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ABSTRACT

Class imbalance is a well-known and challenging algorithmic research topic among the machine 
learning community as traditional classifiers generally perform poorly on imbalanced problems, 
where data to be learned have skewed distributions between their classes. This paper presents a 
hybrid framework named PRUSBoost for learning imbalanced classification. It combines a selective 
data under-sampling procedure and a powerful boosting strategy to effectively enhance classification 
performance on imbalanced problems. Different from the simple random under sampling algorithm, 
this framework constructs the training data of the majority or negative class by using a newly developed 
partition based under sampling approach. Experiments on several datasets from different application 
domains that carry skewed class distributions have shown that the proposed framework provides a 
very competitive, consistent, and effective solution to imbalanced classification problems.
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INTRODUCTION

Class imbalance is a well-known and challenging problem among the machine learning community. 
It refers to the applications where data from different classes are noticeably unevenly distributed. 
For a binary classification problem, it means that samples from one class (that is usually called the 
majority or negative class) significantly outnumbers those from the other (that is named the positive 
or minority class). Traditional classification algorithms generally fail to work adequately with 
skewed class distribution problems. They are designed to generalize from sample data and produce 
the simplest hypothesis that best fits the data. This learning principle is represented as the inductive 
bias of some machine learning algorithms such as decision trees, which prefer small trees over large 
ones (Akabani et al., 2004). As a result of this, given an unbalanced data set, they often generate the 
hypothesis that classifies almost all its samples as negative.

Clearly, such a hypothesis can simply be useless in practice. For instance, assume we need to 
build a model with a data set that contains customer transaction records and among them, there are 
only a very tiny portion of transactions are confirmed fraudulent and the rest of transactions are 
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deemed as normal. To protect customers and their financial assets, we are most interested in detecting 
successfully as many fraudulent activities as possible. When facing this kind of real-world scenarios, 
the generated hypothesis described above obviously could not achieve the desired outcome. In order 
to simply the discussion, this paper focuses only on binary classification problems.

For the class imbalance problem, the degree of imbalance between classes may not be the 
only issue that hinders learning. Several research papers (He & Garcia, 2009) (Galar et al., 2012) 
have pointed out that data complexity would be the primary factor of classification performance 
deterioration, which is in fact intensified by the added skewed class distribution. More specifically, 
data complexity comprises the issues such as class overlapping (which makes discriminative rules 
hard to induce), lack of representative data, small disjuncts (which leads to underrepresented sub-
concepts) and all of these issues contribute to performance degradation.

Over the past decades, several approaches have been proposed to address the challenges of 
imbalanced classification (Krawczyk, 2016). Some of them either aim to shift an inductive bias towards 
the positive class or apply a data preprocessing procedure to reduce the potentially undesirable impact 
of class imbalance on model building. Some other approaches assume higher misclassification costs 
for samples in the positive class and seek to minimize the higher misclassification errors in learning. 
Furthermore, several modifications or extensions of ensemble algorithms are recently adapted for 
imbalanced modeling, by embedding data preprocessing before applying each base learner or by 
integrating a cost-sensitive strategy in the ensemble learning process. We will discuss these different 
approaches in detail in the next section.

In this paper, we present a new hybrid learning framework called PRUSBoost for imbalanced 
classification. It applies a newly developed a partition-based data under-sampling strategy and integrates 
it into the AdaBoost algorithm (Freund & Schapire, 1996). It aims to provide a unified framework 
where we can informatively select some negative samples that exhibit mainstream characteristics of 
the class and also some negative samples that reveal significantly less typical features of the class and 
then combine them with the available positive samples to form a well-representative and balanced data 
set for training. This data selection process can be particularly helpful in the presence of data noises 
and class over-lapping regions in the data space. Once the training data samples are constructed, we 
further enhance the learning by building an ensemble of classifiers in hope of capturing most of the 
important underlying negative data patterns while learning most of the unique positive data features 
through an iterative process. The proposed framework can be considered as a general under-sampling 
approach that includes the well-known RUSBoost method (Steiffert et al., 2010) as a special case. 
Experiments on several data sets with various imbalance ratios indicate that the framework represents 
a very competitive and efficient alternative to handling imbalanced classification problems.

