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ABSTRACT

This paper presents a detection algorithm using normalized mutual information feature selection and 
cooperative evolution of multiple operators based on adaptive parallel quantum genetic algorithm 
(NMIFS MOP-AQGA). The proposed algorithm is to address the problems that the intrusion 
detection system (IDS) has lower detection speed, less adaptability, and lower detection accuracy. 
In order to achieve an effective reduction for high-dimensional feature data, the NMIFS method is 
used to select the best feature combination. The best features are sent to the MOP-AQGA classifier 
for learning and training, and the intrusion detectors are obtained. The data are fed into the detection 
algorithm to ultimately generate accurate detection results. The experimental results on real abnormal 
data demonstrate that the NMIFS MOP-AQGA method has higher detection accuracy, lower false 
negative rate, and higher adaptive performance than the existing detection methods, especially for 
small samples sets.
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INTRoDUCTIoN

IDS is proved to be an effective method of network security defense (Teng et al., 2020). Many 
researchers have used machine learning algorithms (Alyaseen et al., 2017; Kumar et al., 2019; Li et 
al., 2019) to research IDS, such as deep learning, support vector machine (SVM), fuzzy sets, outliers 
and random forest, and genetic algorithm, and have made many breakthroughs.

On the one hand, there are a large amount of network logs for IDS to detect, so an effective 
algorithm should be researched to delete the redundant features to improve the detection speed. 
There are some features selection algorithms used to reduce the redundant features, such as rough 
set, fuzzy set, and so on.

Feature selection algorithm (FSA) is introduced as a pretreatment to the anomaly detection 
to optimize existing classifiers. FSA can eliminate irrelevant and redundant features, reduce 
computational complexity, and improve the accuracy of the learning algorithms (Chunhui & Wenjuan, 
2021; Ying- Wu et al., 2010).

Este´vez et al. (2009) designed a Mutual Information Feature Selection (MIFS) method. However, 
in the MIFS algorithm, the increase of the input features can easily lead to some irrelevant feature 
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selections (Lashkia et al., 2004). Peng et al. (2014) proposed a minimal- Redundancy- Maximal- 
Relevance (mRMR) criteria, with which the impact of parameter β through the average of redundancy 
values was decreased. This criterion has a very low expense to give feature selection, but the entropy 
may vary considerably. Panigrahi (2021) gave an improved infinite feature selection for multiclass 
classification (IIFS-MC) to eliminate the superfluous attributes.

To increases the speed and deviation of mutual information among multi-valued attributes, 
the values of features are normalized in [0, 1]. The authors gave a NMIFS to reduce the algorithm 
complexity and obtain the optimal features. The experiment results showed that the NMIFS method 
has better performance on feature selection on several benchmark problems.

On the other hand, the classifier will directly affect the accuracy of anomaly detection (Yilei et al., 
2021). JooHwa and KeeHyun (2019) designed an IDS with autoencoder - conditional, the generative 
adversarial networks and the random forest (AE - CGAN - RF), autoencoder-conditional method 
was adopted to reduce high-dimensional data dimension and to get a higher detection rate. Jiadong 
et al. (2019) gave a hybrid multilevel intrusion detection model. The outliers detection algorithm can 
effectively reduce some redundant attributes and improve the speed of detection. Alyaseen et al. (2017) 
used K - means algorithm to achieve training data set in a multilevel hybrid intrusion detection model, 
with which, they got better performance of classifiers. Yang et al. (2019) proposed an Effective IDS 
using the Modified Density Peak Clustering Algorithm and Deep Belief Networks (MDPCA-DBN). 
They used the Modified Density Peak Clustering Algorithm and Deep Networks to reduce the size 
of the training set, solve the imbalance of sample, and improve the efficiency of detection. Song et 
al. (2018) proposed an anti-adversarial hidden markov model for network-based intrusion detection 
(AA-HMM). However those algorithms had lower self-adaptability, lower detection rate, and higher 
false alert rate for small samples sets.

In order to improve the self-adaptability, the GA is used in IDS. Cheng et al. (2016) put forward an 
IDS using a new fuzzy rule-based classification system based on GA. A fuzzy rule-base classification 
system is used to find a compact set of fuzzy if-then classification rules. Genetic algorithm was used 
for rule weights specification (Varzaneh and Rafsanjani, 2021). Feng and Dou (2021) presented a 
weighted intrusion detection model of the dynamic selection (WIDMoDS) based on data features. 
The standards of classifier selection in dynamic selection were updated. Xi et al. (2021) introduced 
immune adaptive and feedback mechanism to build a multisource neighborhood immune detector 
adaptive model (MS-NIDAM). The detectors can be adaptively evolved in a more targeted search 
domain. But this method is greatly influenced by initial population distribution, and the crossover 
and mutation probability of genetic operators are fixed, which are not conducive to search the global 
optimal solution.

In the stage of generation of classifier, the quantum computing theory and cooperative evolution 
of multiple operators are applied to improve the detectors. The authors give an anomaly detection 
method based on a normalized mutual information and cooperative evolution of multiple operators 
based on adaptive parallel quantum genetic algorithm. The contributions of this paper include:

1.  In the features selection stage, to improve the anomaly detection speed, the NMIFS method 
is used to select the optimum detection features from a given sample features set and achieve 
effective dimensionality reduction of high dimensional feature data.

2.  In the stage of generation of classifier, combined with a strong learning generalization of genetic 
algorithm and the acceleration of the quantum computing, the authors give a MOP-AQGA 
algorithm. Synthesizing the two improved algorithms above, the authors give an anomaly detection 
method based on a normalized mutual information and cooperative evolution of multiple operators 
based on adaptive parallel quantum genetic algorithm.

3.  Finally, with the benchmark of NSL-KDD and CICIDS2017, experiments are given to verify 
the reduction performances of NMIFS. Detecion experiments are to verify the anomaly and 
classification performances of MOP-AQGA, especially for small sample sets. The results on 
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anomaly data from real network traffic indicate that this method has a higher detection accuracy 
and lower false positive rate compared with other existed anomaly detection algorithms.

