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ABSTRACT

The intrusion detection system (IDS) has lower speed, less adaptability, and lower detection accuracy 
especially for small samples sets. This paper presents a detection model based on normalized mutual 
antibodies information feature selection and adaptive quantum artificial immune with cooperative 
evolution of multiple operators (NMAIFS MOP-AQAI). First, for a high intrusion speed, the NMAIFS 
is used to achieve an effective reduction for high-dimensional features. Then, the best feature vectors 
are sent to the MOP-AQAI classifier, in which vaccination strategy, the quantum computing, and 
cooperative evolution of multiple operators are adopted to generate excellent detectors. Lastly, the 
data is fed into NMAIFS MOP-AQAI which ultimately generates accurate detection results. The 
experimental results on real abnormal data demonstrate that the NMAIFS MOP-AQAI has higher 
detection accuracy, lower false negative rate, and a higher adaptive performance than the existing 
anomaly detection methods, especially for small samples sets.
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INTRODUCTION

The intrusion detection system (IDS) is one of the most crucial techniques proposed for data integrity 
and confidentiality (Sahar et al., 2020). Several modern techniques (Kumar et al., 2019) existing in the 
literature address these issues, such as deep learning, support vector machines, k-means, clustering, 
outliers, random forest, aggregation, genetic algorithm (GA), and artificial immune (AI) systems 
(Castillo-Zúñiga et al., 2020; Tewari & Gupta, 2020).

Redundant attributes are bound to affect the rate of IDS when facing substantial data volumes 
with multiple attributes (Sahoo & Gupta, 2021). Therefore, the features selection algorithm (FSA) 
plays an important role and is the key phase in data preprocessing (Anupama et al., 2021; Lv et al., 
2020; Zhang et al., 2021).

To solve these problems, the K-means algorithm was used to develop a training data set, and 
then a multi-layer hybrid intrusion detection model improved intrusion classification (Alyaseen et al., 
2017). Wu et al. (2020) proposed a network intrusion detection method based on semantic re-encoding 
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(SR) and deep learning to improve the detection speed. Chou et al. (2020) adopted an incremental 
approach to choose the minimal Redundancy-Maximal Relevance (mRMR) criterion, which is 
used to calculate the mean value of redundant attributes to reduce the effects of β. The advantage 
of the mRMR criterion is that with lower computational resources, we can get the best features; the 
drawback is that there are more differences in information entropy. Fatemeh et al. (2011) improved 
the MIFS, MIFS -u, and mRMR algorithms to reduce the effects among attributes due to the mutual 
information deviation. They proposed a normalized mutual antibodies information entropy feature 
selection (NMIFS) algorithm, which had a higher performance for feature selection. Nguyen et al. 
(2017) designed a mutual information feature selection (MIFS) algorithm; however, with the number 
of features increasing, MIFS may choose some redundant features. Huang et al. (2017) adopted FMIFS 
and quantum wavelet neural network (QWNN) to reduce network logs’ redundant attributes, improving 
the algorithm’s speed. So we adopted the NMAIFS to reduce the redundant attributes of network 
logs to increase the speed of IDS. On the other hand, the appropriate classifier greatly influences the 
anomaly detection performance (Alshdadi et al., 2021; Madan & Bhatia, 2021).

Lee and Park (2019) designed an auto-encoder-conditional and the generative adversarial 
networks and random forest (AE-CGAN-RF), auto-encoder-conditional method was used to reduce 
the redundant attributes, and a random forest was used to classify the intrusion. Feng and Dou (2021) 
gave an intrusion detection model based on dynamic weighted values (WIDMoDS). The hierarchical 
clustering algorithm with evaluation indexes was adopted to get the weight values, and the voting 
algorithm with weight values was used to classify the detected data.

