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ABSTRACT

Many online network communities, such as Facebook, Twitter, Tik Tok, Weibo, etc., have developed 
rapidly and become the bridge connecting the physical social world and virtual cyberspace. Online 
network communities store a large number of social relationships and interactions between users. How 
to analyze diffusion of influence from this massive social data has become a research hotspot in the 
applications of big data mining in online network communities. A core issue in the study of influence 
diffusion is influence maximization. Influence maximization refers to selecting a few nodes in a social 
network as seeds, so as to maximize influence spread of seed nodes under a specific diffusion model. 
Focusing on two core aspects of influence maximization (i.e., models and algorithms), this paper 
summarizes the main achievements of research on influence maximization in the computer field in 
recent years. Finally, this paper briefly discusses issues, challenges, and future research directions in 
the research and application of influence maximization.
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Introduction

Online social networks have become important platforms for people to communicate, share knowledge, 
and disseminate information. Moreover, online social networks are also widely used to spread news, 
create trends. Due to the widespread use of online social networks, individual thoughts, preferences, 
and behaviors are often influenced by peers or friends via social networks. From listening to a song, 
watching a movie, reading a new book, and choosing a restaurant, to buying a property, choosing a 
career, choosing a city to live in, and determining political opinions, traces of influence can be found 
in user’s sharing behaviors on social media. Analyzing and understanding how users in online social 
networks interact with each other can help researchers better understand, control, and effectively utilize 
the diffusion process and is conducive to efficiently making public opinion analyses, information 
predictions, and commercial recommendations.
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A core issue of influence diffusion research is influence maximization, which aims to optimize 
the spread of influence. One of the important applications is viral marketing (Domingos & Richardson, 
2001; Qi et al., 2019; Xu et al., 2022; Yuan et al., 2021). Specifically, a company looks for the most 
influential initial customers in a virtual market and provides them with the opportunity to try a product 
for free. The company expects these initial customers to actively promote the product in the circle of 
their friends after using it. Finally, these influential customers can influence their friends, friends of 
their friends, to accept and purchase the product. This is the goal of influence maximization. Besides 
viral marketing, there are many other applications of influence maximization, including network 
monitoring (Leskovec et al., 2007; Wang, Wang, et al., 2021; Qi et al., 2020), rumor control (Budak 
et al., 2011; He et al., 2012; Xu, Tian, et al., 2021; Peng et al., 2021; Hou et al., 2021), and social 
recommendation (Ye et al., 2012; Wu et al., 2021; Liao et al., 2021; Sun et al., 2021; Nitu et al., 2021).

The ubiquitous social networks generate massive amounts of social big data with large scale, 
dynamics, and heterogeneity. Different from many big data analyses, the big data analysis of influence 
diffusion requires analyzing the influence strength between any two associated users. This is much 
more difficult than analyzing only the characteristics of a user or the characteristics of a group. In 
addition, influence diffusion involves the analysis of people’s complex behaviors. These behavioral 
data are not easy to be mined in social media data. Therefore, it is very important to design efficient 
and effective influence maximization techniques. In the big data environment, the performance of 
an influence maximization algorithm can be evaluated from three aspects: quality, computational 
efficiency, and scalability. Firstly, the influential seed users identified by a good influence maximization 
algorithm should have a superior expected influence spread. Secondly, a good influence maximization 
algorithm is superior in the running time. Thirdly, a good influence maximization algorithm should 
have little memory consumption as the number of required seed users increases.

In summary, this paper mainly summarizes research achievements of influence maximization. 
Specifically, this paper focuses on two aspects of influence maximization, i.e., models and algorithms. 
This paper first introduces basic models of influence diffusion and then introduces optimization 
problems and their algorithms under basic models. Because algorithms need to be suitable for large-
scale networks in a big data environment, this paper introduces the design and analysis of efficient 
and scalable optimization algorithms in detail. Figure 1 shows the common workflow of influence 
maximization (Arora et al., 2017).

The next section of this paper introduces related definitions of influence maximization, followed 
by an introduction to the basic models of influence diffusion, including an independent cascade model 
and linear threshold model, and then introduces monotonicity and submodularity of diffusion models 
closely related to algorithm designs. This is followed by a discussion of the computational hardness 
of influence maximization and various efficient and scalable approximation algorithms of it, which 
in turn is followed by a summary and brief discussion of the direction of developments in this field.

Figure 1. The framework for influence maximization
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PRELIMINARIES

The spread of information and influence in social networks is complex and diverse, but there are still 
rules to follow. In the remainder of this paper, influence diffusion is used to summarize the spread 
of information, concepts, ideas, innovations, and products in social networks.

Definition 1 (social networks): A social network is described as a directed graph � � �G V E= ( ), , 
where V is a set of nodes, E V V⊆ ×  is a set of directed edges. Each node v VÎ  represents a 
person in a social network. Each directed edge u v E,( ) ∈  represents the direction of influence, 
i.e., Node u has an influence on Node v, but Node v may have no influence on Node u.

The variable n V  =  is used to represent the number of nodes in a graph, and m E  =  is used 
to represent the number of directed edges in a graph. In the process of specific modeling, each edge 
usually has a weight indicating the strength of influence. For a directed edge u v E,( ) ∈ , it is called 
the outgoing edge of Node u and the incoming edge of Node v. Node v is an outgoing neighbor of 
Node u, and Node u is an incoming neighbor of Node v. The set of all outgoing neighbors of a node 
v is represented by N v

out ( ) , and the set of all incoming neighbors is represented by N v
in ( ) .

Definition 2 (active nodes): In the process of influence diffusion, each node in a graph is described 
as two possible states: active and inactive. An inactive state indicates that a node does not accept 
some information, while an active state indicates that a node accepts or disseminates some 
information. When a node changes from an inactive state to an active state, it means that this 
node accepts some information. In other words, this node is activated.

Definition 3 (influence diffusion models): Diffusion models are used to describe how the state of 
a node in a social network influences the state of its neighbors, which further causes some state 
(usually referred to as an active state) to diffusion in the network.

Definition 4 (seeds): Under diffusion models, some nodes are active states at the beginning of the 
diffusion process. These nodes are called seeds and are denoted by S.

Definition 5 (influence spread): The (final) influence spread of a seed set S is the expected number 
of nodes activated at the end of the diffusion process. Influence spread is shown as Ã S( ) .

Definition 6 (influence maximization): Given a social network G V E� �= ( ), , an influence diffusion 
model and its parameters (such as independent cascade model and probabilities on edges). Given 
a budget k, influence maximization finds a seed set S *  with at most k nodes, so that influence 
spread generated by S *  is maximized. That is,

S S
S V S k

*

,
∈ ( )⊆ =
argmax s .	 (1)

In the aspect of social network analysis platforms and systems, many well-known scientific 
research institutions are devoted to the research of social network analysis and have established their 
own analysis tools for social networks, such as the SNAP system from Stanford University (see Table 1).
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For ease of reference, Table 2 lists the notations that are frequently used in this paper.

Influence Diffusion Models

There are many types of influence diffusion models. The mainstream of current research is random 
diffusion model, because it more directly reflects the uncertainty in influence diffusion. The random 
propagation model can be divided into discrete-time and continuous-time models (Aral & Walker, 
2012) and progressive and non-progressive models (e.g., the election model; Kempe et al., 2003). 
Among numerous models, the discrete-time progressive model is studied the most. In this model, 
the state transition of each node and influence diffusion are specified to occur at discrete time steps. 
Moreover, the model assumes that any node will remain active state once it changes from inactive 
to active and will not return to an inactive state again. This paper mainly introduces two classical 
models of the discrete-time progressive diffusion model (Kempe et al., 2003), namely the independent 
cascade model and linear threshold model.

Table 1. Existing social network analysis platforms and systems

System Development Institutions Systematic Name Source of System

Stanford University SNAP https://snap.stanford.edu/data/

Tsinghua University AMiner https://www.aminer.cn/data-sna

Arizona State University Social Computing Data 
Repository

http://datasets.syr.edu/pages/home.html

University of Koblenz–Landau KONECT http://konect.cc

Table 2. Frequently used notations

Notation Description

G V E� � �= ( ), a social network G with a node set V and an edge set E

n m, � the numbers of nodes and edges in G, respectively

N v
out ( ) the set of all outgoing neighbors of a node v

N v
in ( ) the set of all incoming neighbors of a node v

Ã S( ) the influence spread of a node set S on G

p u v, �( ) the influence probability in the IC model

w u v, �( ) the influence of weight in the LT model
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Independent Cascade (IC) Model

In the independent cascade model, every directed edge u v E,( ) ∈  in a graph has a corresponding 
probability p u v, ,( ) ∈  

0 1� . The probability p u v,( )  represents the probability that when node u is 
activated, u independently activates a node v through the edge u v,( ) . The probability p u v,( )  is 
called the influence probability.