THe NoRMALIZeD MUTUAL INFoRMATIoN FeATURe SeLeCTIoN ALGoRITHM

Entropy is a mathematical measure for uncertain random variables and used to describe a measure 
of the random variables for the average amount of information. If X, Y is denoted as the two discrete 
random variables with joint probability mass function p(x, y) and marginal probability p(x), p(y), the 
information entropy of X is defined as (Wanwei et al., 2017):
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xi and yj denote all possible values of X and Y respectively.
The combination entropy H (X, Y) is the uncertainty of measurement between X and Y. The angle 

of H (X, Y) is max{ , } ,H X H Y H X Y H X H Y( ) ( ) ≤ ( ) ≤ ( )+ ( ) . When X depends on Y, the value 
of H (X, Y) is the minimum, when X and Y are independent of each other, the value of H (X, Y) is the 
maximum.

The mutual information (MI) is the information measure of two random variables, namely 
common information measure of two random variables. The mutual information (MI) between X 
and Y is defined as:
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Two main properties which distinguish mutual information with other related measurements 
are: (a) the ability to measure any kind of variables relationship and (b) invariance under space 
transformation. The former property is from mutual information, which is based on the combination 
probability density function and edge probability density function of the variables without any 
statistic information of variable gradient. The second property is based on the fact that the number 
of independent variables in Eq. (3) is dimensionless, therefore, the integral value is irrelevant to the 
selected coordinate (feature space transform). This feature still remains in differentiable or reversible 
transformation. The relation among mutual information, entropy, and combination entropy is:

I X Y H X H Y H X Y; ( ) ( ) ( , )( ) = + −  (4)

The minimum value of entropy is the upper bound of mutual information of I(X;Y). The range 
of the value is: 0 ≤ ( ) ≤I X Y H X H Y; min{ ( ), ( )} . FNMI algorithm adopts symmetrical uncertainty 
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to measure the correlation between features and categories, features X and features Y. The symmetric 
uncertainty SU (X, Y) between two random variables X and Y is defined as:
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Because min{ ( ), ( )} [H(X) H(Y)]/H X H Y ≤ + 2 , the definition of entropy can be denoted 
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m and n are the number of possible values of discrete random variables X and Y respectively. The 
fast-normalized mutual information is defined as:
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By formula (6), the features values of anonymous logs are normalized in the range of [0, 1] 
before executing the feature selection algorithm. Standardized process of the fast normalized mutual 
information feature selection is shown in table 1.

THe CooPeRATIVe eVoLUTIoN oF MULTIPLe oPeRAToRS BASeD 
ADAPTIVe PARALLeL QUANTUM GeNeTIC ALGoRITHM

GA has the adaptive mechanism, so it can be used in IDS to obtain higher detection performances. In 
order to generate better detectors and increase the diversity of population, the cooperative evolution 
of multiple operators, parallel multi-universe mechanism, and quantum theory are applied to improve 
the GA. GA has the ability to assign reasonable rotation Angle step length to individuals according 
to their fitness. GA can accelerate the algorithm convergence speed.

Table 1. Standardized process of the fast normalized mutual information feature selection

Standardized process of the fast normalized mutual information feature selection

Initialization: Set F f i N
i
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i
Î , calculateNMI f C
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Greedy choices: repeat these steps until S k=

Calculate the mutual information among features: for each pair f f
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i
;
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i
Î  and 

f S
s
Î  until the completion of the iteration

Turn to the next feature: choose feature f F
i
Î  making Eq.(10)reach the maximum. Set 

F F f
i

← { }\ ,S f
i

← { }
Output set S with K selected features
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THe CooPeRATIVe eVoLUTIoN oF MULTIPLe oPeRAToRS

This paper adopts the cooperative evolution of multiple operators to obtain the mutation probability 
of the individuals in the population according to the calculation values of more operator in every 
generation, with which we can increase the population diversity in the late period of population 
evolution. Hamming distance denotes the similarity of different individual species. Hamming distance 
is smaller, individuals have the higher similarity. 

The cooperative evolution of multiple operators uses the individual similarity to measure the 
individual operators. The individual fitness evaluation operator and population mutation operator are 
applied to determine the mutation probability of the individuals in the current population.

Individual similarity evaluation operator xsim: xsim is used to calculate the individual differences 
in current population and is defined in formula (7) (Zhi-jian et al., 2019).
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In formula (7), d
max

 is the individual which has the maximal hamming distance with the optimal 
ones in the current population, d

min
 is the individual which has the minimal hamming distance with 

the optimal ones in the current population, and d
avg

 is the average hamming distance of all individuals 
with the optimal ones in current population. The larger the individual similarity evaluation operator 
is, the more different the individual is in the current population, then we can use larger mutation 
probability to increase population diversity; On the contrary, the smaller the x

sim
 is, we can use 

smaller mutation probability to maintain the stability of the population. 
The individual fitness evaluation operator y'

fit
: y'

fit
 is adopted to evaluate the ith individual’ 

fitness in current population, which is defined as formula (8):

y'

-

-
=

fit

max i

max min
max min

max min

=
≠










f f

f f
f f

f f

,

,0
 (8)

In formula(8), f
max

 is the best fitness value, f
min

 is the worst fitness value, and f
i
 is the ith 

individual’s fitness. If the value of y'
fit

 is higher, the fitness of the ith individual is closer to the worst 
individual in current population. We should select higher mutation probability when the individuals 
mutate.

The population variation adjustment operator F
acc
( )n : F

acc
( )n  is the function of the current 

evolution algebra n, we take the method by gradually increasing individual mutation probability to 
solve the problem of premature convergence. Population variation adjustment operators are defined 
as shown in formula (9):
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N is the current evolution algebra. s denotes the biggest evolutionary algebra. Constant T is the 
iterations number when optimum individuals don’t change continuously in current population. Constant 
C (0 < C) is the adjusting parameter. f n

max
( )  is the optimal fitness value in the nth generation 

populations. When the optimal fitness value of the populations does not change for T consecutive 
generation, and the evolution algebra doesn’t reach the maximum, the mutation probability is increased 
to adjust the variation probability, which is calculated by s, n, and C.

Individual similarity evaluation operator x
sim

, individual fitness evaluation operator y'
fit

, and 
population variation adjustment operator F

acc
( )n  are used to calculate the current the mutation 

probability of the individuals in the population. The mutation probability is shown in formula (10).
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In formula (10), p'
n

 is the ith individual’s mutation probability in the nth generation population 
and p

0
 is the initial value of mutation probability.