The rest of paper is organized as follows. Some closely related research work is reviewed in 
Section 2. The proposed hybrid learning framework for imbalanced classification is discussed in detail 
in Section 3. Experiments on several imbalanced data sets, including experimental setting, results 
and analysis, as well as a comparison with two popular hybrid boosting methods (RUSBoost and 
SMOTEBoost), are presented in Section 4. Finally, a few conclusion remarks are provided in Section 5.

RELATED WORK

Over the past years, imbalanced learning has become a very popular research topic among the machine 
learning community. Several approaches have been proposed to address various challenges associated 
with imbalanced leaning and according to the study (Galar et al., 2012), they can be categorized into 
three primary groups: 1) algorithm level, 2) data level, and 3) cost sensitive.

The algorithm level approaches create new algorithms or modify existing ones and aim to alleviate 
the learning bias towards the negative class and to become more effective in learning imbalanced class 
distributions. For instance, decision tree algorithms can be adapted for imbalanced classification by 
adjusting the decision thresholds at leaf nodes, modifying the split criteria at each tree node, or by 
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developing more adequate pruning strategies. As another example, SVM can also be reworked for 
this purpose by using adequate penalty constants for different classes (Lin et al., 2002).

The data level approaches are those that apply a data preprocessing or data sampling step to 
reduce the negative effect of skewed class distributions in learning. There are multiple ways can be 
done for data sampling. The simplest option of balancing a training data set is to under-sample the 
negative class, which is typically accomplished randomly, while retaining all samples of the positive 
class. With a reduced training data set, these under-sampling methods help speed up the learning 
process, but it can result in information loss for the negative class. As an alternative to under-sampling, 
data rebalancing can be done by over-sampling the positive class by, for instance, simply duplicating 
positive samples. This approach, by contrast, does not lose any information of the positive class but, 
due to the resulted increased data size, it takes more time to build learning models. There are several 
more sophisticated over sampling options that have been proposed (Stefanowski & Wilk, 2008) and, 
among them, SMOTE (Chawla et al., 2002) is a popular one. SMOTE generates new synthetic positive 
samples randomly along the line segments connecting each available positive sample to its nearest 
neighbors and consequently could help find some unrevealed positive clusters. However, SMOTE 
can cause over generalization and potentially increase the occurrence of overlapping samples between 
classes (He & Garcia, 2009).

The cost-sensitive approaches assume there is a cost that is associated with misclassifying 
individual samples and in general, the cost of misclassifying a positive sample outweighs that 
of misclassifying a negative one. They seek to minimize the number of expensive errors and the 
total misclassification cost in the learning process (Elkan, 2001). One popular implementation of 
cost-sensitive learning is to assign samples of different classes with different weights, which are in 
proportion to their known or specified misclassification costs, and then use the weighted samples to 
build a classifier (Ting, 2002). This sample weighting technique places more focus on samples with 
higher weights and consequently it helps produce a more balanced classifier. A noticeable limitation 
with cost-sensitive learning, however, is that the required misclassification costs of a given application 
are either unknown or very difficult to be determined in practice.

Beside these three primary groups of imbalanced classification approaches, several ensemble 
algorithms have also been adapted as solutions to class imbalance problems (Lopez et al., 2013). 
Ensemble algorithms are primarily designed to maximize the accuracy criterion and hence they are 
not always very effective as direct solutions to imbalanced classification problems. However, over the 
recent years, several methods that integrate ensemble algorithms (boosting, bagging) into data sampling 
schemes (under-sampling, oversampling) have been proposed and their promising classification 
results have been reported. Among a few others, RUSBoost and SMOTEBoost (Chawla et al., 2003) 
are the most popular ones. Different from hybrid methods that combine data sampling schemes with 
non-ensemble classifiers, an ensemble is constructed by a sequence of individual classifiers, each of 
which is built on a different sampling of data, and the final combined classifier is expected to form 
a decision region that is more accurately reflected of training data. A report of related extensive 
experiments (Galar et al., 2012) have shown that ensemble-based hybrid approaches are among the 
most promising and efficient solutions for imbalanced classification.