The dynamic diffusion process under the independent cascade model is accomplished at discrete 
time steps as follows: In step � � �t = 0 , seed set S is first activated, while other nodes are inactive. In 
any step �t ³ 1 , for any node u that was just activated in step t -1 , u will try to activate each outgoing 
neighbor v N u∈ ( )out

that has not been activated once, and the probability of this attempt succeeding 
is �p u v,( ) . Furthermore, this activation attempt is independent of all other activation attempts. If the 
attempt is successful, Node v is activated in Step t. If the attempt is unsuccessful and other incoming 
neighbors of Node v do not successfully activate v in Step t, then Node v is still inactive in Step t. 
When no new nodes are activated in some step, the diffusion process stops.

Figure 2 (Chen et al., 2013) shows an example of the diffusion process of the IC model. Filled 
nodes represent active nodes. Empty nodes represent inactive nodes. Each edge of solid arcs indicates 
that the influence successfully propagates on the edge, and each edge of dotted arcs indicates that 
the influence does not propagate on the edge. The number on an edge represents the probability of 
influence propagation on that edge. In Step � � �t = 0 , Nodes 1 and 2 are selected as seed nodes and 
activated. In Step � � �t = 1 , Nodes 1 and 2 activate Nodes 5 and 4, respectively, and activate Node 3 
simultaneously, but Node 2 fails to activate Node 6 successfully. In Step � � �t = 2 , all outgoing neighbors 
of Node 5 are Nodes 1, 6, and 9. Since Node 5’s outgoing neighbor Node 1 is activated, Node 5 can 
no longer attempt to activate it. For outgoing neighbor Nodes 6 and 9 that are not activated, Node 5 
successfully activates Node 6 but fails to activate Node 9. Similarly, the outgoing neighbor of Node 
4 is Node 2. Since Node 2 is activated, Node 4 can no longer try to activate it. The outgoing neighbor 
of Node 3 that is not activated is Node 6, but the attempt of Node 3 to activate Node 6 is unsuccessful. 
In Step � � �t = 3 , the outgoing neighbor of Node 6 that is not activated is Node 7, and Node 6 tries to 
activate Node 7 but fails. This diffusion process ends, and Nodes 7, 8, and 9 are not activated during 
the diffusion.

Figure 2. An example of the diffusion process of the IC model
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In real life, phenomena such as the spread of new news in online networks or the spread of a 
new virus among people are in line with characteristics of independent diffusion. Therefore, the 
independent cascade model is currently the most widely studied model.

3.2 Linear Threshold (LT) Model

In linear threshold model, each directed edge � u v E,( ) ∈  has a weight of � �w u v, ,( ) ∈  
0 1 , which is 

called the influence weight. The weight w u v,( )  reflects the proportion of the importance of Node 

u’s influence in all incoming neighbors of Node v. Require 
u N v

w u v
�

,
∈ ( )∑ ( ) ≤
� in

1 . Moreover, each 

node v has an influenced threshold, q
v
∈ 


0 1, � , which is uniformly and randomly selected in the 

range of 0 to 1. This threshold will not change during diffusion once it is determined.
Like the independent cascade model, only nodes in the seed set S are activated in Step t � �= 0 . 

In any step t ³ 1 , each inactive node, v, needs to determine whether it is activated or not according 
to whether the linear weighted sum of all v’s activated incoming neighbors to it has reached v’s 
influenced threshold. If so, Node v is activated in Step t. Otherwise, Node v remains inactive. When 
no new nodes are activated in some step, the diffusion process stops.

Figure 3 (Chen et al., 2013) shows an example of the diffusion process of the LT model. Filled 
nodes represent active nodes. Empty nodes represent inactive nodes. The edges of solid arcs indicate 
that the weights on these edges together exceed the node thresholds, thus successfully activating the 
pointing nodes. Each edge of dotted arcs indicates that the influence does not propagate on the edge. 
The number on an edge represents an influence weight on that edge. The number next to each node 
is a randomly generated threshold for that node in the diffusion process. In Step � � �t = 0 , the threshold 
of each node is determined by sampling and displayed next to each node. Moreover, Nodes 1 and 2 
are selected as seed nodes and activated. In Step � � �t = 1 , the edge weight 0.4 of Node 1 pointing to 
Node 5 is bigger than the threshold 0.2 of Node 5, so Node 5 is activated. The edge weight 0.7 of 
Node 2 pointing to Node 4 is bigger than the threshold 0.5 of Node 4, so Node 4 is also activated. 
The sum of the edge weights of Nodes 1 and 2 pointing to Node 3 is 0.6, which reaches the threshold 
0.6 of Node 3, so Nodes 1 and 2 jointly activate Node 3. However, in Step � � �t = 1 , node 6 has only 
one incoming neighbor, Node 2, that was an active node in the previous timestep, and the edge weight 
0.4 from Node 2 to Node 6 is less than the threshold 0.7 of Node 6, so Node 6 is not activated in Step
� � �t = 1 . In Step � � �t = 2 , the sum of the edge weights of Nodes 2, 3, and 5 pointing to Node 6 is 0.9, 
which is bigger than the threshold 0.7 of Node 6, so Node 6 is activated. However, Node 5 does not 
activate Node 9 because the edge weight 0.3 from Node 5 to Node 9 is less than the threshold 0.8 of 
node 9. In Step � � �t = 3 , Node 6 fails to activate Node 7, so the diffusion process ends. Nodes 7, 8, 
and 9 are not activated during the diffusion process.

Figure 3. An example of the diffusion process of the LT model
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Comparison of Diffusion Models

As mentioned above, when modeling the influence diffusion, each edge u v E,( ) ∈  is often weighted 
to represent the strength of influence diffusion. Ideally, the influence strength should be learned from 
the actual data. However, most existing influence maximization work directly assigns the weights to 
each edge, instead of learning them. Table 3 summarizes various methods for assigning edge weights 
under the IC and LT models. In the IC model, there are three ways of assigning edge weights. Firstly, 
each edge is assigned a constant weight. For example, the value of p u v, �( )  is set to 0.01 or 0.1, or 
p u v, �( )  is a value in the range of [0.01, 0.1]. Secondly, each edge is assigned an equal weight. For 

example, p u v N v
in

, /� � �( ) = ( )1 , where N v
in ( )  is a set of all incoming neighbors of v. Thirdly, 

each edge is randomly assigned a weight from a set of weights. For example, the weights can be 
randomly chosen from the set {0.001, 0.01, 0.1}. The LT model also includes three methods to assign 
weights to each edge. Firstly, the weight on each edge is assigned to w u v N v, /� � � � �

in( ) = ( )1 . This 
is similar to the second approach in the IC model. Secondly, each edge weight is randomly chosen 
in the range [0, 1]. The third approach considers the case of multi-graphs. In real-world social networks, 
there are usually multiple edges between users. For example, in a co-author network, each node 
corresponds to a user, and an edge u v,( )  simulates u and v co-authoring an article. Since u may co-
author multiple articles with v, there may be parallel edges between these users. Therefore, in the 

third approach, each edge weight is assigned to w u v
c u v

c u v
u N v

,
,

,
� � �

�

�
� � �’� in

( ) = ( )
( )′

∀ ∈ ( )∑
, where c u v, �( )  

is the number of parallel edges between u and v.

Table 3. A comparison of classical diffusion models

Model p u v,( )  or w u v,( )

IC

Constant
p u v, �( )  is a constant probability. For example, p u v, .� � �( ) = 0 01  or 

0.01, or p ∈ 

0 01 0 1. , .� .

Weighted cascade p u v
N v

, � � �
in

( ) =
( )
1

Tri-valency model
p u v, �( )  is chosen randomly from a set of probabilities, such as the set 
{0.001, 0.01, 0.1}.

Table 3 continued on next page
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Submodularity of Diffusion Models

One of the most important properties of diffusion models for influence maximization is its 
submodularity. This section mainly introduces the submodularity of basic models mentioned above. 
Firstly, the definition of submodularity is given below.

Definition 7 (submodularity of diffusion models): For a set function � �f V: 2 ®  . For any subset 
S VÍ , any of its supersets ¢S (S S V⊆ ⊆′ ) and any element � �u V S∈ ′�\ , if f satisfies 
f S f S u f S( ) ≥ ∪{ }( )− ( )′ ′ , then function f is submodular. Submodularity reflects that the 
incremental effect of Element u on Set S decreases with the increase of S. This is the phenomenon 
of diminishing marginal gains. Furthermore, the monotonicity of set functions is often used with 
submodularity.