THe MoP-AQGA

MOP-AQGA includes three mechanisms: adaptive adjustment of rotation angle, the cooperative 
evolution of multiple operators, and multi-universe mechanism. Adaptive adjustment mechanism of 
rotation angle adjusts rotation angle step length dynamically with the individual fitness. The rotation 
angles are shown in Table 2 (Ada et al., 2015; Zhi-jian et al., 2019).

Table 2. Adaptive adjustment mechanism of rotation angle adjusts rotation angle

x
i
j b

i
f X f Xj

best
t( ) ( )³ Dq

i
j S

i
j

i
j( , )α β

α β
i
j
i
j > 0 α β

i
j
i
j < 0 a

i
j = 0 b

i
j = 0

0 0 false q
1
0j = - - - -

0 0 true q
2
0j = - - - -

0 1 false q q
3
j j= +1 -1 0 ±1

0 1 true q q
4
j j= -1 +1 ±1 0

Table 2 continued on next page
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In table 2, f X( )  denotes the fitness value of individual x; x
i
j  is the ith gene of the jth individual; 

b
i
 is the ith value of the best individual in current population; S

i
j

i
j( , )α β  is the rotation direction of 

rotation angle in polar coordinates; and q j  is the rotation angle of step length of the jth individual. 
q j  is defined in formula (11).
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The relationship between rotation angle step length and the current individual fitness value is 
linear, individuals with higher fitness can be allocated larger rotation angle step length, and individuals 
with lower fitness can be allocated smaller rotation angle step length. The two methods above can 
make individuals change their status as soon as possible (Yuan et al., 2021; Zhang et al., 2021).

In the current population, the ith evolution of rotation angle step length and rotation direction 
of the jth individuals are shown in formula (12).

∆ = ×θ θ α β
i
j j

i
j

i
jS( , )  (12)

In order to reduce the time cost of the extra calculation and improve the efficiency of the algorithm, 
the authors use multi-universe mechanism in MOP-AQGA. This paper uses the model of 4 universes 
to finish the parallel computing algorithm. 

The main universe is responsible for the communication and collaboration with other auxiliary 
universes. Each universe executes population evolution independently. In certain periods, some 
excellent individuals migrate between main universe and auxiliary universe, so some poor individuals 
are replaced by excellent individuals. The scale of the universe immigration is usually set in the range 
10% to 20% of the population size.

x
i
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i
f X f Xj

best
t( ) ( )³ Dq

i
j S

i
j

i
j( , )α β

α β
i
j
i
j > 0 α β

i
j
i
j < 0 a

i
j = 0 b

i
j = 0

1 0 false q q
5
j j= -1 +1 ±1 0

1 0 true q q
6
j j= +1 -1 0 ±1

1 1 false q
7
0j = - - - -

1 1 true q
8
0j = - - - -

Table 2 continued
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The cooperative evolution of multiple operators based adaptive parallel quantum genetic algorithm 
is shown in Table 3.

THe ANoMALy DeTeCTIoN MeTHoD BASeD oN NMIFS MoP-AQGA

The anomaly detection model based on NMIFS MOP-AQGA has two phases: off-line training and 
on-line detection. The detection flow based on NMIFS MOP-AQGA is shown in Figure 1.

Table 3. MOP-AQGA

The Cooperative Evolution of Multiple Operators Based Adaptive Parallel Quantum Genetic Algorithm

Initialize the population:( t ¬ 0 );
For each universe, execute following steps: 
Create new populationQ( )t ;
Observe Q( )t  and obtain the observed state P( )t ;
Calculate and evaluate the fitness of individuals of P( )t ;
Select the optimal individuals into B( )t ;
while(the individuals’ lives are less than or equal to the maximum algebra evolution)do 
For each universe, execute the following steps: 
t t← +1 ;
Observe Q( )t  and obtain the observed state P( )t ;
Calculate and evaluate the new fitness of individuals of P( )t ;
Calculate the angle rotation step with formula (11); 
Update Q( )t  with angle rotation step;
Select the optimal individuals into B( )t ;
Calculate collective mutation operator with formula (7) - (9); 
Calculate individuals’ variation probability calculation with formula (10); 
Individuals mutate with their mutation probability; 
The optimal individuals migrate among different universes; 
Select the optimal individuals into B( )t ;
Save the optimal individuals of all individuals into global variable b.

Figure 1. The detection flow based on NMIFS MOP-AQGA
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The flow of the training phase is as follows:

1.  The offline cache data are as the input origins. NMIFS module extracts the given traffic feature 
data and creates the training samples set.

2.  Execute the NMIFS algorithm, reduce high-dimensional feature data and get the effective data set 
with the method that we calculate the normalized mutual information between various features 
and different behavior categories in the sample data to get the best combination features set.

3.  Plug the above best combination feature vector into the MOP-AQGA classifier. Learn, train, and 
acquire the anomaly detection individuals.

The main work of the detection phase is:

1)  After sampling the received data packet, extract the flow detailed records with the pre-definition 
features in actual applications.

2)  Select d-dimensional important features from the flow detailed record through the NMIFS 
module. Then, compare it with the detection model in the training phase and output the accurate 
detection results.

SIMULATIoNS AND ANALySIS FoR NS-KDD AND CICIDS2017

To verify the effectiveness of the proposed method NMIFS MOP-AQGA, in the experiments, the 
authors take the intrusion scenario correlation benchmarks NS-KDD and CICIDS2017. Therefore, 
they use some common performance indicators as parameters to detect antigens and present 
comparison analysis respectively according to NSL - KDD and CICIDS2017 data set. NSL - KDD 
and CICIDS2017 both include small attacks samples, with which the authors research the attack 
classification performances of NMIFS MOP - AQGA algorithm for small samples. With CICIDS2017 
data set, the purpose is to research classification performances about new attacks.

DATA SeT AND SIMULATIoN eNVIRoNMeNT SeTUP

The minimum rotation angle step length is K
1
0 001= . p , the maximum rotation angle step length is 

K
2
0 05= . p , the initial mutation probability is P

0
0 8= . , the variation operator adjustments constant 

C is 0.08, and the parallel universe number is 4.
The anomaly detection algorithm NMIFS MOP-AQGA is implemented with C, simulation 

environment: CPU is the Intel Pentium of 4, 3.20 GHz, memory is 16 GB, and the operating system 
for Microsoft Windows 2016.