THE PROPOSED LEARNING FRAMEWORK (PRUSBOOST)

As discussed in the previous section, several ensemble-based hybrid methods have been proposed 
and evaluated on various experiments and the results have suggested that these methods are generally 
quite effective as solutions to imbalanced classification problems. Among them, RUSBoost is 
a representative one. It incorporates random under-sampling or RUS, a simple data rebalancing 
technique that randomly removes negative samples until the remaining ones match the samples from 
the positive class in size, into AdaBoost that iteratively builds a sequence of classifiers. Specifically, 
at each AdaBoost iteration, RUSBoost first applies RUS to form a balanced data set and then uses 
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it to build a new classifier that focuses more on those misclassified samples with the hope that they 
could be correctly classified during the next iteration. Once all classifiers are constructed, they are 
combined to form a final weighted classifier.

RUSBoost has a few benefits. It is simple and relatively fast in building learning models due to 
reduced data size. Although the random under-sampling scheme works reasonably well in general, 
it may lose some important information about the negative class. For instance, the selection can 
remove some critical negative samples that exhibit prevalent characteristics of the class. Further, 
it does not provide a mechanism of organizing samples into groups based on certain criteria and 
forming a balanced data set by selecting samples with certain proportions from the groups, which 
can potentially have an impact on classification performance.

In this section, we describe the proposed learning framework for imbalanced classification. 
Essentially, it applies a newly developed a partition-based data under-sampling strategy and integrates 
it into the AdaBoost algorithm. We name the framework PRUSBoost, or Partition-based RUSBoost. 
In comparison to RUSBoost, PRUSBoost aims to provide a unified framework where we can more 
informatively select certain negative samples that display mainstream features or show significant 
irregular characteristics of the class and, by combining them with available positive data, we build 
an ensemble of classifiers in hope of capturing most of important underlying data patterns through 
a boosting procedure. PRUSBoost can be considered a general under-sampling approach and in fact 
it includes RUSBoost as a special case.

There are a variety of different approaches that can be used to organize training samples of the 
negative class into groups based on certain criteria or characteristics. In this work, we limit ourselves 
to two sample groups and more specifically, we apply a novel detection algorithm to partition the 
negative sample population into 1) those demonstrate the prevalent or typical features of the class 
and 2) those display somewhat rare or irregular features of the class. The objective of this selective 
sampling process is to form a well-calibrated and reduced negative sample set that can, once combined 
with the given positive data, help find a reasonably good class decision boundary in the data space. A 
more simple and similar strategy for selecting samples with irregular behaviors has also been proposed 
for building models to identify thieves in public transit systems (Du et al., 2016).

In PRUSBoost, we use the one-class SVM algorithm (Scholkopf et al, 2001) to partition samples 
due to its solid theoretical foundation, efficient computations, and generally superior classification 
performance. Like the regular SVM, one-class SVM computes non-linear decision boundaries by 
using appropriate kernel functions and soft margins, but it constructs the boundaries that separate 
the data of the target class from the origin. Note that only a portion of the data points are allowed to 
be on the other side of the boundaries and these pointes are regarded as irregulars or outliers.

Assuming we have a set of training data with n samples

S x y x y
n n

= {( , ),...,( , )}
1 1

	 (1)

where xi is the vector in some space X that represents attribute values of a sample and y
i
∈ + −[ , ]1 1

is the binary value indicating the sample’s class label. Using a kernel function defined by 
K x x x x

i j i
T

j
( , ) ( ) ( )= f f , where the function f( )  transforms the data points from X to a high 

dimensional feature space F, the optimal decision boundary in the transformed space F can be 
expressed as

w xT
i
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where w  is the vector in F perpendicular to the decision boundary and r  is the bias term. Further, 
the optimal decision boundary for one-class SVM can be obtained by solving the following 
optimization problem

min
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where x
i
 is the slack variable to allow x

i
 to be lie on the other side of the decision boundary and n  

is the regularization parameter. 
By using a kernel function, we can find the desired decision boundary without dealing with the 

exact form of the transformation function f ( ) . We use the well-known Gaussian kernel for our 
one-class SVM implementation as it guarantees the existence of such an optimal decision boundary 
separating data from the origin (Scholkopf et al., 2001).