Definition 8 (monotonicity of diffusion models): For any subset S VÍ  and any of its supersets 
¢S (S S V⊆ ⊆′ ), if a set function f satisfies  f S f S( ) ≤ ( )′ , then function f is monotonic. As 

a function of s seed set S, the influence spread Ã S( )  is proved to satisfy submodularity under 
independent cascade and linear threshold models and many of their extension models. Therefore, 
submodularity of influence spread can be understood as the marginal influence of a node on 
some set decreases as the set increases. The definition of marginal influence gain is given below.

Definition 9 (marginal influence gain): Assume that the first seed is Node u, the second candidate 
seed is Node v. Marginal influence gain of Node v on Node u represents increased marginal 
influence after adding Node v. Marginal influence gain of Node v on current seed set S is denoted 
as gain |v S( ) . Therefore,

gain |v S S v S( ) = ∪{ }( )− ( )Ã Ã 	 (2)

where Ã S( )  represents influence spread that seed set S can generate.

Model p u v,( )  or w u v,( )

LT

Uniform
w u v

N v
, � � �

in

( ) =
( )
1

Random w u v, �( )  is chosen uniformly at random from [0, 1].

Parallel edges w u v
c u v

c u v
u N v

,
,

,
� � �

�

�
� � �’� in

( ) = ( )
( )′

∀ ∈ ( )∑

Table 3 continued on next page
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The existing research proves submodularity and monotonicity of influence spread under diffusion 
models introduced above.

Theorem 1 (Monotonicity and sub-modularity of models such as independent cascade model): 
In the independent cascade model, linear threshold model, and trigger model, influence spread 
Ã S( )  is monotonic and submodular (Kempe et al., 2003).

Influence Maximization and Its Algorithms

An important purpose of modeling influence diffusion is to control and optimize the spread of 
influence, and a core issue that is widely studied is influence maximization.

NP-Hardness of Influence Maximization

As defined in Definition 6, influence maximization refers to selecting a few nodes in a social network 
as seeds, so as to maximize the influence spread of these seeds under a specific diffusion model. 
Because influence maximization belongs to the combinatorial optimization problem, it is NP-hard 
to maximize influence spread under classical independent cascade linear threshold models. The 
following theorem gives this conclusion.

Theorem 2 (The Hardness of Influence Maximization): Influence maximization is NP-hard under 
both independent cascade and linear threshold models (Kempe et al., 2003).

Greedy Algorithm for Influence Maximization 
Based on Submodularity

Influence maximization is NP-hard under basic independent cascade and linear threshold models. 
In order to solve NP-hard optimization problem, effective approximation algorithms are needed. 
Approximate algorithms of influence maximization depend on the submodularity property of the 
influence spread function and the greedy algorithm technique it brings.

Regarding submodularity of diffusion models, as stated in Theorem 1, under independent cascade 
and linear threshold models, and even under the triggering model including them both, influence 
spread function σ(S) is monotonic and submodular. Therefore, a greedy algorithm can be used to 
find an approximate optimal solution for influence maximization. This simple greedy algorithm 
can guarantee that the obtained solution is at least 1 – 1 / e (i.e., about 63%) of the optimal solution 
(Even-Dar & Shapira, 2007). The greedy approximation algorithm for influence maximization is 
shown in Algorithm 1.
Algorithm 1: Greedy(σ,k)
Input: influence spread function σ(∙), budget k
Output: seed set S of size k
1.          S = Æ
2.          for i = 1 to k do
3.          u* = [argmax]_(u Î V \ S) (σ(S È {u}) – σ(S))
4.          S = S È {u*}
5.          end for
6.          return S

Greedy approximation algorithm for influence maximization is divided into k iterations. Initially, 
the output seed set S is empty (line 1). At each iteration, the greedy algorithm needs to find Node u*  
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that is not in S. Based on the current seed set S, u*  can maximize the marginal influence gain of σ 
(line 3). Then, add Node u*  to the seed set S (line 4).

The hardness of exactly computing influence spread greedy approximation algorithm of influence 
maximization given by Algorithm 1 cannot be directly used to compute the influence spread function
 Ã, because the key step of Algorithm 1 is to compute the influence spread Ã S u∪{ }( )  of the seed 
set S (line 3). For an influence diffusion model and a given seed set S, for a general directed graph, 
it is #P-hard to accurately compute influence spread Ã S u∪{ }( )  under the simplest independent 
cascade and linear threshold models.

Theorem 3: It is #P-hard to accurately compute the influence spread of a set under independent 
cascade and linear threshold models. Under the independent cascade model, even if a directed 
graph is a directed acyclic graph (DAG), it is also #P-hard to accurately compute influence 
spread (Yildiz et al., 2011).

Therefore, many publications have proposed various scalable influence maximization algorithms.

Scalable Influence Maximization Algorithms

In this paper, existing scalable influence maximization algorithms are divided into four categories, 
i.e., Monte-Carlo-based greedy approximation, heuristic-based, reverse influence sampling, and 
machine learning algorithms. A theoretical analysis of existing influence maximization algorithms 
is shown in Table 4.

Table 4. A comparison of influence maximization algorithms

Category Algorithm Model Time Complexity Pros and Cons

MC-based greedy 
approximation

Greedy IC, LT
O kmnr( ) It provides a theoretical 

guarantee, but its 
computational 
efficiency is low.

CELF IC, LT O kmnr( )

CELF++ IC, LT O kmnr( )

Table 4 continued on next page
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Monte-Carlo-Based Greedy Approximation Algorithms

The computational hardness pointed by Theorem 3 refers to the accurate computation of influence 
spread. Therefore, Kempe et al. (2003) pioneered the use of the Monte Carlo method to approximately 
compute influence spread. This approach is an extension of the greedy algorithm (i.e., Algorithm 1). 
The MC-greedy algorithm also iteratively selects Node � *u  with the maximum marginal influence 
gain and adds it to the seed set S. The difference between MC-greedy algorithm and greedy algorithm 
is that for each node set S u∪{ } , MC-greedy algorithm uses the Monte Carlo method to estimate 

its influence spread Ã S u∪{ }( ) . Specifically, the workflow of the Monte Carlo simulation is to 
repeatedly simulate the diffusion process of influence on a seed set S, count the average number of 
activated nodes in these simulation processes, and finally use this average as the estimated value of 
influence spread of S. Therefore,

Category Algorithm Model Time Complexity Pros and Cons

Heuristic-based

Degree-discount IC, LT
O k n mlog +( ) It has high speed 

and good practical 
efficiency, but it lacks 
theoretical guarantees.

PMIA IC O nt kn n n n
i o i i¸ ¸ ¸ ¸+ +( )( )log

LDAG LT O nt km n m n¸ ¸ ¸ ¸�+ +( )( )log

SimPath LT O k n ̧( )

IRIE IC O k n k m
o¸  +( )( )

RIS-based

RIS IC, LT
O k n m n

2 2 3+( )( )log / e It provides a theoretical 
guarantee, and its time 
complexity is low.

TIM/TIM+ IC, LT O k n m n+( ) +( )( ) log / e2

IMM IC, LT O k n m n+( ) +( )( ) log / e2

SSA/D-SSA IC, LT -

OPIM IC, LT -

SKIM IC O n E m log n
i

i
 + +( )∑ ( ) − 2 2

Machine learning-
based

IMINFECTOR Model-
free O I I I N N ⋅ ( ) ⋅ ( )( )log log

It provides good 
scalability, prediction 
accuracy, computational 
efficiency, and 
influence quality.DISCO IC, LT O n N v⋅ ( )( )

Table 4 continued
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Ã ´S u
r

u
u V S

∪{ }( ) = ( )
∈ ∪
∑� �
� �

1

� �

.	 (3)

In Equation 3, r is the number of Monte Carlo simulations, which is usually 10,000. If Node u 
is activated, the indicator function � � �´ u( ) = 1 ; otherwise, ´ u( ) =� �0 . The solution of MC-greedy 
algorithm can obtain a 1 1- -/e µ  approximation of the optimal solution, where e is a number 
greater than zero, and it corresponds to the accuracy of Ã S( )  estimation. However, simply using the 

Monte Carlo method for influence maximization is time-consuming. It is an O k n m n2 2 2
 log / µ( )  

algorithm. For slightly larger-scale social networks, the MC-greedy algorithm is challenging to scale 
and computationally expensive. Therefore, many researchers further propose many algorithms for 
the scalability problem of MC-greedy to improve computational performance.