NSL-KDD
Lincoln laboratory provided NSL - KDD data set for experiment simulations of IDS. The training 
sample set KDDTrain + includes 125,973 records. The test sample set includes KDDTest - 21 and 
KDDTest +, which contain Normal, Dos, the Probe, and U2R and R2L five species of samples.

When the authors execute the experimental simulation, all the training samples are used to get 
the optimal features, and test samples KDDTest + are applied to test the NMIFS MOP - AQGA 
algorithm. Sample distributions of the data set are shown in Table 4.
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As a result that U2R attacks samples are less than others, 67 U2R attacks of the KDDTest + data 
set are put as the experimental data also. 

CICIDS2017
CICIDS2017 includes normal samples and 15 types of attacks, and contains 2,830,743 samples. In 
CICIDS2017, 60 percent of data are as the training samples, the rest of data are as testing ones. The 
distributions of samples are shown in Table 5.

THe DATA PRePRoCeSSING AND eVALUATIoN STANDARDS

There are four stages in the detection experiment: data normalization, data reduction, training, and 
testing. The effectiveness of some small features values may be easily ignored, since there are large 

Table 5. CICIDS2017’ distribution

Type Abbreviation Number

    Benign Normal 2,273,097

    Distributed Denial-of-service (DDos) Ddos 128,027

    Port Scan PortS 158,930

    Bot Bot 1,966

    Infiltration Inf 36

    Brute Force XSS 2,180

    Web Attack Structured Query Language (SQL)

    Injection Cross-site Scripting (XSS)

    File Transfer Protocol (FTP)- Patator FTP 7,938

    Secure Shell (SSH)-Patator SSH 5,897

    Denial-of-service (Dos) GoldenEye DosGE 10,293

    DoS Hulk DoSHu 231,073

    DoS Slowhttptest DoSSH 5,499

    DoS Slowloris DoSSL 5,796

    Heartbleed Heart 11

Table 4. Sample distribution of the data set NSL-KDD (He et al., 2017)

No Type KDDTrain+ KDDTest+

1 Normal 67,343 9,710

2 DoS 45,927 7,458

3 Probe 11,656 2,422

4 U2R 52 67

5 R2L 995 2,887

Sum 125,973 22,544
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differences among features in the data set. The features need to be normalized before we apply NMIFS 
to select features. The authors assumed the data set contains n records and fj[i] represents the ith 
feature in the jth record. The authors first calculated its mean and standard deviation by adopting 
the following equations:

f i
n

f i
j j

j

n

[ ] [ ]=
=
∑1
1

 (13)
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f i f i
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Where f i
j
[ ]  and s i

j
[ ]  stand for the mean and standard deviation of the ith feature, respectively. 

Then, the authors normalized all features using (15) (Imamverdiyev & Abdullayeva, 2018):

ˆ[ ]
[ ] [ ]
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f i

f i f i

s ij

j j

j

=
−
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The evaluation criteria of the test results are as follows (Moustafa, 2017):

DR
TP

TP FN
=

+
 (16)

FAR
FP

TN FP
=

+
 (17)

Pre
TP

TP FP
=

+
 (18)

Acc
TP TN

TP TN FP FN
=

+
+ + +

 (19)

F score
DR Pre

DR Pre
1

2
-

+
=
× ×  (20)

TP denotes that the samples which belong to intrusions are correctly recognized; TN denotes the 
samples which belong to normal data are correctly recognized; FP denotes the samples which do not 
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belong to intrusions are wrongly recognized as behaviors which are belonging to intrusions; and FN 
denotes the samples which belong to normal data are wrongly recognized as behaviors which are not 
belonging to normal data (Tao et al., 2021; Xiaohui et al., 2019).

THe BeST FeATUReS SeT SeLeCTIoN BASeD oN NMIFS

NMIFS algorithm is adopted to obtain the normalized mutual information between the statistical 
features and category labeled features. According to the normalized mutual information, the subsequent 
classifier combines these features by their importance. The NSL- KDD and CICIDS2017 are used to 
test the NMIFS The results and comparisons are shown in following subsections.

NSL-KDD
The authors sort the features according to the normalized mutual information, so that the subsequent 
classifier combines different numbers of features which can be tested though the C4.5 decision tree 
classifier, as seen in Figure 2. They also compared the proposed algorithm with the mRMR algorithm 
and IIFS-MC algorithm. The convergence rates of DR and FAR are obviously faster than the mRMR 
and IIFS-MC algorithms.

It’s concluded from the experiments: when the number of features is 20, the difference between the 
NMIFS algorithm’s DR and FAR is greatest, meanwhile the DR is more than 90%. While the number 
of features is 25 and 20, the difference between the mRMR and IIFS-MC algorithm’s (Panigrahi et al., 
2021) DR and FAR are greatest respectively. Therefore, the authors choose the top 20 most important 
features as the best features in the NMIFS algorithm. The can get the conclusion that among the same 
type of classification algorithms, NMIFS has a better feature reduction performance than mRMR. 
Table 6 shows the best feature subset among 3 algorithms.

Figure 2. The comparisons on feature selection of FMIS, mRMR, and IIFS-MC
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CICIDS2017
The features selection process is the same with that of NSL- KDD above. The comparisons on feature 
selection of FMIS, mRMR, and IIFS-MC are shown in Figure 3.

With the number of features increasing, the DR is rising, and the FAR is decreasing. The 
convergence rate of NMIS is the fastest one among the tree algorithms.

For NMIFS, when the number of features is 32, the difference between DR and FAR is greatest, 
meanwhile the DR is more than 93%. While the authors take the mRMR and IIFS-MC to simulate, the 
numbers of features is 37 and 34 and the differences between DR and FAR are greatest, meanwhile 
the DRs are about 90%. Table 7 shows the best feature subset through the two algorithms. There are 
76 features in CICIDS2017, after features selection, the number of features is 32, the total time of 
intrusion detection is almost half of that before reduction.