For a given data set, we apply the one-class SVM algorithm to all samples of the negative class 
to partition them into the regular portion that contains the samples sharing some mainstream behaviors 
and the anomalous portion that contains the samples having relatively unique or unpopular behaviors. 
We can manipulate the regularization parameter n  to have a desired data split between the two 
portions. For instance, we may choose a data portion p (e.g., 20% or 30%) as anomalous and the 
remaining ((1 - p) %) as regular for the partition. Once the partition is formed, we can, based on our 
modelling needs, construct the final negative training data by randomly selecting a percentage q from 
the regular portion and the remaining ((1 - q) %) from the anomalous portion. The total number of 
selected samples is comparable or matched with the number of given positive samples (Weiss & 
Provost, 2003). Clearly, the partition between the two groups can be made with many different dividing 
choices and the optimal partition that leads to the best performed classifier is likely data dependent. 
In fact, the best partition might be associated with several factors of data samples such as imbalance 
ratio between the positive and negative classes, sample distributions and also the overall quality of 
the data.

Once a balanced training data set is formed, we integrate it into the boosting algorithm, or 
AdaBoost, to build a classification model. AdaBoost, or Adaptive Boosting, is a well-known ensemble 
machine learning algorithm and it can be used in conjunction with other base learning algorithms to 
improve classification performance. The method involves an iterative process that produces a sequence 
of classifiers or hypotheses and in each step of the process, it builds a classifier that focuses more 
on the training samples that are misclassified by the previous one. This is accomplished by using 
an adaptive weighting scheme on the training data. In the context of class imbalance problems, this 
unique weighting scheme of AdaBoost can be particularly helpful because the positive samples tend 
to be misclassified and, by assigning higher weights on them in subsequent iterations, we would 
expect to have an improved classification of the positive class.

The core algorithm of PRUSBoost is shown in Figure 1. In PRUSBoost, the boosting procedure 
takes as input a training data set (1) and applies a base learning algorithm repeatedly in multiple 
rounds to builds an ensemble of classifiers. It begins with an initial distribution D1 of by assigning 
an equal weight to all training samples,

D i w
ni1

1( ) = =� , i n= …1 2, , , 	
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and on round t, it first applies the partition-based random under-sampling procedure with partition 
parameters p and q on S  to create a balanced training data set S

t
'  with an adjusted distribution D

t
'  

(Step 1). Then, it runs the base algorithm to build a classifier or hypothesis (Step 2),

h x y
t
� ,��( ) : X � ,�→ − +{ }1 1 	 (4)

Then, the boosting procedure computes the pseudo-loss of (x, y) with respect to the data set and 
the distribution (Step 3):
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and the sample weight update term (Step 4)

β ε ε
t t t
= −/ ( )1 	 (5)

which is used to update D
t
 and to produce the final hypothesis. The distribution of S  for the 

next round, D
t+1 , is then updated by (Step 5)

Figure 1. The core algorithm of PRUSBoost
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Once all sample weights are updated, they are normalized (Step 6) and this normalization step 
effectively increases the weight for misclassified samples and decreases the weight for correctly 
classified ones. The process is repeated for several times to generate a sequence of classifiers. The 
final classification output from the procedure is formed by a weighted vote of the classifiers

h x log h x y
final

y t
t

t( ) =

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
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
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1

b
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where the weight for the individual classifier is given by log /1 b
t( ) . This weight scheme gives a 

high weight to a classifier that performs well and gives a low weight to a classifier performs poorly.

EXPERIMENTS AND ANALYSIS

Data Sets
We evaluate the classification performance of PRUSBoost and compare it with two other state-of-
the-art hybrid boosting methods (RUSBoost and SMOTEBoost) using twelve data sets gathered from 
a variety of application domains (Steiffert et al., 2010) that range from software defect prediction 
(CM1, PC1), health care (Mammography, Contr2), image recognition and analysis (SatImage4, 
Pendigits5, Segment5, Vehicle1), bioinformatics (Ecoli4) to vehicle evaluation (Car3) and material 
science (SolarFlareF, Glass3). All the sets are publicly available, and they can be accessed either 
from the UCI Machine Learning repository1 or their pertinent websites. Table 1 shows the primary 
characteristics of the data sets.

For each of the sets, Table 1 includes the sample size, the number of attributes, the sample 
number of the positive class as well as the imbalance ratio (IR), which is defined as the count 
ratio of the negative samples to the positive samples. The included data sets have quite diverse 
characteristics and in particular, their IR values range from highly unbalanced 42.01 (Mammography) 
to moderately unbalanced 2.99 (Vehicle1), and their sample sizes spread from 214 (Glass3) to 11,183 
(Mammography). The data sets are listed in Table 1 in the decreased order of IR.