Leskovec et al. (2007) proposed the CELF (cost-effective lazy-forward) algorithm based on the 
submodularity of the influence spread function. CELF uses a lazy evaluation method to greatly reduce 
the number of times to evaluate the influence spread function of a seed set. The difference from the 
MC-greedy algorithm is that the CELF algorithm does not simply estimate the influence spread 
Ã S u∪{ }( )  of all node sets but estimates an upper bound of Ã S u∪{ }( )  to avoid unnecessary 
recomputation of marginal influence gain at each iteration. According to Definition 7, for a node 
u VÎ  and a set S S V

k k
⊆ ⊆+1

:

Ã Ã Ã Ã( ) ( )S u S S u S
k k k k
∪{ } − ( ) ≥ ∪{ } − ( )+ +� � � �1 1

.	 (4)

where S
k

 is the seed set after the kth iteration. It can be seen from Equation 4 that for any 
S S
k k
⊆ +� �1 , gainu k k k

S S u S( ) = ∪{ } − ( )Ã Ã( )  is an upper bound for any 
gain

u k k k
S S u S
� � �

( )+ + +( ) = ∪{ } − ( )1 1 1
Ã Ã . Therefore, the CELF algorithm can be divided into 

two parts. The first part is similar to the MC-GREEDY algorithm. Specifically, it iterates on each 
node in a graph and calculates marginal influence gain gain

u
Æ( )  for each node u VÎ . Then it 

selects the node with the maximum marginal influence gain and adds it to the seed set. Unlike the 
MC-greedy algorithm, the CELF algorithm needs to store marginal influence gain gain

u
Æ( )  of 

each node in a sorted list and use it as an upper bound for the second part. The second part of the 
CELF algorithm iteratively finds the remaining k – 1 seeds. At each iteration, the CELF algorithm 
only re-estimates the marginal influence gain of the node at the top of the list. If this node is still at 
the top of the list after reordering, it must be the node with the maximum marginal influence gain 
among all nodes. Because according to the submodularity of influence spread function, if marginal 
influence gains of all other nodes in the list are recalculated, their values must be smaller than the 
current marginal influence gains in the list. Therefore, the CELF algorithm adds the node that is 
still at the top of the list after reordering to the seed set. If the node is not at the top of the list after 
reordering, then CELF estimates the marginal influence gain of the new top node in the list, this 
continues until k seeds are found.

Experiments by Leskovec et al. (2007) show that the CELF algorithm not only retains the 
performance of the 1 1- -/e µ  approximation ratio but also has a speed increase of nearly 700 
times compared with the MC-greedy algorithm. Although the performance of the CELF algorithm 
is significantly improved, it still takes hours to find the top 50 nodes in a network with tens of thousands 
of nodes (Chen et al., 2009). Subsequently, Goyal, Lu, and Lakshmanan (2011a) proposed an 
optimization algorithm CELF++ based on the CELF algorithm by further mining the sub-modularity. 
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The difference between the CELF and CELF++ algorithms is that when computing marginal influence 
gain of a node gain

u k
S( )  at each iteration, CELF++ considers the marginal influence of the node 

with the maximum marginal influence gain in the previous iteration to achieve a better pruning effect. 
Although CELF++ maintains more information than CELF, it has a performance improvement of 
17% ~ 61% compared to CELF.

Heuristic-Based Algorithms

Although the lazy estimation method mentioned above can improve algorithm efficiency hundreds 
of times, it only reduces the running time from a few days to a few hours in a relatively small graph 
with tens of thousands of nodes and edges. When a graph size is hundreds of thousands or millions, 
it becomes difficult to run Monte-Carlo-based greedy algorithms in a reasonable amount of time. 
Therefore, some researchers propose heuristic-based algorithms that do not depend on Monte Carlo 
simulation. Therefore, heuristic-based algorithms run much more efficiently and are more scalable 
in larger network graphs (Qi et al., 2021; Xu, Fang, et al., 2021; Wang, Zhu, et al., 2021).

First, Chen et al. (2009) optimized the greedy algorithm proposed by Kempe et al.; however, 
the results show that it is difficult to greatly improve the performance by improving the greedy 
algorithm. Therefore, Chen et al. (2009) proposed a degree-discount algorithm, which selects seed 
nodes by discounting the out-degree of candidate nodes based on their connections to selected nodes. 
Specifically, when node v is selected as the seed node, the expected increment of the number of active 
nodes brought by it is:

1 2+ − − −( ) + ( )( )×d t d t t p o t p
v v v v v v

	 (5)

where d
v
 represents the degree of Node v, and  t

v
 represents the number of v’s neighbors that 

are selected as seed nodes. It can be seen from Equation 5 that greater t
v

 means greater discount to 
d
v
. Although degree-discount can improve computational performance, it assumes that influence 

probabilities on all edges are the same under the independent cascade model (i.e., uniform independent 
cascade model). This assumption is obviously inconsistent with actual requirements.

Chen, Wang, and Wang (2010) proposed the PMIA algorithm by extending the idea of the 
degree-discount algorithm under the general independent cascade model and proposed the LDAG 
algorithm (Chen, Yuan, & Zhang, 2010) under the linear threshold model. The PMIA algorithm 
assumes that influence diffusion between users is propagated through the maximum influence paths 
and considers influence probabilities between users. The maximum influence path MIP u v,( )  refers 
to the path with the maximum influence probability among all paths from Node u to Node v. The 
workflow of the PMIA algorithm is as follows: (1) First, it uses Dijkstra shortest path algorithm to 
compute the maximum influence paths MIPs between each pair of nodes in a network, and filters 
unimportant nodes by setting the threshold q  of the maximum influence paths to reduce the size of 
candidate nodes. (2) Then, for each node v VÎ , it uses Dijkstra shortest path algorithm to develop 
the maximum influence in-arborescence MIIA v, �q( )  and the maximum influence out-arborescence 
MIOA v, �q( )  based on MIPs. MIIA v, � �q( ) contains all MIPs ending at Node v, and influence 
probabilities of all paths are at least q . MIOA v, �q( )  contains all MIPs starting at Node v, and 
influence probabilities of all paths are at least q . (3) By using MIIAs and MIOAs, it can efficiently 
compute the influence spread of each node and marginal influence gain

u k
S( ) for adding any node 

u VÎ  to the seed set S.
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The basic idea of the LDAG algorithm (Chen, Yuan, & Zhang, 2010) is similar to the PMIA 
algorithm, but it is designed for the linear threshold model. The workflow of the LDAG algorithm 
is as follows. First, it uses Dijkstra shortest path algorithm to construct LDAG v, q( )  of Node v. In 
LDAG v, �q( ) , influence probability of each node on v is at least q . Then, it can efficiently compute 
the influence spread of any node and marginal influence gain, gain

u k
S( ) , for adding any node u VÎ  

to the seed set S based on the constructed LDAGs. Experiments on several actual networks show that 
PMIA and LDAG algorithms can achieve influence quality close to Monte-Carlo-based greedy 
algorithms, and their running time is about 1000 times faster than that of Monte-Carlo-based greedy 
algorithms.

In addition to the above algorithms, there are several heuristic-based algorithms to further improve 
efficiency. For instance, the SimPath algorithm proposed by Goyal, Lu, and Lakshmanan (2011b) is 
a heuristic-based algorithm for the linear threshold model. SimPath is an optimization method for 
CELF. It also iteratively selects seed nodes in a lazy forward fashion. However, unlike CELF, SimPath 
does not use expensive Monte Carlo simulations to estimate influence spread but approximately 
computes the influence spread of seed nodes by enumerating simple paths from seed nodes to other 
nodes near seed nodes. A simple path means that there are no duplicate nodes in a path. It is #P-hard 
to enumerate all simple paths. However, most of the influences propagate within a small neighborhood, 
because propagation probabilities in a path decrease rapidly with the increase of path length. Therefore, 
the SimPath algorithm restricts enumerations to a small neighborhood by removing paths with 
propagation probabilities less than a given threshold N. In the SimPath algorithm, influence spread 
of a seed set S is the sum of the influence spread of each node  u SÎ  on the subgraph V S u�\�( ) ∪ { } . 
The influence spread of a node can be computed by enumerating all simple paths starting from the 
node with propagation probabilities of at least N and then summing the propagation probabilities of 
these simple paths. Experiments show that compared to the LDAG algorithm, the SimPath algorithm 
is more efficient, occupies less memory, and generates a larger influence spread of a seed set.

Jung, Heo, and Chen (2012) proposed the IRIE algorithm for the independent cascade model. 
IRIE speeds up seed node selection by utilizing the belief propagation method and the characteristics 
of approximate iteration. In addition, IRIE also solves the problem that PMIA needs more memory.

Reverse Influence Sampling Algorithms

Among the two types of algorithms introduced above, greedy approximation algorithms based on 
the Monte Carlo method have a theoretical guarantee, but their time efficiency is low. Therefore, 
subsequent research mainly focused on improving computational efficiency through heuristic-based 
algorithms. The heuristic-based algorithms are fast, and their influence quality outcomes are close to 
those of greedy algorithms. However, heuristic-based algorithms lack a theoretical guarantee (Kim 
et al., 2013).