Table 6. The best feature subset

Algorithm The Features 
Number

Selected Features (Label Number)

NMIFS 20 12,3,6,23,2,32,5,24,36,35,33,1,30,37,4,29,39,38,25

mRMR 25 32,27,23,5,3,12,13,22,11,2,9,37,28,38,1,4,6,14,29,40,39,35,33,41,30

IIFS-MC 20 2,3,17,4,5,18,12,6,15,16,8,19,11,13,14,23,28,10,22,36

Figure 3. The comparisons on feature selection of FMIS, mRMR, and IIFS-MC
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In conclusion, NMIFS can get the highest convergence speed among the three algorithms. So 
when the authors simulate with NSL-KDD, they use features collection {12, 3, 6, 23, 2, 32, 5, 24, 36, 
35, 33, 1, 30, 37, 4, 29, 39, 38, 25} to generate the detectors; when they simulate with CICIDS2017, 
they use features collection {1, 75, 73, 18, 33, 67, 11, 35, 25, 55, 56, 57, 58, 20, 59, 32, 49, 23, 45, 
50, 43, 74, 76, 15, 19, 31, 14, 30, 44, 71, 16, 38} to generate the detectors.

THe ANoMALy DeTeCTIoN PeRFoRMANCe ReSULTS 
CoMPAReD WITH ReLATeD WoRKS

In pre-section, the authors get the optimal features sets. With those features, the antibodies are put into 
the classifier. In the same way, NSL- KDD and CICIDS2017 are applied to verify the MOP-AQGA. 
The results are shown as follows.

NSL-KDD
The classification and anomaly detection performance results include the confusion matrix, the 
Receiver Operating Characteristic (ROC), classification results, and anomaly detection results.

The Confusion Matrix
The confusion matrix is adopted to evaluate the performances of NMIFS MOP-AQGA. The 22,544 
samples in Table 4 are used to verify the NMIFS MOP-AQGA algorithm. The normal samples, Dos 
attacks, the Probe attacks, U2R attacks and R2L attacks are applied to test respectively, the results 
are shown in Table 8. The column data denote the actual classified results, the row data denote the 
predicted classified results.

Table 8. The confusion matrix of NMIFS MOP-AQGA

Actual Values

Predicted
Values

Norm DoS Probe U2R R2L

Norm 9,201 21 79 3 16

DoS 110 7,360 58 8 112

Probe 98 72 2,274 6 2

U2R 121 0 1 45 6

R2L 180 5 10 5 2,751

Table 7. The best feature subset

Algorithm The Features 
Number

Selected Features (Label Number)

NMIFS 32 1,75,73,18,33,67,11,35,25,55,56,57,58,20,59,32,49,23,45,50,43,74,76,15,19,31,14,3
0,44,71,16,38

mRMR 37 1,75,73,18,28,33,67,11,35,25,17,55,56,57,58,20,59,60,32,49,23,45,50,43,74,76,15,19
,31,14,70,30,44,71,68,16,38

IIFS-MC 34 1,25,20,75,76,73,18,23,28,31,33,55,56,57,58,59,60,32,49,45,50,43,74,19,14,70, 
30,44,68,11,16,38,71
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The ROC Curves
In order to verify the proposed algorithm, the authors compare the NMIFS MOP-AQGA algorithm 
with other classifiers. So they run the NMIFS MOP-AQGA algorithm with NSL-KDD and get the 
experiment results which are used in comparisons.

The K – means (Alyaseen et al., 2017), the AE - CGAN – RF (Jiadong et al., 2019), AA – HMM 
(Song et al., 2018), MDPCA- DBN (Yang et al., 2019), GA (Ying-Wu et al., 2010), and the NMIFS 
MOP - AQGA algorithm proposed in this paper are used to train and test with experimental data 
set. The ROC curves on five kinds of data set are shown in Figure 4. The results show: both with 
the normal data set, and the abnormal data set (DOS, the Probe, R2Land U2R), we can get a lower 
FAR a higher DR. Especially for R2L and U2R, the small samples set, we can get a higher detection 
rate and lower false detection rate. The detection rate of R2L is about 85.7% and the detection rate 
of U2R is about 76.3%.

From Figure 4, for the five types of samples sets, the NMIFS MOP-AQGA algorithm has higher 
DR and lower FAR than the other five algorithms.

The Classification Detection Performance
In order to test the classification performance of the NMIFS MOP - AQGA algorithm, especially 
about the detection of small samples set, such as U2R and R2L, the NMIFS MOP - AQGA algorithm 

Figure 4. The ROC curves of different types of data sets with various algorithms



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

16

is compared with other algorithms in table 9. Algorithm detection rates according to different attack 
types are shown in Table 9.

In Table 9, it is concluded that the proposed NMIFS MOP - AQGA algorithm has the highest 
DR among all the algorithms for the three types of attacks: Probe, U2R, and R2L attacks. For Dos 
attacks, the DR is lower than Mixed multilayer model (Alyaseen et al., 2017); For normal logs, the 
DR is lower. The NMIFS MOP - AQGA algorithm has a higher detection rate for all types of attacks; 
especially, it can improve the DR of the algorithm for small samples datasets. 

Literature (Yang et al., 2019) gave the MDPCA – DBN’s confusion matrix. With the results of 
the confusion matrix the authors calculated the DR and the Pre - and F1 scores. The results, compared 
with results of this paper, are shown in Table 10.

The conclusions are shown in Table 10: the NMIFS MOP - AQGA algorithm has higher DR, 
Pre, and F1-Score than MDPCA-DBN. Especially for the U2R and R2L, the proposed algorithm has 
better classification performances to small samples sets. 

The Abnormal Detection Performance
Last, the authors compared the abnormal detection performance of the NMIFS MOP - AQGA 
algorithm with the algorithms in this paper. In order to finish the abnormal detection, all the attacks 
are as abnormal samples for testing. The testing samples are for testing; each group of data are run 10 
times and the average values are calculated. The comparisons of the abnormal detection performance 
are shown in Table 11.