Table 1. Data sets used for experiments and their primary characteristics
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The proposed framework PRUSBoost is not limited to the data with two classes and in fact 
it can classify unbalanced data with multiple classes in practice. But we only consider the binary 
classification problem in this paper. Hence, if an original data set included in the experiments has 
multiple classes, we select one of them as the positive or minority class and combine the rest to form 
the negative or majority class.

Hybrid Boosting Methods Used for Comparison
To assess the effectiveness of PRUSBoost, we include two best known hybrid boosting-based methods 
to be compared with in the experiments, and they are RUSBoost and SMOTEBoost. As a special 
case of PRUSBoost, RUSBoost has been described in Section 3. These two approaches are closely 
related in terms of their algorithmic structures, and both apply a data sampling strategy to create a 
balanced training data set and then embed it into the AdaBoost iterations. The primary difference 
between these two is that RUSBoost uses a straightforward random under-sampling procedure while 
PRUSBoost applies a selective partition-based random under-sampling technique.

Unlike random oversampling, the SMOTE method creates new artificial samples for the positive 
class based on the feature space similarity between given positive samples. As a result of this process, 
SMOTEBoost can lead to a broadened decision region for the positive class. But it can also increase 
the occurrence of overlapping between classes and certainly result in larger leaning models due to 
its increased training data size.

Experiment Setup
All three hybrid methods (RUSBoost, SMOTEBoost, PRUSBoost) create a balanced training data set 
for model building. The quality of the built models may depend on the produced training data. Further, 
there might be an optimal balance between the positive and negative classes in the sense that it yields 
the best performed classifier. Such a class balance is likely data dependent, and it is surely not easy to 
be determined. In this work, for both RUSBoost and PRUSBoost, we simply use under-sampling to 
form training data sets with an equal size between the two classes as this option is often considered 
to be near optimal (Weiss & Provost, 2003). For SMOTEBoost, we over-sample the positive class so 
that, together with original positive samples, it has a total matching the negative class. For the data 
partition used in PRUSBoost, we divide the negative class into a 20:80 ratio portions (i.e., p = 20%) 
and then for each AdaBoost iteration, we randomly select a fixed 60% (i.e., q = 60%) from the regular 
portion and the remaining 40% from the irregular one. Furthermore, the KEEL’s implementations of 
RUSBoost and SMOTEBoost (Galar et al., 2012) are used in the experiments. In order to have a fair 
and consistent comparison, all three approaches use the well-known C4.5 decision tree algorithm 
(Quinlan, 1993) as the base learner for their boosting process and the process runs 10 iterations.

There are several metrics that can be used for assessing classification performance and guiding 
model learning. Accuracy is the most general metric for the purposes. However, it is not adequate 
for gauging solutions of class imbalance problems because the positive class has little impact on the 
accuracy metric compared to the negative class (Joshi et al., 2001). In other words, in these cases, 
accuracy reveals more about distribution of classes than it does about the actual performance of the 
models.

A popular and useful tool of assessing and comparing performance between different algorithms 
for class imbalance is the receiver operating characteristics (ROC) curve (Provost & Fawcett, 2001). 
For a given classifier, the ROC curve plots the true positive rate of a classifier on the vertical axis 
against its true negative rate on the horizontal axis. It also offers a nice visual interpretation of the 
tradeoffs between the benefits (reflected by true positives) and the costs (reflected by false positives) 
of classification regarding data distribution (He & Garcia, 2009). In order to compare different models 
with ROC, however, it is going to be hard to declare a winner unless one curve dominates the other(s) 
over the entire space. For this reason, the area under a ROC curve or AUC provides a functional 
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alternative, which is a singer performance measure for evaluating and determining which model is 
better on average, and it can be applied to imbalanced data sets.

In addition, precision and recall (or sensitivity) is a widely used pair of metrics to deliver a 
comprehensive assessment on class imbalance problems where successful classification of one class 
(the positive or minority class for instance) is considered more significant than that of the opposite 
class (the negative or majority class). For a classier, precision measures its exactness (the percentage 
of the samples classified as positive actually belong to the positive class) while recall or sensitivity 
measures its completeness (the percentage of the positive samples are classified correctly). A harmonic 
mean of precision and recall, or F1, is often used to gauge the classification effectiveness. Different 
from an arithmetic average, a high F1 value ensures that both precision and recall are reasonably high.