Recently, the reverse influence sampling (RIS) method under the independent cascade model, 
pioneered by Borgs, Brautbar, Chayes, and Lucier (2014), changed this situation. The RIS-based 
algorithms are both fast and theoretically guaranteed. Instead of simulating and estimating the 
influence of seed nodes from them, the core idea of RIS is to randomly select a node and use the 
Monte Carlo method to simulate influence diffusion from this random node in the opposite direction 
of all edges. In this fashion, the set reachable by reverse influence diffusion in this fashion is called 
the reverse reachable set (RR-set).

Algorithm 2 gives the basic framework of the RIS-based algorithm. The framework is divided 
into two steps. The first step is to estimate the number of required RR-sets and generate these RR-sets 
(i.e., Sampling subfunction), and then store them in a set  . The second step is to use the greedy 
algorithm in   to find k nodes so that they cover as many RR-sets as possible (i.e., NodeSelection 
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subfunction). The number of RR-sets generated in the first step directly determines the running time 
of an algorithm. Therefore, it is the focus of different algorithms to improve their efficiency (Tang 
et al., 2014; Tang et al., 2015). For the second step, various algorithms use the same method to pick 
k nodes from the generated RR-sets. Therefore, this paper focuses on comparing the improvement 
for the first step of different algorithms.
Algorithm 2: RR-set-based influence maximization algorithm
Input: Directed graph G = (V,E), budget k, approximation ratio ε, 
error probability l
Output: Seed set S of size k
1.          /* Estimate the number of required RR-sets and generate 
these RR-sets.   is a set of these RR-sets. */
2.            = Sampling(G,k,ε,l)
3.          /* Find k nodes with greedy algorithm on RR-Set in   
*/ 
4.          S

k
*  = NodeSelection( ,k)

5.          return S
k
*

The algorithm proposed by Borgs et al. (2014) uses a threshold Ä-based on computational cost 
to indirectly control the number of required random RR-sets. Moreover, an average time complexity 
of their algorithm is O k m n n

2 2 2+( )( )log �/ µ . It is not improved enough, and no experimental 
verification is given. Therefore, Tang, Shi, and Xiao further proposed the TIM/TIM+ (Tang et al., 
2014) and IMM algorithms (Tang et al., 2015) and performed simulation experiments to verify them.

The theoretical average complexity of TIM/TIM+ (Tang et al., 2014) and IMM algorithms is
� log� �O k m n n+( ) +( )( ) �/ µ2 . It is better than the algorithm proposed by Borgs et al. The number 

of RR-sets generated in TIM/TIM+ and IMM depends on Ã S( )−  , k and errors in various other 

internal parameters. Specifically, TIM requires O n n
n

k
µ− ⋅ ⋅ +
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�RR-sets, where 

OPT is the influence spread of the optimal seed set. Since OPT is unknown, the authors proposed a 
series of bootstrap estimation methods for OPT to compute the number of required RR-sets. TIM+ 
improves on TIM by adding an intermediate step in the influence estimation process. This intermediate 
step heuristically adjusts the number of required RR-sets to a tighter lower bound. Therefore, it ensures 
that TIM+ exhibits better experimental performance while having the same worst-case complexity 
as TIM.

IMM (Tang et al., 2015) uses the centralized property of a stochastic process called martingales 
to estimate the number of required RR-sets. Specifically, the IMM algorithm uses a binary-guessing 
method to estimate the lower bound of OPT. It not only reduces the number of generated RR-sets but 
also speeds up the running time. Thus, it ensures that IMM can be performed in nearly linear time. 
The process of estimating the lower bound of OPT by IMM is as follows: In the ith guess, the lower 
bound is n i�/�2 . First, it uses the current lower bound to generate q

i
 RR-sets, which are used as the 

input of the NodeSelection function. Second, it calls the NodeSelection function to find a set S
i
, and 

verifies whether the estimated influence spread is greater than n i�/�2 . If so, the guess is successful. 
If not, the lower bound is halved, and it continues to guess. In this way, the lower bound of OPT can 
always be found within log

2
n  guesses. In the experimental results (Tang et al., 2015), when µ� �= 0 5.  

and   =1 , IMM algorithm is 100 times faster than the heuristic-based algorithm, such as IRIE and 
SimPath, on some graphs. Moreover, IMM can finish running on graphs with over 1 billion edges in 
100 seconds. Although the theoretical guarantee when µ� �= 0 5.  is not strong, IMM can simultaneously 
satisfy a 1 1- -/e µ  approximation ratio and O k m n n+( ) +( )( ) log / µ2 running time. The 
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performance of IMM can also reach or even exceed efficient heuristic-based algorithms in the 
simulation experiments. Therefore, IMM is a state-of-the-art algorithm among influence maximization 
algorithms.

After the IMM algorithm, there have been several new algorithms trying to improve IMM further. 
Nguyen, Thai, and Dinh (2016) proposed the SSA/D-SSA algorithm. SSA algorithm adds a stop-and-
stare strategy based on the framework of RIS. In each iteration, SSA doubly generates new RR-sets 
and extracts seed nodes based on currently generated RR-sets. Then, SSA stops and verifies whether 
the estimated influence spread of the current seed set is close to the estimated influence spread of 
the seed set in the previous iteration. If so, SSA stops generating RR-sets and returns the current seed 
set. Authors use this approach to find an approximation of the minimum number of RR-sets. D-SSA 
is an SSA algorithm that dynamically adjusts parameters. However, K. Huang et al. (2017) pointed 
out that SSA/D-SSA has issues in algorithm efficiency analysis, and they corrected and improved 
these issues. Based on the experimental results in the original paper and K. Huang et al. (2017), it 
can be concluded that the efficiency of SSA/D-SSA is generally higher than that of IMM, but the 
efficiency of IMM is still higher than that of SSA/D-SSA when the number of seed nodes is small 
(such as several to dozens).

After that, Tang, Tang, Xiao, and Yuan (2018) proposed a new idea of online processing for 
influence maximization. Specifically, this approach does not need to input the accuracy requirement 
µ of the approximation ratio. During the implementation of the algorithm, when a user pauses it, 
this method uses half of the generated RR-sets to give the seed set at the current time step (using the 
NodeSelection subfunction) and uses the other half to estimate the accuracy guarantee µ of 
approximation ratio of this seed set. The approximation ratio is equal to the ratio of the upper bound 
of the optimal solution of estimation to the lower bound of the greedy solution of estimation. The 
approximation ratio is continuously estimated until the given requirement is satisfied. The experimental 
results show that the algorithm outperforms all existing methods, including IMM and D-SSA.

Although the above RIS-based algorithms achieve high efficiency in running time, they have a 
common issue that memory consumption during computation is large. This is because RR-sets used 
during computation need to be stored so that they can be used to select seed nodes in the final step. 
Although reducing the number of sampled RR-sets can reduce memory usage, when the average size 
of RR-sets is large, memory consumption is still a problem. SKIM algorithm proposed by Cohen 
et al. (2014) addressed these issues. SKIM algorithm efficiently computes the influence spread of 
nodes and selects seed nodes by constructing a reachability sketch of nodes in a stochastic context. 
Specifically, SKIM uses the bottom-K2 minHash method to speed up the estimation of constructed 
sketches’ influence spread. The key idea is to perform a reverse BFS walk on the sketch and 
simultaneously update bottom-K minHash values of several candidate seed sets. Theoretically, SKIM 
has no guarantee of near-linear time, but it has a guarantee of approximation ratio. Experimentally, 
SKIM is comparable to TIM/TIM+.

Machine Learning Algorithms

In addition to greedy-based, heuristic-based, and RIS-based algorithms introduced above, there are 
now some other studies using machine learning or data mining techniques to make some practical 
improvements for influence maximization. Panagopoulos, Malliaros, and Vazirgiannis (2020) 
pioneered the application of representation learning to influence maximization and proposed the 
IMINFECTOR method. Different from scalable algorithms of influence maximization introduced 
above, the IMINFECTOR method does not use time-consuming diffusion models to simulate the 
influence propagation process for computing the influence spread of seed sets but instead utilizes 
representations learned from diffusion cascades to maximize influence. The IMINFECTOR method 
consists of two parts. The first part is INFECTOR (influencer vectors), which is a multi-task learning 
neural network. It can simultaneously capture the influence relationship between nodes and the ability 
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of a node to create a large-scale diffusion cascade. Specifically, INFECTOR uses the logs of diffusion 
cascades to learn the embedding of a node initiating cascades (influencer vector) and embeddings 
of nodes participating in these cascades (influenced vectors). The norm of the learned influencer 
vector can be used to capture the ability of a node to initiate a large-scale cascade and can be used 
to reduce the number of candidate seed nodes. A propagation probability between an influencer and 
an influenced can be obtained by taking the dot product of their embeddings. The second part is the 
IMINFECTOR method, which is a scalable greedy algorithm. Specifically, firstly, the IMINFECTOR 
algorithm reformulates influence maximization as a weighted binary matching problem using 
propagation probabilities output by INFECTOR. Secondly, it computes a seed set using a submodular 
influence function to preserve a theoretical guarantee of 1 1- � �/ e . Experimental results show that 
the IMINFECTOR algorithm outperforms the state-of-the-art algorithm, i.e., IMM, in terms of 
scalability, prediction accuracy, and quality of seed set.