Table 9. The DR comparisons of different algorithms

Method Norm Dos Prb U2R R2L

Mixed multilayer model (Alyaseen et 
al., 2017)

98.13 99.54 87.22 21.93 31.39

MDPCA-DBN (Yang et al., 2019) 97.38 81.09 73.94 17.25 6.50

Outlier+RF (Jiadong et al., 2019) 97.66 97.32 95.34 21.05 31.96

NMIFS MOP-AQGA 94.76 98.69 93.89 67.17 95.29

Table 10. The classification performances comparisons of different algorithms

Type DR Pre F1-Score

MDPCA-
DBN

NMIFS MOP-
AQGA

MDPCA-
DBN

NMIFS 
MOP-
AQGA

MDPCA-
DBN

NMIFS 
MOP-
AQGA

Norm 71.42 94.76 97.38 98.72 82.40 96.69

Dos 96.34 98.69 81.09 96.23 88.06 97.44

Probe 85.85 93.88 73.94 92.74 79.45 93.31

U2R 11.82 67.16 6.50 26.01 8.39 37.50

R2L 57.30 95.29 17.25 93.22 26.51 94.24

average 64.54 89.96 55.23 81.39 56.96 83.84
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From table 11, the results showed that the proposed NMIFS MOP - AQGA algorithm’s false 
positives are 0.71% higher and detection rate is 1.43% higher than the GA + Fuzzy algorithm in 
Varzaneh and Rafsanjani (2021); all the detection indicators are better than other algorithms, and 
there is a better balance between the DR and the FAR.

CICIDS2017
Because CICIDS2017 has more and newer types of attacks, we take it as simulation dataset. The 
detection performance results include the confusion matrix, the classification results comparisons.

The Confusion Matrix
In Table 12, 1,132,296 testing samples are applied to simulate with the NMIFS MOP - AQGA 
algorithm. The testing set includes 909,239 normal samples, 51,211 samples of Ddos, 63,572 PortS 
samples, 786 Bot samples, 14 Inf attack samples, 872 XSS attack samples, 3,175 FTP attack samples, 
2,359 SSH attack samples, 4,117 DosGE attack samples, 92,429 DosHu attack samples, 2,200 attack 
samples, 2,318 DoSSL attack samples, and 4 Heart attacks samples. The results are shown in Table 12.

Table 11. The comparisons of the abnormal detection performance(N/A denotes the results are unknown)

Algorithm DR Acc FAR Pre F1-score

K-means (Alyaseen et al., 2017) 95.17 95.75 1.87 N/A N/A

AE-CGAN-RF (JooHwa & KeeHyun, 
2019)

61.57 66.18 13.06 95.51 74.87

AA-HMM (Song et al., 2018) 91.06 93.48 N/A 93.63 92.33

MDPCA-DBN (Yang et al., 2019) 93.55 94.36 2.34 N/A N/A

GA+Fuzzy (Varzaneh & Rafsanjani, 2021) 95.33 N/A 0.18 N/A N/A

WIDMoDS (Feng & Dou, 2021) N/A 99.60 N/A N/A 96.00

MS-NIDAM (Xi et al., 2021) about 
92.00

N/A about 5.00 N/A N/A

NMIFS MOP-AQGA 96.76 98.72 0.89 98.72 96.69
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THe CLASSIFICATIoN DeTeCTIoN PeRFoRMANCe

In order to verify the proposed algorithm, classification performance comparison between NMIFS 
MOP - AQGA and other algorithms are shown in this section.

Performance comparisons are given for the two data sets respectively. The algorithm performance 
indexes in this section are calculated by confusion matrix. The detection performances of Single - RF, 
the RAFID, and AE - CGAN - RF (JooHwa & KeeHyun, 2019) are given, so the authors compare 
the NMIFS MOP - AQGA algorithm’s performances with these three algorithms for CICIDS2017 
data sets. The results are shown in Figure 5, Figure 6, and Figure 7.

Table 12. The confusion matrix for CICIDS2017

Actual Values

Predict 
Values

Normal Ddos PortS Bot Inf XSS FTP SSH Dos
GE

DoS
Hu

DoS
SH

DoS
SL

Heart

Normal 908,527 32 5 136 1 13 2 3 3 193 6 5 0

Ddos 1 51,165 0 0 1 0 0 0 0 0 0 0 0

PortS 307 0 63,558 0 0 0 0 0 0 0 1 1 0

Bot 79 0 0 647 0 0 0 0 0 0 0 0 0

Inf 0 0 0 0 12 0 0 0 0 0 0 0 0

XSS 0 0 0 3 0 857 0 0 0 0 0 0 0

FTP 0 0 1 0 0 0 3170 0 0 0 0 0 0

SSH 0 0 0 0 0 0 0 2354 0 0 0 0 0

DosGE 15 6 0 0 0 0 0 0 4106 9 1 1 0

DoSHu 295 8 8 0 0 0 0 0 7 92227 1 0 0

DoSSH 13 0 0 0 0 2 0 2 1 0 2187 3 0

DoSSL 2 0 0 0 0 0 3 0 0 0 4 2308 0

Heart 0 0 0 0 0 0 0 0 0 0 0 0 4
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Figure 5. Comparisons of classification performances for CICIDS2017

Figure 6. Comparisons of classification performances for CICIDS2017
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For DR, Pre, and F1-Score the three detection indicators, the NMIFS MOP – AQGA algorithm, 
are superior to single random forest algorithm, RAFID algorithm, and similar to the AE - CGAN - RF 
algorithm (JooHwa & KeeHyun, 2019). It has better classification performances for the 13 datasets. 
And for small samples sets, such as Bot and Infiltration attacks, the detection performances are 
improved. The synthetic detection performances of the NMIFS MOP - AQGA algorithm proposed 
in this paper are better than that of the Single - RF RAFID and AE - RF algorithm.

In conclusion, NSL - KDD and CICIDS2017 are obtained from the simulated network environment 
which is similar to the actual one. With the NMIFS MOP - AQGA algorithm, classic intrusions can 
be classified, new attacks can be identified, the algorithm is feasible, and the algorithm has better 
detection performance. The MOP - AQGA algorithm can optimize antibodies and improve the 
detection performance. Through the above experiments, it is concluded that the proposed algorithm is 
practical to the actual network intrusion detection. With the MOP - AQGA algorithm, better detectors 
can be generated, so it has better adaptivity.