To improve the adaptive performance, resistance to competition, and online learning ability of 
IDS, AI is used in intrusion detection research. Naila et al. (2020) designed a negative selection for 
network anomaly detection (NSNAD), and they improved the negative selection algorithm to get 
the anonymous detection classifier. Sahar et al. gave an internet of things intrusion detection system 
based on AI using deep learning (DL) and dendritic cells algorithm (DCA) to identify internet 
invasions and reduce the false positives rate. Yang et al. (2019) proposed an effective IDS using the 
Modified Density Peak Clustering Algorithm and Deep Belief Networks (MDPCA-DBN); they used 
the MDPCA and A-DBN to reduce the size of the training set, solve the imbalance of samples, and 
therefore improve the detection efficiency. Song et al. (2018) proposed an anti-adversarial hidden 
Markov model for network-based intrusion detection (AA-HMM). Ehsan et al. (2021) proposed a 
new complex mixed artificial immune intrusion detection system; the system integrated the negative 
selection algorithm (NSA) and the DCA for detectors. Chou et al. (2020) used AI and the parallel 
automaton (PA) method to design a high adaptive hybrid intrusion detection algorithm; the state 
automaton theory was used to define the different data states; the artificial immune algorithm was 
used to convert the states. Xi et al. (2021) introduced immune adaptive and feedback mechanism to 
build a multi-source neighborhood immune detector adaptive model (MS-NIDAM). As a result, the 
detectors can be adaptively evolved in a more targeted search domain. These algorithms can generally 
improve the adaptive performance of intrusion detection, but for the limitations of antibodies, which 
may lead to local convergence (Yilei et al., 2021).

The quantum computing theory and cooperative evolution of multiple operators are applied to 
generate effective detectors to improve the AI. We design a detection method based on a normalized 
mutual information and cooperative evolution of multiple operators based on adaptive parallel quantum 
artificial immune. There are three primary contributions in this paper are:

1. 	 In the stage of feature selection, to improve the detection speed, the NMAIFS method is applied to 
select the optimum detection features from a given feature set and achieve effective dimensionality 
reduction of high dimensional features.

2. 	 In the stage of generation of classifier, with a strong learning generalization of AI algorithm, 
vaccination strategy, and the acceleration of the quantum computing, the artificial immune 
algorithm is improved, we give an MOP-AQAI algorithm. Furthermore, synthesizing the 



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

3

two improved algorithms, we give an anomaly detection method based on normalized mutual 
information and the cooperative evolution of multiple operators based on adaptive parallel 
quantum artificial immune.

3. 	 Finally, with the benchmark of KDD99 and UNSW-NB15, experiments are presented to verify 
the reduction performances of NMAIFS; the anomaly and classification performances of MOP-
AQAI, especially for small sample sets. The anomaly data results from real network traffic 
indicate that this method has a higher detection accuracy and a lower false positive rate than 
existing anomaly detection algorithms.

NMAIFS

In the reduction stage, NMAIFS is applied to omit the redundant attributes for high detection speed. 
First, all the training logs are normalized and transformed into antibodies. Next, the NMAIFS 
algorithm selects the optimal features of antibodies (Fatemidokht et al., 2021; Mishra et al., 2021).

Entropy is a mathematical measure for the uncertainty of random variables and describes a 
measure of the random variables of the average amount of information. For example, antibodies 
attribute information entropy (Feng et al., 2021; Xi et al., 2021; Zhi-jian et al., 2019), and antibodies 
combination entropy are given in the following paragraphs.

Antigen: ag AgÎ , Ag DÌ , D l= { , }0 1 , ( l NÎ , l > 0 ),Ag denote antigen set, D is the binary 
character string with length l, and the value of antigen ag represents the behavior characteristics 
of the binary string.

Antibody: ab AbÎ ,Ab d s age count, , ,{ } ,d DÎ ,s ∈ { }00 01 10, , ,age NÎ . Ab is antibody set, 
s is the state of antibody, whose value is 00,01 or 10; age denotes the age of antibody, count is 
the matching number of antibody and antigen; N is a positive integer collection.