Li et al. (2019) proposed a deep learning-based influence maximization algorithm called DISCO. 
The main idea of ​​DISCO is to approximate the influence spread function � � �Ã v S,( ) as y v S� � �= ( )Ã ˜, ; , 
and then use some machine learning methods to learn the value of parameter Θ, so as to predict the 
expected influence spread of node v. Specifically, the DISCO algorithm combines network embedding 
and deep reinforcement learning techniques. Firstly, it employs a network embedding technique to 
represent the network topology as vector-based features, which serve as the input for deep reinforcement 
learning. Then, during the learning phase, it uses a deep reinforcement learning technique to 
approximate Ã v S, �( )  as y v S� � �= ( )Ã ˜, ; . For each candidate seed node, the DISCO algorithm does 
not need to estimate its influence spread by sampling diffusion paths like the IMM algorithm but 
directly predicts the influence spread of each candidate seed node through the learned mapping 
function Ã ˜v S, ;�( ) . Furthermore, DISCO can select all seed nodes simultaneously without iteratively 
selecting k seed nodes. The experimental results show that the DISCO algorithm outperforms current 
state-of-the-art non-machine learning-based influence maximization algorithms in terms of 
computational efficiency and influence quality. For example, the running time of DISCO is 36 times 
faster than that of SSA (K. Huang et al., 2017).

Applications of Influence Maximization Algorithms

In recent years, some researchers have combined the influence maximization techniques introduced 
in the previous sections with real-world scenarios (such as topic, time, and location) for specific 
applications. In topic-aware influence maximization, the definition of the influence is to find a seed 
set that maximizes the expected influence over users who are relevant to a given topic. Topic-aware 
influence maximization considers the topics of an item being propagated in the classical influence 
maximization techniques. Specifically, topic-aware influence maximization introduces the topics to 
represent item characteristics and user’s interests and considers that the influence spread Ã S( )  
depends not only on the seed set S but also on the topics. For example, Li, Zhang, and Tan (2015) 
and Nguyen, Dinh, and Thai (2016) combined temporal features with the TIM algorithm (see the 
Reverse Influence Sampling Algorithms section) and proposed topic-aware influence maximization. 
Guo et al. (2013) adopted the MC-based greedy approximation and heuristic-based methods for 
topic-aware influence maximization. Topic-aware influence maximization can be directly applied to 
online advertising.

In time-aware influence maximization, the definition of the influence is to find a seed set such 
that the expected number of nodes is influenced by the seed set within a time constraint. Time-aware 
influence maximization integrates classical influence maximization with temporal features. The 
classical influence maximization algorithms assume that each influence diffusion process stops only 
when there are no more new nodes that can be influenced. This assumption is unreasonable. In many 
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real-world viral marketing applications, people only care about how widely the influence is spread 
before a fixed time. Therefore, some researchers propose to impose a time constraint on the influence 
diffusion process. For example, discrete time-aware diffusion models (Chen et al., 2012; Kim et al., 
2014; Liu et al., 2012; Liu et al., 2013) treat the discrete diffusion step as the time measure and limit 
the maximal step of the influence diffusion process. Since discrete time-aware diffusion models are 
the extension of the IC model, the influence maximization algorithms under these models are based 
on the MIA method (see Heuristic-Based Algorithms). For the continuous-time independent cascade 
model, Rodriguez et al. (2012) used a greedy framework with lazy forward optimization under this 
model to solve time-aware influence maximization. Xie et al. proposed a CELF-optimized greedy 
method (2015; see Monte-Carlo-Based Greedy Approximation Algorithms) for seed node selection.

Location-aware influence maximization is inspired by location-based social networks (such as 
Weibo and Twitter). In location-aware influence maximization, the definition of the influence is to 
maximize the influence spread on nodes within a given query region. The key idea of location-aware 
influence maximization is to maximize the influence of location-relevant users, rather than any users 
in the traditional influence maximization settings. For example, Li, Chen, et al. (2015) and Wang 
et al. (2016) adopted the standard IC model and used the MIA/PMIA model (see Heuristic-Based 
Algorithms) combined with spatial features to calculate the influence spread. Song et al. (2016) adopted 
the RIS-based approach (see Reverse Influence Sampling Algorithms) to develop a sampling-based 
approximation algorithm for location-aware influence maximization.

Conclusion

This paper systematically summarizes the mathematical model of the information and influence 
diffusion and its corresponding algorithms. After more than ten years of development, the study 
of influence diffusion has made great progress, which gives researchers a deeper understanding of 
the mode of influence diffusion and its optimization. However, to further develop its research and 
application, there are still many problems to be solved.

In the aspect of influence modeling, many models have been developed, among which some 
models represented by independent cascade models have also been verified to some extent in actual 
data. However, at present, the threshold model that is more suitable for describing complex propagation 
behavior still lacks effective verification of actual data. At the same time, the linear threshold model 
has limitations on the randomness of the threshold, and if a more general threshold model is used, 
it is likely that the model does not have submodule and other properties, so an effective algorithm 
cannot be designed. Therefore, there are still many problems to be solved for the threshold model, 
from data analysis to modeling and optimization.

In addition, the accuracy and effectiveness of influence diffusion learning is still a big challenge 
at present. Different from many forms of data analysis, big data analysis of influence propagation 
requires analyzing the influence intensity between any two related users, which is much more difficult 
than analyzing the characteristics of a user or a group. Further, influence diffusion is also aimed at 
the analysis of human behavior, and it is a more complex behavior, such as product purchase and 
accepting new ideas. Such behavior data is not easy to be mined in social media data. As most social 
media data is meaningless noise, behavioral diffusion such as retweets is too simplistic and very 
different from true behavioral diffusion for products and ideas. Therefore, the effective analysis of 
influence diffusion is a major bottleneck in the current research on influence diffusion.

ACKNOWLEDGMENT

This research was supported by the 2022 Jiangsu Province Major Project of Philosophy and Social 
Science Research in Colleges and Universities “Research on the Construction of Ideological 
and Political Selective Compulsory Courses in Higher Vocational Colleges” [grant number 



Journal of Organizational and End User Computing
Volume 34 • Issue 10

19

2022SJZDSZ011]; the Research Project of Nanjing Vocational University of Industry Technology 
[grant number 2020SKYJ03]; and the Fundamental Research Fund for the Central Universities [grant 
number 30920041112]. 



Journal of Organizational and End User Computing
Volume 34 • Issue 10

20

References

Aral, S., & Walker, D. (2012). Identifying influential and susceptible members of social networks. Science, 
337(6092), 337–341. doi:10.1126/science.1215842 PMID:22722253

Arora, A., Galhotra, S., & Ranu, S. (2017, May). Debunking the myths of influence maximization: An in-depth 
benchmarking study. Proceedings of the 2017 ACM international conference on management of data, 651–666. 
doi:10.1145/3035918.3035924

Borgs, C., Brautbar, M., Chayes, J., & Lucier, B. (2014, January). Maximizing social influence in nearly optimal 
time. Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 946–957. 
doi:10.1137/1.9781611973402.70

Budak, C., Agrawal, D., & El Abbadi, A. (2011, March). Limiting the spread of misinformation in social networks. 
Proceedings of the 20th International Conference on World Wide Web, 665–674. doi:10.1145/1963405.1963499

Chen, W., Lakshmanan, L. V., & Castillo, C. (2013). Information and influence propagation in social networks. 
Synthesis Lectures on Data Management, 5(4), 1–177. doi:10.1007/978-3-031-01850-3

Chen, W., Lu, W., & Zhang, N. (2012, July). Time-critical influence maximization in social networks with time-
delayed diffusion process. Twenty-Sixth AAAI Conference on Artificial Intelligence, 592-598.