CoNCLUSIoN

This paper applied the NMIFS algorithm to obtain the best features for sample features sets. With 
NMIFS, the authors got an effective dimension reduction from high dimensional features, so that 
the detection speed was improved. Also, the authors developed a cooperative evolution of multiple 
operators based adaptive parallel quantum genetic algorithm (MOP-AQGA), in which they used 
individual similarity evaluation operator, individual fitness evaluation operator, and population 
variation adjustment operator to get individuals’ mutation probability and, at the same time, applied 

Figure 7. Comparisons of classification performances for CICIDS2017
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adaptive parallel quantum genetic algorithm to ensure the diversity of individuals. Experimental 
results on anomaly data from real network traffic showed that, the proposed method, NMIFS MOP-
AQGA, has a higher detection accuracy, lower false positive rate, and better adaptability, especial 
according to small samples sets compared with existing anomaly detection algorithms. While the 
defect of algorithm is for unknown attacks research. The future work is to research the zero day 
attacks and how to detect the unknown attacks and deploy the algorithm in the Internet-of-Things 
(Tewari & Gupta., 2020).

CoNFLICT oF INTeReST

The authors of this publication declare there is no conflict of interest.

FUNDING AGeNCy

This research was supported by the National Natural Science Foundation of China [61502436]; and 
the Project of Science and technology tackling key problems in Henan Province [202102210149].

ACKNoWLeDGMeNT

The authors would like to thank the Faculty of software, University of Zhengzhou University of Light 
Industry, for their professional advice about this study.



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

22

ReFeReNCeS

Ada, C., Wu, P., & Chu, F. (2015). Improved quantum-inspired evolutionary algorithm for large-size lan 
reservation. IEEE Transactions on Systems, Man, and Cybernetics. Systems, 45(12), 1535–1548. doi:10.1109/
TSMC.2015.2417509

Alyaseen, W. L., Othman, Z. A., Nazri, M. Z. A., & Nazri, M. Z. A. (2017). Multi-level hybrid support vector 
machine and extreme learning machine based on modified K-means for intrusion detection system. Expert 
Systems with Applications, 67(1), 296–303. doi:10.1016/j.eswa.2016.09.041

Cheng, Y. F., Shao, W., Zhang, S. J., & Li, Y. P. (2016). An improved multi-objective genetic algorithm for large 
planar array thinning. IEEE Transactions on Magnetics, 3(52), 1–4. Advance online publication. doi:10.1109/
TMAG.2015.2481883

Chunhui, W., & Wenjuan, L. (2021). Enhancing intrusion detection with feature selection and neural network. 
International Journal of Intelligent Systems, 7(36), 3087–3105. doi:10.1002/int.22397

Este’vez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized mutual information feature selection. 
IEEE Transactions on Neural Networks, 20(2), 189–201. doi:10.1109/TNN.2008.2005601 PMID:19150792

Feng, T., & Dou, M. F. (2021). A weighted intrusion detection model of dynamic selection. Applied Intelligence, 
51(7), 4860–4873. doi:10.1007/s10489-020-02090-8

He, Y. B., Mendis, G. J., & Wei, J. (2017). Real-time detection of false data injection attacks in smart grid: A 
deep learning-based intelligent mechanism. IEEE Transactions on Smart Grid, 5(8), 2505–2516. doi:10.1109/
TSG.2017.2703842

Imamverdiyev, Y., & Abdullayeva, F. (2018). Deep learning method for denial of service attack detection based 
on restricted Boltzmann machine. Big Data, 2(6), 159–169. doi:10.1089/big.2018.0023 PMID:29924649

Jiadong, R., Xinqian, L., Qian, W., Haitao, H., & Xiaolin, Z. (2019). An multi-level intrusion detection method 
based on KNN outlier detection and random forests. Journal of Computer Research and Development, 56(3), 
566-575. 10.7544/issn1000-1239.2019.20180063

Kumar, G. K., Kumar, R. R., Basha, M. S., & Reddy, K. N. (2019). Intrusion detection using an ensemble of 
support vector machines. Advances in Engineering, Management and Sciences, 3(S), 266-275. 10.26782/jmcms.
spl.3/2019.09.00020

Lashkia, G. V., & Anthony, L. (2004). Relevant irredundant feature selection and noisy example elimination. 
IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 34(2), 888–897. doi:10.1109/
TSMCB.2003.817106 PMID:15376837

Lee, J. H., & Park, K. H. (2019). AE-CGAN-RF model based high performance network intrusion detection 
system. Applied Sciences-Basel, 20(9), 1–14. doi:10.3390/app9204221

Li, D., Deng, L., Gupta, B. B., Wang, H., & Choi, C. (2019). A novel CNN based security guaranteed image 
watermarking generation scenario for smart city applications. Information Sciences, 479, 432–447. doi:10.1016/j.
ins.2018.02.060

Moustafa, N. (2017). Designing an online and reliable statistical anomaly detection framework for dealing with 
large high-speed network traffic. University of New South Wales.

Panigrahi, R., Samarjeet, B., Akash, K. B., Muhammad, F. I., & Moumita, P. (2021). A consolidated decision 
tree-based intrusion detection system for binary and multiclass imbalanced datasets. Mathematics, 9(7), 751. 
Advance online publication. doi:10.3390/math9070751

Peng, L. Z., Zhang, H. L., Yang, B., & Chen, Y. H. (2014). Feature evaluation for early stage internet traffic 
identification. Algorithms and Architectures for Parallel Processing, 8630, 511–525. doi:10.1007/978-3-319-
11197-1_39

Song, C. Y., Pons, A., & Yen, K. (2018). AA-HMM: An Anti-Adversarial Hidden Markov Model for network-
based intrusion detection. Applied Sciences-Basel, 12(8), 1–25. doi:10.3390/app8122421

http://dx.doi.org/10.1109/TSMC.2015.2417509
http://dx.doi.org/10.1109/TSMC.2015.2417509
http://dx.doi.org/10.1016/j.eswa.2016.09.041
http://dx.doi.org/10.1109/TMAG.2015.2481883
http://dx.doi.org/10.1109/TMAG.2015.2481883
http://dx.doi.org/10.1002/int.22397
http://dx.doi.org/10.1109/TNN.2008.2005601
http://www.ncbi.nlm.nih.gov/pubmed/19150792
http://dx.doi.org/10.1007/s10489-020-02090-8
http://dx.doi.org/10.1109/TSG.2017.2703842
http://dx.doi.org/10.1109/TSG.2017.2703842
http://dx.doi.org/10.1089/big.2018.0023
http://www.ncbi.nlm.nih.gov/pubmed/29924649
http://dx.doi.org/10.1109/TSMCB.2003.817106
http://dx.doi.org/10.1109/TSMCB.2003.817106
http://www.ncbi.nlm.nih.gov/pubmed/15376837
http://dx.doi.org/10.3390/app9204221
http://dx.doi.org/10.1016/j.ins.2018.02.060
http://dx.doi.org/10.1016/j.ins.2018.02.060
http://dx.doi.org/10.3390/math9070751
http://dx.doi.org/10.1007/978-3-319-11197-1_39
http://dx.doi.org/10.1007/978-3-319-11197-1_39
http://dx.doi.org/10.3390/app8122421


