms could close the gap between customers’ expectations and device performance (AI).

The combination of WSES data and AI techniques could be a game-changer, improving the 
current WSES’ performance and revolutionising various applications in personal healthcare, public 
health, sports, and games. Machine learning (ML) has already been widely used in many domains of 
mathematics, physics, chemistry, engineering, and materials science as a subset of AI. In many ways, 
ML algorithms make the WSES more realistic for a future application as medical devices because 
they are a powerful tool for processing and evaluating raw data acquired from wearable devices. With 
the help of machine learning algorithms, a simple biosensor device made of gold nanoparticles can 
quickly screen for coronavirus illness 2019 (COVID-19). ML algorithms can quickly and correctly 
extract relevant information from the WSES, allowing for the assessment of several vital indications of 
health state. For type 1 diabetes, adequate disease management with appropriate dose adjustment has 
also been demonstrated. Other significant advances in recent years include sign language translation, 
human–machine haptic interaction, and brain–to–text communication, among others. The widespread 
use of machine learning algorithms in engineering and materials science research has already begun.

Wearable devices can collect a large amount of raw data from various physiological signs, which 
must then be processed and analysed. Many physiological signals from our daily activities, for example, 
are sensed as biochemical concentrations, biopotential patterns, and biophysical activity intensities. 
Users and doctors can alter treatments or take further steps more quickly and easily if they have a 
clear comprehension of the information given by these data from wearable sensors. Traditional data 
analysis paradigms, such as threshold limits, simple mathematical models (i.e., linear or polynomial 
regressions), or manual selection, are insufficient for large volumes of raw data handling due to a 
variety of factors, including data structure complexity and dimensionality, multiple modalities, and so 
on. As a result, machine learning algorithms have become important in establishing a new paradigm 
of data analysis that will aid in the advancement and practicality of smart and intelligent wearable 
gadgets. Useful information of various signal properties can be retrieved from raw data and utilised to 
the best extent possible by implementing appropriate ML algorithms, allowing these wearable devices 
to perform better in an intelligent manner. It is vital to highlight that choosing the right algorithm 
for different types of raw data is critical for establishing a correct and reliable correlation between 
sensing signals and physiological status. We cover significant data processing approaches reported in 
prior wearable electronics experiments in this section. Data preprocessing procedures like principle 
component analysis (PCA) and hierarchical cluster analysis (HCA), classification algorithms like 
support vector machine (SVM), decision tree (DT), and random forest (RF), and artificial neural 
network algorithms are all included (ANN). Here’s a system that makes it easier for persons with 
disabilities to communicate. Computer recognition of hand gestures is a critical research subject for 
helping deaf and dumb individuals to communicate. The objective is to develop and build an intelligent 
system that takes visual inputs of sign language hand motions and generates easily recognised outputs 
utilising image processing, machine learning, and artificial intelligence ideas.
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RELATED STUDIES

Speech recognition has made remarkable as well as the usage of huge data computing. People’s 
daily lives have been impacted by multivoice technology. Amazon’s Alexa, the Baidu signal-to-fly 
method, Apple’s Sift, the Ding Ding intelligent sound box, and others are examples, with single-word 
Mandarin pronunciation recognition accuracy over 95%.

Chen et al. (Zhou-Chen, et al., 2020) also proposed utilising a wrist-mounted camera to detect 
background variations and derive finger movements. A hybrid technique combining the above sensing 
methods, as well as surface electromyography (sEMG), offers a promising option. Kudrinko (Sheng, 
2019) just reviewed this topic, which has gotten a lot of interest.

The most basic target gesture sets in this application were 26 American sign language letters and 
the 10 American numerals (Kudrinko-Flavin, et al., 2021). Electromyography (EMG), sensor gloves 
and PPG are examples of biosensor-based systems. EMG sensors can record data indicating muscular 
activity. For collecting isolated gestures, Lu et al. coupled a sEMG sensor with an ACC signal, on 
the other hand, can only detect arm motions along vertical or horizontal axes.

Wearable sensors are used to capture sign language actions. In (Wang, Pan and Liu, 2018), 
Wang et al. used a two-armband system with both IMU and EMG sensors to collect hand locations. 
However, only three movements are recognised, and feature extraction is limited to finger locations 
rather than the complete hand.