Ab AbI AbT AbM= ∪ ∪ , AbI  denotes the collection of immature antibodies,
AbI Ib Ib Ab Ib s= ∈ ={ }, . 00 ; AbT  denotes  the  col lec t ion  of  mature  ant ibodies ,

AbT Tb Tb Ab Tb s= ∈ ={ }, . 01 ;AbM  denotes the collection of memory antibodies,and

AbM Mb Mb Ab Mb s= ∈ ={ }, . 10 .
Self denotes the collection of normal behaviors. Nonself denotes the collection of abnormal 

behaviors,Self Nonself∩ = f .
The function fit (ab, ag) is on behalf of the affinity between antigen ag and antibody ab.
We calculate the affinity between antigen and antibody with the Euclidean formula, shown in 

formula (1).

fit ab ag agi abi
i

L
, ( )( ) = −

=∑ 1

2 	 (1)

agi is the ith character of antigen, abi is the ith character of antibody.

The antibody information entropy H (X): We denote X, Y as the two discrete random variables, 
the joint probability mass function p (x, y) and marginal probability p(x), p(y), and the antibody 
information entropy of X is defined as (Feng & Dou, 2021):
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H X p x p x
i

m

i i( ) = − ( ) ( )
=∑ 1 2

log 	 (2)

In formula (2), xi is the possible value of the antibody attribute.

The antibody combination entropy H (X, Y): H (X, Y) of random antibody variables X and Y is 
defined as:

H X Y p x y p x y
i

m

j

n

i j i j
, ( , ) log ( , )( ) = −

= =∑ ∑1 1 2
	 (3)

H (X, Y) is the uncertainty of measurement between X and Y, the angle of H (X, Y) is 
max{ , } ,H X H Y H X Y H X H Y( ) ( ) ≤ ( ) ≤ ( )+ ( ) . When X depends on Y, H (X, Y) has the minimum 
value, when X and Y are independent of each other, H (X, Y) has the maximum value.

The mutual information (MI) is the information measure of two random antibody variables, 
namely the common information measure of two random antibody variables. The MI between X and 
Y is defined as:

MI X Y p x y
p x y

p x p yi

m

j

n

i j

i j

i j

; ( , ) log
( , )

( ) ( )
( ) =

= =∑ ∑1 1 2
	 (4)

The number of independent variables in Eq. (4) is dimensionless; therefore, the integral value is 
irrelevant to the selected coordinate (feature space transform). This feature remains in differentiable 
or reversible transformation. The relations among mutual information, entropy, and combination 
entropy are:

MI X Y H X H Y H X Y; ,( ) = ( )+ ( )− ( ) 	 (5)

The  min imum va lue  of  en t ropy  i s  MI(X;Y) ,  t he  range  of  t he  va lue  i s : 
0 ≤ ( ) ≤ ( ) ( )MI X Y H X H Y; min{ , } . NMAIFS algorithm adopts symmetrical uncertainty to 
measure the correlation between features and categories, features and features. The symmetric 
uncertainty SU (X, Y) between two random antibody variables X and Y is defined as:

SU X Y
H X H X Y

H X H Y

MI X Y

H X H Y
,

( | )) ; )
( ) = ( )−

( )+ ( )















=

( )
( )+ ( )

2




 / 2

	 (6)

For min{ , } ( ) ( ) /H X H Y H X H Y( ) ( ) ≤ +



 2 , we denote the definition of antibody entropy 

as H X p x
p x

m
m

i
i

( ) ≤ =∑log ( )
( )

log
2 1 2

1
i=

 with Jensen inequality. So we can get0
2

≤ ( ) ≤H X mlog , 

where m and n are the numbers of possible values of discrete random variables X and Y, respectively. 
We define the normalized mutual information as:
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NMAI X;Y( ) = MI X Y

m log n

( ; )

min{log }
2 2
 

	 (7)

By formula (6), the feature values of anonymous logs are normalized between [0, 1] before 
executing the feature selection algorithm. The standardized process of the fast normalized mutual 
information feature selection is shown in Table 1.