International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

23

Tao, L., Zhaojie, W., Yuling, C., Chunmei, L., Yanling, J., & Yixian, Y. (2021). Is semi-selfish mining available 
without being detected? International Journal of Intelligent Systems, •••, 1–22. doi:10.1002/int.22656

Teng, H., Qixiang, Z., Jiabao, L., Ruitao, H., Xianmin, W., & Ya, L. (2020). Adversarial attacks on deep-
learning-based SAR image target recognition. Journal of Network and Computer Applications, 2020(162), 1–12. 
doi:10.1016/j.jnca.2020.102632

Tewari, A., & Gupta, B. B. (2020). Security, privacy and trust of different layers in Internet-of-Things (IoTs) 
framework. Future Generation Computer Systems, 108, 909–920. doi:10.1016/j.future.2018.04.027

Varzaneh, Z. A., & Rafsanjani, M. K. (2021). Intrusion detection system using a new fuzzy rule-based classification 
system based on genetic algorithm. Intelligent Decision Technologies, 15(2), 231–237. doi:10.3233/IDT-200036

Wanwei, H., Jianwei, Z., Haiyan, S., Huan, M., & Zengyu, C. (2017). An anomaly detection method based 
on normalized mutual information feature selection and quantum wavelet neural network. Wireless Personal 
Communications, 96(2), 2693–2713. doi:10.1007/s11277-017-4320-2

Xi, L., Wang, R. D., Yao, Z. Y., & Zhang, F. B. (2021). Multisource neighborhood immune detector adaptive 
model for anomaly detection. IEEE Transactions on Evolutionary Computation, 3(25), 582–594. doi:10.1109/
TEVC.2021.3058687

Xiaohui, K., Ming, Z., Hu, L., Guang, Z., Huayang, C., & Zhendong, Z. et al.. (2019). DeepWAF: Detecting 
web attacks based on CNN and LSTM models. Cyberspace Safety and Security, 11983(PT II), 121–136. 
doi:10.1007/978-3-030-37352-8_11

Yang, Y. Q., Zheng, K. F., Wu, C. H., Niu, X. X., & Yang, Y. X. (2019). Building an effective intrusion detection 
system using the modified density peak clustering algorithm and deep belief networks. Applied Sciences-Basel, 
2(9), 238–262. doi:10.3390/app9020238

Yilei, W., Guoyu, Y., Tao, L., Lifeng, Z., Yanli, W., Lishan, K., & Yi, D. (2021). Optimal mixed block withholding 
attacks based on reinforcement learning. International Journal of Intelligent Systems, 12(35), 2032–2048. 
doi:10.1002/int.22282

Ying-Wu, Z., Jia-Hai, Y., & Jin-Xiang, Z. (2010). Anomaly detection based on traffic information structure. 
Journal of Software, 21(10), 2573–2583. doi:10.3724/SP.J.1001.2010.03698

Yuan, F., Chen, S., Liang, K., & Xu, L. (2021). Research on the coordination mechanism of traditional Chinese 
medicine medical record data standardization and characteristic protection under big data environment. 
Shandong People’s Publishing House.

Zhang, X., Wang, Y., Geng, G. & Yu, J. (2021). Delay-Optimized Multicast Tree Packing in Software-Defined 
Networks IEEE Transactions on Services Computing, 1-14. 10.1109/TSC.2021.3106264

Zhi-jian, Q., Yu-hang, C., Pan-jing, L., Xiao-hong, L., & Cai-hong, L. (2019). Cooperative evolution of 
multiple operators based adaptive parallel quantum genetic algorithm. Acta Electonica Sinica, 47(2), 266–273. 
doi:10.3969/j.issn.0372-2112.2019.02.002

http://dx.doi.org/10.1002/int.22656
http://dx.doi.org/10.1016/j.jnca.2020.102632
http://dx.doi.org/10.1016/j.future.2018.04.027
http://dx.doi.org/10.3233/IDT-200036
http://dx.doi.org/10.1007/s11277-017-4320-2
http://dx.doi.org/10.1109/TEVC.2021.3058687
http://dx.doi.org/10.1109/TEVC.2021.3058687
http://dx.doi.org/10.1007/978-3-030-37352-8_11
http://dx.doi.org/10.3390/app9020238
http://dx.doi.org/10.1002/int.22282
http://dx.doi.org/10.3724/SP.J.1001.2010.03698
http://dx.doi.org/10.3969/j.issn.0372-2112.2019.02.002


International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

24

Table 13. Abbreviations table

Abbreviation Full Name

AE – CGAN – RF autoencoder - conditional, the generative adversarial networks and the random forest

NMIFS MOP- AQGA normalized mutual information feature selection and cooperative evolution of multiple 
operators based on adaptive parallel quantum genetic algorithm

IDS intrusion detection system

NMIFS normalized mutual information feature selection

MOP- AQGA cooperative evolution of multiple operators based on adaptive parallel quantum genetic 
algorithm

SVM support vector machine

FSA Feature selection algorithm

mRMR minimal- Redundancy- Maximal- Relevance

MDPCA-DBN Modified Density Peak Clustering Algorithm and Deep Belief Networks

AA-HMM anti-adversarial hidden markov model for network-based intrusion detection

GA Generation algorithm

MS-NIDAM multisource neighborhood immune detector adaptive model

DDos Distributed Denial-of-service

SQL Web Attack Structured Query Language

XSS Injection Cross-site Scripting

FTP File Transfer Protocol

SSH Secure Shell

Dos Denial-of-service

IIFS-MC Improved Infinite Feature Selection for Multiclass Classification (IIFS-MC)

ROC Receiver Operating Characteristic
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