Furthermore, the programme is not real-time. In contrast, Ozarkar et al. (Ozarkar-Chetwani, et al., 
2020) developed a three-module smartphone application. The sound classification module recognised 
and classified input sounds, and vibrations notified the user. The Indian sign language video was 
detected by the gesture recognition module, which then transformed it to natural English. Furthermore, 
Paudyal et al. (Paudyal-Lee, et al., 2019) created a smartphone application that gives sign language 
feedback from the students based on the position, movement, orientation, and hand-shape signs.

Human hand gesture detection by AI systems has been a significant advancement in the recent 
decade, with applications in high-precision surgical robots, health monitoring equipment, and gaming 
systems. The use of inputs from wearable sensors has improved AI gesture recognition systems 
that were previously visual-only. This is known as ‘data fusion.’ Wearable sensors mimic the skin’s 
detecting abilities, one of which is referred to as’somatosensory.’ The low quality of data received from 
wearable sensors, which is often owing to their bulkiness and poor contact with the user, as well as the 
impacts of visually occluded objects and poor lighting, continue to limit gesture detection precision.

AI-BIOSENSOR NETWORKS (AIBN)

The creation of biosensors has stimulated academic and corporate interest, and AI is a key factor in 
improving biosensor performance. As a result, AIBN has the ability not only to give early warning of many 
application scenarios but to modify our way of life through “smart” applications. Applications of AIBN can 
assist hearing challenged people in recognising hand gestures (Pardeshi, Sreemathy and Velapure, 2019).

Figure 1. Design of the proposed model
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Thus, a compact and reliable SLR system is needed necessary to actually help the deaf people to 
interact with the normal individuals at any place. To overcome these issues, this study implements and 
designs a revolutionary end-to-end SLR system termed Deep SLR, as displayed in Figure 1. It continually 
converts sign language into voices in real-time so that individuals who are deaf or hard of hearing can 
comprehend what a hearing-impaired person is saying, even if they are unfamiliar with sign language 
(Moores, McIntyre and Weiss, 1973). Unlike other SLR systems, to gather sign signals on both forearms 
we use two armbands, each with an AI biosensor sensor and surface electromyogram (sEMG) sensors. 
Arm movements are captured by the AI biosensor, which consists of a gyroscope (GYRO) and an 
accelerometer (ACC); perfectly alright finger motions are captured by the sEMG sensors. Some basic 
hand gestures are shown in Figure 2. Which can be easily converted into voice recognition.

Smartphone-Based Platforms
With the worldwide popularity, the smartphone-based sensing systems have earned a lot of interest. 
Smartphones are playing an increasingly essential role in AI-biosensors for sharing, cloud interaction, 
storage and data processing of various sensors and functionalities which are referred as communication 
and processing which will be helpful for hearing impaired people (Grover-Aggarwal, et al., 2021). 
Smartphones have additional hardware as Bluetooth, cameras, USB, and audio ports to improve 
accessibility to receive detection data and control the detection process. Data security will become 
increasingly important as smartphones collect more personal data from AI-biosensors.

Figure 2. Basic sign language using hand gestures
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Smartwatch Based System
Hand gesture recognition technology is also being used in smartwatches, which is an emerging 
field. Because the screens on smartwatches are very small for touching motions, hand motions for 
operation or typing could be a viable substitute. Popular hand gesture detection systems, such as 
sEMG and forcemyography (FMG), however, necessitate additional components and a substantial 
amount of space, which most smartwatches require (SAYEM, 2014). Existing smartwatch sensors 
are using recognition of hand gestures such as microphones, photoplethysmography (PPG) and bone-
conducted sound sensing have been reported in new research. The PPG method has the potential to 
be implemented as a low-cost recognition method of gesture on commercial smartwatches. The PPG 
technique has several advantages, including being inexpensive, lightweight, and easily implemented 
on a smartwatch (Chen-Lv, et al., 2019).

METHODS

The high-level overview of Deep SLR is presented in this section. Data collection, data preprocessing 
and continuous recognition are the key steps of Deep SLR (Wang, Pan and Liu, 2018).