Chen, W., Wang, C., & Wang, Y. (2010, July). Scalable influence maximization for prevalent viral marketing 
in large-scale social networks. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 1029–1038. doi:10.1145/1835804.1835934

Chen, W., Wang, Y., & Yang, S. (2009, June). Efficient influence maximization in social networks. Proceedings 
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 199–208. 
doi:10.1145/1557019.1557047

Chen, W., Yuan, Y., & Zhang, L. (2010, December). Scalable influence maximization in social networks 
under the linear threshold model. 2010 IEEE International Conference on Data Mining, 88–97. doi:10.1109/
ICDM.2010.118

Chen, W., & Zhang, H. (2019). Complete submodularity characterization in the comparative independent cascade 
model. Theoretical Computer Science, 786, 78–87. doi:10.1016/j.tcs.2018.03.026

Cohen, E., Delling, D., Pajor, T., & Werneck, R. F. (2014, November). Sketch-based influence maximization and 
computation: Scaling up with guarantees. Proceedings of the 23rd ACM International Conference on Conference 
on Information and Knowledge Management, 629–638. doi:10.1145/2661829.2662077

Domingos, P., & Richardson, M. (2001, August). Mining the network value of customers. Proceedings of 
the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 57–66. 
doi:10.1145/502512.502525

Even-Dar, E., & Shapira, A. (2007, December). A note on maximizing the spread of influence in social networks. 
International Workshop on Web and Internet Economics, 281–286. doi:10.1007/978-3-540-77105-0_27

Goyal, A., Lu, W., & Lakshmanan, L. V. (2011a). CELF++ optimizing the greedy algorithm for influence 
maximization in social networks. Proceedings of the 20th International Conference Companion on the World 
Wide Web, 47–48. doi:10.1145/1963192.1963217

Goyal, A., Lu, W., & Lakshmanan, L. V. (2011b). SimPath: An efficient algorithm for influence maximization 
under the linear threshold model. 2011 IEEE 11th International Conference on Data Mining, 211–220.

Guo, J., Zhang, P., Zhou, C., Cao, Y., & Guo, L. (2013, October). Personalized influence maximization on social 
networks. Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, 
199–208.

He, X., Song, G., Chen, W., & Jiang, Q. (2012, April). Influence blocking maximization in social networks 
under the competitive linear threshold model. Proceedings of the 2012 SIAM International Conference on Data 
Mining, 463–474. doi:10.1137/1.9781611972825.40

http://dx.doi.org/10.1126/science.1215842
http://www.ncbi.nlm.nih.gov/pubmed/22722253
http://dx.doi.org/10.1145/3035918.3035924
http://dx.doi.org/10.1137/1.9781611973402.70
http://dx.doi.org/10.1145/1963405.1963499
http://dx.doi.org/10.1007/978-3-031-01850-3
http://dx.doi.org/10.1145/1835804.1835934
http://dx.doi.org/10.1145/1557019.1557047
http://dx.doi.org/10.1109/ICDM.2010.118
http://dx.doi.org/10.1109/ICDM.2010.118
http://dx.doi.org/10.1016/j.tcs.2018.03.026
http://dx.doi.org/10.1145/2661829.2662077
http://dx.doi.org/10.1145/502512.502525
http://dx.doi.org/10.1007/978-3-540-77105-0_27
http://dx.doi.org/10.1145/1963192.1963217
http://dx.doi.org/10.1137/1.9781611972825.40


Journal of Organizational and End User Computing
Volume 34 • Issue 10

21

Hou, C., Wu, J., Cao, B., & Fan, J. (2021). A deep-learning prediction model for imbalanced time series data 
forecasting. Big Data Mining and Analytics, 4(4), 266–278. doi:10.26599/BDMA.2021.9020011

Huang, K., Wang, S., Bevilacqua, G., Xiao, X., & Lakshmanan, L. V. (2017). Revisiting the stop-and-stare 
algorithms for influence maximization. Proceedings of the VLDB Endowment International Conference on Very 
Large Data Bases, 10(9), 913–924. doi:10.14778/3099622.3099623

Huang, W., Li, L., & Chen, W. (2017, February). Partitioned sampling of public opinions based on their social 
dynamics. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). Advance online publication. 
doi:10.1609/aaai.v31i1.10507

Immorlica, N., Kleinberg, J., Mahdian, M., & Wexler, T. (2007, June). The role of compatibility in the diffusion 
of technologies through social networks. Proceedings of the 8th ACM Conference on Electronic Commerce, 
75–83. doi:10.1145/1250910.1250923

Jung, K., Heo, W., & Chen, W. (2012, December). IRIE: Scalable and robust influence maximization in social 
networks. 2012 IEEE 12th International Conference on Data Mining, 918–923.

Kempe, D., Kleinberg, J., & Tardos, É. (2003, August). Maximizing the spread of influence through a social 
network. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, 137–146. doi:10.1145/956750.956769

Kim, J., Kim, S. K., & Yu, H. (2013, April). Scalable and parallelizable processing of influence maximization 
for large-scale social networks? 2013 IEEE 29th International Conference on Data Engineering, 266–277.

Kim, J., Lee, W., & Yu, H. (2014). CT-IC: Continuously activated and time-restricted independent cascade model 
for viral marketing. Knowledge-Based Systems, 62, 57–68. doi:10.1016/j.knosys.2014.02.013

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., & Glance, N. (2007, August). Cost-effective 
outbreak detection in networks. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 420–429. doi:10.1145/1281192.1281239

Li, G., Chen, S., Feng, J., Tan, K. L., & Li, W. S. (2014, June). Efficient location-aware influence maximization. 
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, 87–98. 
doi:10.1145/2588555.2588561

Li, H., Xu, M., Bhowmick, S. S., Sun, C., Jiang, Z., & Cui, J. (2019). Disco: Influence Maximization Meets 
Network Embedding and Deep Learning. arXiv:1906.07378.

Li, Y., Chen, W., Wang, Y., & Zhang, Z. L. (2015). Voter model on signed social networks. Internet Mathematics, 
11(2), 93–133. doi:10.1080/15427951.2013.862884

Li, Y., Zhang, D., & Tan, K. L. (2015). Real-time targeted influence maximization for online advertisements. 
Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, 4(8), 1070–1081. 
doi:10.14778/2794367.2794376

Liao, X., Zheng, D., & Cao, X. (2021). Coronavirus pandemic analysis through tripartite graph clustering in 
online social networks. Big Data Mining and Analytics, 4(4), 242–251. doi:10.26599/BDMA.2021.9020010

Liu, B., Cong, G., Xu, D., & Zeng, Y. (2012, December). Time constrained influence maximization in social 
networks. 2012 IEEE 12th International Conference on Data Mining, 439–448.

Liu, B., Cong, G., Zeng, Y., Xu, D., & Chee, Y. M. (2013). Influence spreading path and its application to the 
time constrained social influence maximization problem and beyond. IEEE Transactions on Knowledge and 
Data Engineering, 26(8), 1904–1917. doi:10.1109/TKDE.2013.106

Lu, W., Chen, W., & Lakshmanan, L. V. (2015). From competition to complementarity: comparative influence 
diffusion and maximization. 42nd International Conference on Very Large Data Bases (VLDB), 1-44. 
doi:10.14778/2850578.2850581

Montanari, A., & Saberi, A. (2009, October). Convergence to equilibrium in local interaction games. 2009 50th 
Annual IEEE Symposium on Foundations of Computer Science, 303–312.

Morris, S. (2006). Review of economic studies. Contagion, 67(1), 57–78.

http://dx.doi.org/10.26599/BDMA.2021.9020011
http://dx.doi.org/10.14778/3099622.3099623
http://dx.doi.org/10.1609/aaai.v31i1.10507
http://dx.doi.org/10.1145/1250910.1250923
http://dx.doi.org/10.1145/956750.956769
http://dx.doi.org/10.1016/j.knosys.2014.02.013
http://dx.doi.org/10.1145/1281192.1281239
http://dx.doi.org/10.1145/2588555.2588561
http://dx.doi.org/10.1080/15427951.2013.862884
http://dx.doi.org/10.14778/2794367.2794376
http://dx.doi.org/10.26599/BDMA.2021.9020010
http://dx.doi.org/10.1109/TKDE.2013.106
http://dx.doi.org/10.14778/2850578.2850581


Journal of Organizational and End User Computing
Volume 34 • Issue 10

22

Newman, M. E. J. (2010). Networks: An introduction. Oxford University Press. doi:10.1093/acprof:o
so/9780199206650.001.0001

Nguyen, H. T., Dinh, T. N., & Thai, M. T. (2016, April). Cost-aware targeted viral marketing in billion-scale 
networks. IEEE INFOCOM 2016: The 35th Annual IEEE International Conference on Computer Communications, 
1–9.