MOP-AQAI

To improve the adaptability of IDS, AI is improved in this paper. First, the cooperative evolution 
of multiple operators is used to accelerate the convergence process of IDS; second, the vaccination 
strategy is to increase the fitness of antibodies; last, we used the quantum rotation angle step length 
generate the best antibodies for high detection performance, especially for small samples sets.

The Cooperative Evolution Mechanism of Multiple Operators

The cooperative evolution mechanism of multiple operators includes antibody similarity evaluation 
operator, antibody fitness evaluation operator and population variation adjustment operator to 
determine the current populationism of multiple operators includes anti (Feng & Dou, 2021; Xi et 
al., 2021).

Antibody similarity evaluation operator x
sim

: x
sim

 to calculate the antibody differences in current 
population, defined in formula (8):

Table 1. The standardized NMAIFS process

Standardized process of the NMAIFS

Initialization: Set F f i N
i

= ={ }, ,...,1 ,which contains N features. Make S = ∅{ }
Calculate the antibody mutual information between features and classes: For each f F

i
Î , calculateNMAI f C

i
;( )

Select the first feature: find ˆ max ;
,...,

f MI f C
i i N i
= ( ){ }=1 . SetF F f

i
← { }\ ˆ ,S f

i
← { }ˆ

Greedy choices: repeat these steps until S k=

Calculate the antibody mutual information among features: for each pair f f
i s
,( ) ,calculate NMAI f f

i j
;( ) ,where 

f F
i
Î  and f S

s
Î  until the completion of the iteration

Turn to the next feature: choose antibody feature f F
i
Î  making Eq.(3)reach the maximum. Set 

F F f
i

← { }\ ,S f
i

← { }
Output set S with K antibody selected features
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x

d

d
d d

d
sim

avg min

max min
max min

max min

d

d
=d

=

−

−
≠










,

,0

	 (8)

In formula (8), d
max

 is the maximal Euclidean distance of the antibody with the optimal ones in 
the current population, d

min
 is the minimal Euclidean distance of the antibody with the optimal ones 

in the current population, d
avg

 is the average Euclidean distance of all antibodies with the optimal 
ones in the current population. The larger the antibody similarity evaluation operator is, the more 
different the antibodies are in the current population, then we can use a larger mutation probability 
to increase population diversity. On the contrary, the smaller the x

sim
 is, we can use smaller mutation 

probabilities to maintain the population stability. 

Antibody fitness evaluation operator y'
fit

: y'
fit

 is adopted to evaluate the ith antibody fitness in 
the current population, which is defined as formula(9):

y'
fit

max

max min
max min

max min

=
−

−
≠

=










f f

f f
f f

f f

i ,

,0
	 (9)

In the current population, f
max

 is the maximum value of fitness and f
min

 is the minimum value 
of fitness, f

i
 is the ith antibody fitness. If the value of y'

fit
 is high, the fitness of the ith antibody is 

closer to the worst individual in the current population. Therefore, we should select a higher mutation 
probability when the antibodies mutate.

Population variation adjustment operator F n
acc ( ) : F n

acc ( )  is the function of the current evolution 
algebra n, this operator is used to increase antibody mutation probability against premature 
convergence gradually. The population variation adjustment operator is defined as shown in 
formula (10):

F n

F n C
s n

s
f n f n T n T

F n f
acc

acc max max

acc m( ) =
−( )+ ×

−
= − ∧ >

−( )
1

1

, ( (

,

  

aax max
( (

,

n f n T n T

n T

  ≠ − ∧ >
≤










0

	 (10)

The current evolution algebra is n, s is the maximum evolutionary algebra, and constant T is the 
iteration number if antibodies do not change continuously in the current population. Constant C (0 
< C) is the adjusting parameter, and f n

max
(  is the optimal fitness value in the nth generation 

populations. When the optimal fitness value of the populations did not change for consecutive T 
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generations, and the evolution algebra does not reach the maximum, the mutation probability increases 
to adjust the variation probability, which is calculated by s, n, and C.