Furthermore, with sensitivity, there is a corresponding metric, called specificity, that can be 
used to measure the accuracy of the negative or majority class. It is the percentage of the negative 
samples classified correctly. Clearly, there is a trade-off between sensitivity and specificity values. 
The geometric mean (G-mean) of both metrics has also been a popular unified metric for imbalance 
class applications (Kubat et al., 1998). It is defined as

G mean sensitivity specificity− = × 	

and can be used to assess the balance of classification performance on both classes and in particular 
to help determine if a classifier overfits the negative class and underfits the positive class. A low 
G-mean value would typically indicate a poor performance in the classification of the positive class 
even if the negative class is mostly correctly classified.

For the experimental results reported in the next subsection, the metrics AUC, F1 and G-mean 
are used for classifier evaluation and comparison. All experiments in this work are conducted through 
the 5-fold stratified cross validation process. The presented results are the averaged values of the 
corresponding classification performance metrics.

Experiment Results and Analysis
Table 2, 3 and 4 shows the classification performance results, measured by AUC, F1 and G-mean, 
respectively, obtained from the proposed framework PRUSBoost, along with RUSBoost and 
SMOTEBoost, on the twelve data sets included in the experiments. For each data set, the highest 
obtained matric value is highlighted in bold face. It can be observed from the tables that PRUSBoost 
achieves, even with simple and fixed settings on partition parameters for selecting negative samples, 
some very competitive and consistent classification performance, in comparison to the two state-of-
the-art hybrid boosting approaches.

In order to have a quick view of how good an algorithm is with respect to others in comparison 
based on obtained tabular results, we compute the Friedman’s average ranking for each of the three 
approaches over the data sets (Galar et al., 2012). Specifically, for each experimental setting that 
involves a data set and a performance assessment metric, we assign the top rank or rank 1 to the 
best-performed algorithm and then assign the next rank or rank 2 to the next followed-up algorithm, 
and so on. The final average ranking of an algorithm is computed by the mean value of its rankings 
over all data sets used in the experiments.

Figure 2 shows the combined average rankings of all three algorithms across all data sets and 
performance metrics, whereas Figure 3 shows the average rankings of the algorithms on an individual 
metric (i.e., AUC, F1 and G-mean). It can be seen from both figures that, among the comparison 
group, PRUSBoost has the lowest or top combined ranking and the lowest or top individual ranking 
on AUC and G-mean, while SMOTEBoost receives the lowest or top ranking on F1.

Friedman’s average ranking provides an overview of the algorithms’ performance considered 
in comparison. To show whether there are statistical differences among the achieved results, or to 
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Table 2. AUC metric values for all data sets

Table 3. F1 metric values for all data sets

Table 4. G-mean metric values for all data sets
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determine if there are one or more algorithms whose performance can be deemed as significantly 
superior or different, we need additional statistical tests. In contrast with parametric tests, proper non-
parametric ones should be more adequate in this case as the data normality assumption required by 
typical parametric tests cannot be guaranteed. Specifically, for a comparison of multiple algorithms, the 
Iman-Davenport test (Iman & Davenport, 1980) can be applied to the results obtained by algorithms 
with different problems to detect if there are statistical differences among them. Furthermore, if 
there exist such differences, the Holm post-hoc test (Holm, 1979) can be followed up to reveal if 
a designated control algorithm is significantly better than the rest of algorithms in the comparison 
group (Garcia et al., 2009).

With the AUC metric, we can observe from Figure 3 that the rankings of all three algorithms 
are quite close to each other, although PRUSBoost leads the group in ranking. In other words, the 
absolute differences of the rankings are small. This is confirmed by the Iman-Davenport test with 