Data Collection
We employ two armbands on the forearms to collect both hands’ real-time sign signals. Each armband 
has an AI biosensor and eight axes of sEMG sensors. The bio sensor records the angular velocity and 
acceleration of hand movements, while sEMG sensors record the muscle movements that correspond 
to hand actions (Reyana and Kautish, 2021).

Data Preprocessing
This step comprises of data cleaning and extraction features to normalise and eliminate noises in 
real-time signals. Given that the AI biosensors and sEMG sensors have various sample frequencies, 
we first use spline interpolation to normalise the gathered signals to the same length, and then to 
clear spike noise.

Continuous Recognition
We use a multi-channel CNN and an attention-based encoder-decoder model to achieve end-to-end 
continuous SLR without fragmentation for improving identification accuracy without division. Finally, 
we utilise a grammar-based classification models and a laser approach to infer the most likely sequence 
of words from the probability matrices, which we use as the final text phrase.

SIGN LANGUAGE RECOGNITION

The task of detecting sign language phrases from video feeds is known as sign language recognition 
(SLR). It is an essential research subject because it has the potential to overcome the communication 
gap between Deaf and hearing individuals, allowing hearing-impaired persons to participate more 
fully in society (Kudrinko-Flavin, et al., 2021). Furthermore, depending on whether the video streams 
sign language recognition can be characterised as CSLR and ISLR.

Continuous Sign Language Recognition
The purpose of Continuous Sign Language Recognition is to categorise signed videos into whole 
phrases. CSLR is a difficult job since it necessitates the detection of glosses from video streams 
without any prior information of sign limits. For feature extraction, most works use 2D or 3D-CNNs, 
for sequential modelling. The word error rate (WER) is a standard metric for CSLR performance. 
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The number of operations necessary to convert the projected sequence into the target classification 
is measured by WER (Wang-Zhao, et al., 2020; Lee, 2018; Lu-Chen, et al., 2014).

Isolated Sign Language Recognition
Isolated sign language recognition (ISLR) is the task of correctly identifying single sign motions 
from videos. It is typically approached in the same way as action and hand gesture recognition video 
process by extracting and understanding highly feature representations. Extraction of hand and mouth 
areas from video sequences is a frequent technique to the task of isolated sign language identification 
in the literature, in an effort to eliminate loud surroundings that can hamper classification results 
(CHU-LEE, et al., 2021; Samčović, 2020).

Sign Language Translation
Sign language videos are converted into spoken language by modelling not just the glosses but also 
the grammar and linguistic structure is known as sign language translation. It’s a significant study 
field that helps Deaf and other communities communicate more effectively. Furthermore, due to the 
incorporation of linguistic norms and the representation of spoken languages, the SLT challenge is 
more difficult than CSLR.

PERFORMANCE EVALUATION

The performance of Deep SLR is presented in this section. We examine the model training parameters 
first, then assess the impact of each component in Deep SLR. Then we do a comparison between Deep 
SLR and ISLR. Following that, we perform a full evaluation of our approach, taking into account 
each individual and each phrase, and then we test the method’s resilience by identifying phrases from 
additional participants. Finally, the performance of Deep SLR in real time is explored.

Evaluation Metrics
As an assessment parameter, we employ the word error rate (WER), which is extensively used in 
the recognition of speech, and CSLR. It calculates the smallest number of deletions, insertion and 
replacement operations required to convert a recognised text phrase to the ground truth. The WER 
of a recognised text phrase is represented as:

WER
sub ins del

words
�

� � � �
�=

+ +# # #

#
	

Therefore #ins, #sub and #del represent the lowest number of insertion, substitution and deletion 
operations required to change the phrase and #words represents the set of words in the underlying data.

Parameter Analysis
The effects of several parameters on Deep SLR are investigated such as learning rate, hidden state 
size in the LSTM, and regulation strength. The assessment of these characteristics is shown in 
Figure 3. Without further explanation, WER is the average of 6 training sessons, and the error bars 
represent the variance. Because the learning rate is 0.2, we utilise 0.2 as the standard learning rate 
in our approach gets the lowest WER.

The regulatory strength is set to default levels, much like the size of the hidden state. Finally, we 
arrive at a customized model with 7,500 parameters, 9.6% WER on the training set, and 7% WER on 
the testing set. When we increase the label and double the training set, WER will reduce dramatically 
if we have enough time and enough personnel cost.
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Effectiveness of Each Component
The influence of each component on Deep SLR recognition performance is established in this section.