Nguyen, H. T., Thai, M. T., & Dinh, T. N. (2016, June). Stop-and-stare: Optimal sampling algorithms for viral 
marketing in billion-scale networks. Proceedings of the 2016 International Conference on Management of Data, 
695–710. doi:10.1145/2882903.2915207

Nitu, P., Coelho, J., & Madiraju, P. (2021). Improvising personalized travel recommendation system with recency 
effects. Big Data Mining and Analytics, 4(3), 139–154. doi:10.26599/BDMA.2020.9020026

Ok, J., Jin, Y., Shin, J., & Yi, Y. (2016). On maximizing diffusion speed over social networks with strategic users. 
IEEE/ACM Transactions on Networking, 24(6), 3798–3811. doi:10.1109/TNET.2016.2556719

Panagopoulos, G., Malliaros, F., & Vazirgiannis, M. (2020). Multi-task learning for influence estimation and 
maximization. IEEE Transactions on Knowledge and Data Engineering, 1. doi:10.1109/TKDE.2020.3040028

Peng, C., Zhang, C., Xue, X., Gao, J., Liang, H., & Niu, Z. (2021). Cross-modal complementary network with 
hierarchical fusion for multimodal sentiment classification. Tsinghua Science and Technology, 27(4), 664–679. 
doi:10.26599/TST.2021.9010055

Qi, L., He, Q., Chen, F., Dou, W., Wan, S., Zhang, X., & Xu, X. (2019). Finding all you need: Web APIs 
recommendation in web of things through keywords search. IEEE Transactions on Computational Social Systems, 
6(5), 1063–1072. doi:10.1109/TCSS.2019.2906925

Qi, L., He, Q., Chen, F., Zhang, X., Dou, W., & Ni, Q. (2020). Data-driven web APIs recommendation for 
building web applications. IEEE Transactions on Big Data, 8(3), 685–698. doi:10.1109/TBDATA.2020.2975587

Qi, L., Yang, Y., Zhou, X., Rafique, W., & Ma, J. (2021). Fast anomaly identification based on multi-aspect 
data streams for intelligent intrusion detection toward secure Industry 4.0. IEEE Transactions on Industrial 
Informatics, 18(9), 6503–6511. doi:10.1109/TII.2021.3139363

Rodriguez, M. G., & Schlkopf, B. (2012). Influence maximization in continuous time diffusion networks. Cement 
and Concrete Composites, 34(5), 684–691.

Song, C., Hsu, W., & Lee, M. L. (2016, October). Targeted influence maximization in social networks. Proceedings 
of the 25th ACM International on Conference on Information and Knowledge Management, 1683–1692.

Sun, L., Ping, G., & Ye, X. (2021). PrivBV: Distance-aware encoding for distributed data with local differential 
privacy. Tsinghua Science and Technology, 27(2), 412–421. doi:10.26599/TST.2021.9010027

Tang, J., Tang, X., Xiao, X., & Yuan, J. (2018, May). Online processing algorithms for influence 
maximization. Proceedings of the 2018 International Conference on Management of Data, 991–1005. 
doi:10.1145/3183713.3183749

Tang, Y., Shi, Y., & Xiao, X. (2015, May). Influence maximization in near-linear time: A martingale approach. 
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, 1539–1554. 
doi:10.1145/2723372.2723734

Tang, Y., Xiao, X., & Shi, Y. (2014, June). Influence maximization: Near-optimal time complexity meets practical 
efficiency. Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, 75–86. 
doi:10.1145/2588555.2593670

Wang, F., Wang, L., Li, G., Wang, Y., Lv, C., & Qi, L. (2021). Edge-cloud-enabled matrix factorization for 
diversified APIs recommendation in mashup creation. World Wide Web (Bussum), 1–21. doi:10.1007/s11280-
020-00825-8

Wang, F., Zhu, H., Srivastava, G., Li, S., Khosravi, M. R., & Qi, L. (2021). Robust collaborative filtering 
recommendation with user-item-trust records. IEEE Transactions on Computational Social Systems, 1–11. 
doi:10.1109/TCSS.2021.3064213

http://dx.doi.org/10.1093/acprof:oso/9780199206650.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199206650.001.0001
http://dx.doi.org/10.1145/2882903.2915207
http://dx.doi.org/10.26599/BDMA.2020.9020026
http://dx.doi.org/10.1109/TNET.2016.2556719
http://dx.doi.org/10.1109/TKDE.2020.3040028
http://dx.doi.org/10.26599/TST.2021.9010055
http://dx.doi.org/10.1109/TCSS.2019.2906925
http://dx.doi.org/10.1109/TBDATA.2020.2975587
http://dx.doi.org/10.1109/TII.2021.3139363
http://dx.doi.org/10.26599/TST.2021.9010027
http://dx.doi.org/10.1145/3183713.3183749
http://dx.doi.org/10.1145/2723372.2723734
http://dx.doi.org/10.1145/2588555.2593670
http://dx.doi.org/10.1007/s11280-020-00825-8
http://dx.doi.org/10.1007/s11280-020-00825-8
http://dx.doi.org/10.1109/TCSS.2021.3064213


Journal of Organizational and End User Computing
Volume 34 • Issue 10

23

Jun Hou received the Ph.D. degree from the Nanjing University of Science and Technology, China, in 2019. She is 
currently an Associate Professor with the Nanjing Institute of Industry Technology, China. She has published dozens 
of articles in prestigious journals and top-tier conferences. Her research interests include ideological education 
and data mining. She serves a PC member for several international conferences. 

Shiyu Chen is a PhD student at Nanjing University of Science and Technology in China. Her main research 
direction is big data mining. 

Huaqiu Long is currently pursuing the master’s degree in Intelligent Manufacturing Department, Wuyi University. 
Now, he is also a teacher in the university laboratory. His research interests include information security, computing 
system management, and data mining. 

Qianmu Li received the BSc and PhD degrees from Nanjing University of Science and Technology, China, in 2001 
and 2005, respectively. He is currently a full professor with the School of Computer Science and Engineering, 
Nanjing University of Science and Technology, China. His research interests include information security. 

Wang, X., Zhang, Y., Zhang, W., & Lin, X. (2016). Efficient distance-aware influence maximization in geo-
social networks. IEEE Transactions on Knowledge and Data Engineering, 29(3), 599–612. doi:10.1109/
TKDE.2016.2633472

Wu, W., Chen, M., Li, J., Liu, B., Wang, X., & Zheng, X. (2021). Visual information based social force model 
for crowd evacuation. Tsinghua Science and Technology, 27(3), 619–629. doi:10.26599/TST.2021.9010023

Xie, M., Yang, Q., Wang, Q., Cong, G., & De Melo, G. (2015, February). Dynadiffuse: A dynamic diffusion 
model for continuous time constrained influence maximization. Twenty-Ninth AAAI Conference on Artificial 
Intelligence, 346-352. doi:10.1609/aaai.v29i1.9203

Xu, X., Fang, Z., Qi, L., Zhang, X., He, Q., & Zhou, X. (2021). Tripres: Traffic flow prediction driven 
resource reservation for multimedia IoV with edge computing. ACM Transactions on Multimedia Computing 
Communications and Applications, 17(2), 1–21. doi:10.1145/3401979

Xu, X., Fang, Z., Zhang, J., He, Q., Yu, D., Qi, L., & Dou, W. (2021). Edge content caching with deep 
spatiotemporal residual network for IoV in smart city. ACM Transactions on Sensor Networks, 17(3), 1–33. 
doi:10.1145/3447032

Xu, X., Tian, H., Zhang, X., Qi, L., He, Q., & Dou, W. (2022). DisCOV: Distributed COVID-19 Detection on 
X-Ray Images with Edge-Cloud Collaboration. IEEE Transactions on Services Computing, 15(3), 1206–1219. 
doi:10.1109/TSC.2022.3142265

Ye, M., Liu, X., & Lee, W. C. (2012, August). Exploring social influence for recommendation: a generative 
model approach. Proceedings of the 35th International ACM SIGIR Conference on Research and Development 
in Information Retrieval, 671–680. doi:10.1145/2348283.2348373

Yildiz, E., Acemoglu, D., Ozdaglar, A. E., Saberi, A., & Scaglione, A. (2011). Discrete opinion dynamics with 
stubborn agents. Social Science Electronic Publishing. doi:10.2139/ssrn.1744113

Yuan, L., He, Q., Chen, F., Zhang, J., Qi, L., Xu, X., Xiang, Y., & Yang, Y. (2021). CSEdge: Enabling collaborative 
edge storage for multi-access edge computing based on blockchain. IEEE Transactions on Parallel and Distributed 
Systems, 33(8), 1873–1887. doi:10.1109/TPDS.2021.3131680

http://dx.doi.org/10.1109/TKDE.2016.2633472
http://dx.doi.org/10.1109/TKDE.2016.2633472
http://dx.doi.org/10.26599/TST.2021.9010023
http://dx.doi.org/10.1609/aaai.v29i1.9203
http://dx.doi.org/10.1145/3401979
http://dx.doi.org/10.1145/3447032
http://dx.doi.org/10.1109/TSC.2022.3142265
http://dx.doi.org/10.1145/2348283.2348373
http://dx.doi.org/10.2139/ssrn.1744113
http://dx.doi.org/10.1109/TPDS.2021.3131680