Figure 2. Average rankings on all combined metrics

Figure 3. Average rankings on individual metric: AUC, F1 and G-mean

Table 5. Holm test result with F1
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a p-value of 0.7335. Therefore, in terms of AUC, all algorithms perform quite comparatively on 
the data sets. On the other hand, the differences on F1 among the algorithms seem to be relatively 
larger and SMOTEBoost leads the group. In fact, the corresponding Iman-Davenport test with a 
p-value of 0.0310 also indicates that the null hypothesis of all algorithms performing the same can 
be rejected. We then proceed with the Holm post-hoc test and the testing result are shown in Table 
5. The Holm test result suggests that, as the control algorithm, SMOTEBoost is significantly better 
than RUSBoost with respect to F1. However, the same significance is not attained for PRUSBoost, 
which implies that although SMOTEBoost has a lower ranking than PRUSBoost, the difference 
between the two is not statistically significant. Finally, based on the performance results obtained on 
G-mean, the Iman-Davenport test produces a p-value of 0.0001 that indicates that we can safely reject 
the hypothesis of equivalence among the algorithms. In this case, PRUSBoost is used as the control 
algorithm because it has the lowest ranking in the group. The subsequent Holm post-hoc test implies 
that PRUSBoost performs significantly better than SMOTEBoost and, in comparison to RUSBoost, 
it is also significantly superior at a higher significance level (e.g. 0.1) but not at the default level of 
0.05. The results are shown in Table 6.

Finally, we would like to provide two additional remarks on the comparison of the three algorithms. 
First, in contrast with RUSBoost, the proposed PRUSBoost framework is a hybrid boosting approach 
with a selective under-sampling scheme. In terms of computational cost, it requires a novelty model 
to partition samples of the negative class, but this additional workload should be reasonably low and 
once the model is built, it is used repeatedly in boosting iterations. On the other hand, SMOTEBoost 
involves a quite complex and expensive over-sampling process of generating synthetic samples for the 
positive class and additionally it takes more time to build a base learning model with an expanded data 
set. The time on model building is further amplified with the use of AdaBoost iterations. Second, each 
algorithm in the group has its own characteristics. A further analysis on produced confusion matrices 
of the algorithms indicates that the extra augmented positive samples of SMOTEBoost tend to shift 
its predictions towards the negative class and, as the result of this, it can lead to a relatively larger 
specificity and a smaller sensitivity (or recall) whereas the under-sampling counterparts, especially in 
the case of PRUSBoost, tend to improve the profile of the positive class and generate a larger recall 
and a smaller specificity. Clearly there are trade-offs between these two metrics, but it is plausible 
to argue that there are many real-world class imbalance problems where successful prediction of the 
positive class is considered more important and significant than prediction of the opposite class or 
classes. This desired preference is also consistent with the cost-sensitive learning approach where 
the misclassification cost of positives generally outweighs the misclassification cost of negatives.

CONCLUSION

Imbalanced classification deals with the problems where the distribution of data samples across the 
given classes are skewed. This type of problems is ubiquitous in many areas of business and finance, 
engineering, medical research and health care, bioinformatics, system security and management, and 
so on. The uneven distribution in data, however, poses a significant challenge for accurate classification 
or prediction as most of the machine learning algorithms used for classification assume an equal 

Table 6. Holm test result with G-mean
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number of samples for each class. This results in models with poor performance especially for the 
class or classes with fewer samples.

We have presented a new hybrid learning framework named PRUSBoost as a solution to class 
imbalance problems. The framework under-samples the negative class through a novel partition-based 
procedure and integrates it into the well-known AdaBoost algorithm. The partition-based under-
sampling procedure aims to select a well-representative balanced sample set for the negative class, 
which should be particularly helpful in the presence of data noises and class overlapping regions in the 
data space, and to facilitate a capable classifier to deal with a wide range of skewed class distributions.

We have applied the framework to a collection of data sets that are gathered from multiple diverse 
application domains that range from image recognition, health care, to bioinformatics and material 
science, and have a broad variety of class imbalance ratios. We also have compared the proposed 
PRUSBoost with the two state-of-the-art imbalanced classification methods, namely RUSBoost and 
SMOTEBoost. Experimental results and analysis have indicated that PRUSBoost represents a very 
competitive, consistent, and well-calibrated approach for imbalanced classification and is particularly 
effective in predicting samples of the positive or minority class, which is a desired outcome with 
many real-world applications.

We would like to continue and expand this imbalanced classification research work on several 
directions. One direction is to investigate possible optimal partition parameter settings with the 
framework PRUSBoost. For instance, we would like to find out what percentage of outlier samples 
should be used and what impact it may have on the overall classification performance. Another area 
in which we plan to explore is the use or development of other potentially suitable base learning 
algorithms for the framework.
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