Signals Impact
The AI-biosensor is only used by Sign Speaker for isolated fingerspelling recognition and CSLR. 
We gathered all the signs of hand gestures in addition to the whole test dataset. We can observe that 
when both sensors are used, the WER is always lower than when only the AI-biosensor is used, 
highlighting the relevance of sEMG signals in recording finger movements.

Hand Rotation Features Impact
All the data of signals with arm movements are selected in addition to the entire test set. We can 
observe the hand rotation characteristics of WER is always lower, implying that hand rotation is 
essential for accurate SLR.

Multi-channel CNN Impact
The recognition rate of Deep SLR is compared with and without the CNN to assess the scalability 
provided by the multi-channel CNN. It is constructed utilising examples from two people with 
very varying signal intensities, in addition to the test set. Clearly, the WER of Deep SLR with 
CNN is substantially lower. We also see that the WER of Deep SLR utilising CNN is nearly same, 
demonstrating that CNN improves SLR scalability.

Attention Mechanism Impact
By visualising the alignment function, we can further examine the efficiency of the attention process. Figure 
4 depicts the display among one channel of sEMG signals from a sign phrase consisting of four Indian signs, 
as well as the accompanying context vectors c2, c3, c4, and c5. In the vector representation, a deeper square 
represents a greater value. We can observe that the greater results in the vector representation correlate to 
the locations of clear signals, implying that the approach has learnt to show additional “attention” to the 
relevant section in the signal obtained for each predictions, resulting in alignment.

Figure 3. The illustration of parameter analysis
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Comparison of AI Technologies
A comparison between AI technologies in terms of the suggested networks of CSL, ISLR and SLP’s 
Accurateness, Requirements of Hardware, Existing datasets and Future potential is depicted in Figure 5.

Except for the real datasets, their results are determined on research for standard datasets. ISLR 
approaches great precision with low requirements of hardware, but they have been widely investigated 
with minimised future potential. CSLR and SLP approaches, on the other side, have substantial 
hardware and training standards as a significant impact on future researches.

Real-time Performance
We examine Deep SLR’s real-time performance from three different angles in this section: delay 
and recognition speed. The tests are carried out on three smartphones with low, medium, and high 
computational capabilities, namely the Redmi 9, MI note 10, and SAMSUNG Galaxy S21 ultra.

Figure 4. Alignments for signals with four Indian signs

Figure 5. Comparison of AI technologies
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Delay
The time spent for signal identification and data preparation in Deep SLR is referred to as the delay. 
Figure 6(a) illustrates the time it takes for 10 participants to recognise sign texts of various lengths. 
We can observe that on devices with more Computational resources, the delay will be shorter. We also 
see that the delay gets greater as the phrases get lengthier. Note that the typical latency for processing 
a 6-word phrase for a smartphone with medium computational capabilities is merely 0.45 s, which 
has little bearing on SLR’s actual results.

Recognition Speed
The avg time utilised for the recognition component, which is the real-time speed recognition of 
words over 10 individuals displayed in Figure 6(b). We can observe that the smartphone with weaker 
computer capability, as well as lengthier words, take longer. It’s worth noting that the recognition 
accuracy speed of a phrase with six sign words for a smartphone with medium computational power 
is 0.65 seconds, demonstrating Deep SLR’s actual capability.

CONCLUSION

In this research, we executed a real-time end-to-end CSLR system termed as Deep SLR to enable 
individuals “hear” sign language by translating it into speech. Hand movements and quite well finger 
gestures are captured using both sEMG and AI-biosensors. To provide efficient, adaptable, and end-
to-end CSLR without sign division with encoder-decoder structure and multi-channel CNN was 
presented. Continuous sentence recognition has a WER of 9.6%, which is significantly lower than 
isolated methods, and it tends to take less than 0.9s to detect signs and recognise a phrase with six 
sign words, demonstrating the technique and limited ability of Deep SLR in real life situations. The 
experimental results also confirm Deep SLR’s resilience and scalability. We intend to integrate our 
suggested technique in various wearable artificial intelligence biosensors in the future.

Figure 6. Performance of Real-time: (a) delay, (b) recognition speed
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