Antibody similarity evaluation operator x
sim

, antibody fitness evaluation operator y'
fit

 and 
population variation adjustment operator F n

acc ( )  are used to calculate the current mutation probability 
of the antibodies in the population; the mutation probability is calculated with formula (11).

p
p y x F n f f

f fn
fit
n

' sim acc max min

max min

=
× × + ( ) ≠

=








0

0

,

,
	 (11)

In formula (11), p
n
'  is the ith antibody(1 bability is calculated innth generation population, p

0
 

is the initial value of mutation probability. 

Vaccination

Vaccination:va SÎ , S l= { , ,*}0 1 , ( l NÎ , l > 0 ),where va is defined as a string with 0, 1, and 
*, whose length is l, vak denotes the kth code of va. The antibody population
Ab ab ab abn= { }1 2, , ,ab

i
k  is the kth gene code of the ith antibody.

Vaccine extraction operator:ab ab abs1 2, ,  are the optimal antibodies with high fitness in antibody 
population Ab ab ab abn= { }1 2, , , ab

i
k  is the value of gene, vaccine extraction operator is 

defined with formula (12):

va

s ab

s ab

other

k

i

s

i
k

i

s

i
k=

( ) >

( ) <






=

=

∑
∑

1 1

0 1
1

1

, / )

, / )

*,

α

β





	 (12)

The values of parameters α, β are a ³ 0 8. , b £ 0 2. .

Vaccination: Vaccination is the process that optimal gene of vaccination takes place with the 
alleleocess that optimal gene of vaccination with formulaallycan use eval.

Vaccination operator: Let us suppose that a is an antibody, va is a vaccination, and the vaccination 
operator is â a va= Θ , â  is the antibody after vaccination. The vaccination operator is defined 
in the following formula:

ˆ

,

a a va

va va

a va

k k k

k k

k k

= =
=

=










Θ
0 1or

* 
	 (13)
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Evaluation method of antibody after vaccination:

Let us set va as the vaccine of antibody population A, the individual is ai, and the evaluation method 
of antibody after vaccination is shown in formula (14):

E va E va fit ai ag fit ai ag
i

n( ) = ( )+ ( )− ( )( )
=∑'
1

ˆ , , 	 (14)

In formula (14), E va'( )  is the effect of antibody before vaccination, fit is the affinity function 
between antibody and antigen, âi  is the individual after vaccination of antibody ai.

The Adaptive Quantum Artificial Immune Algorithm with 
Cooperative Evolution of Multiple Operators

Adaptive adjustment of rotation angle and the cooperative evolution of multiple operators are adopted 
to design the MOP-AQGA algorithm to improve the adaptability and detection performance. Adaptive 
adjustment mechanisms of the rotation angle dynamically adjust the rotation angle step length 
according to the individual step length nd detection performance, a ato Table 2.

In Table 2, f X(  is the fitness value of antibody x; x
i
j  is the ith gene value of the jth antibody; 

b
i
 is the ith value of the best antibody in the current population; S

i
j

i
jα β,( )  denotes the rotation 

Table 2. Adaptive adjustment mechanism of the rotation angle adjusts rotation angle

xi
j bi f X f Xj

best
t( (  ³ ” ¸ i

j
S ± ²i

j
i
j,( )

± ²i
j
i
j > 0 ± ²i

j
i
j < 0 ±i

j = 0 ² i
j = 0

0 0 false q
1
0j = - - - -

0 0 true q
2
0j = - - - -

0 1 false q q
3
j j= +1 -1 0 ±1

0 1 true q q
4
j j= -1 +1 ±1 0

1 0 false q q
5
j j= -1 +1 ±1 0

1 0 true q q
6
j j= +1 -1 0 ±1

1 1 false q
7
0j = - - - -

1 1 true q
8
0j = - - - -
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direction of rotation angle in polar coordinates; q j  is the rotation angle of step length of the jth 
antibody. q j  is defined in formula (15).

q j
j
f f

f f
K K K f f

K f f

=

−

−
−( )+ ≠

=









min

max min
max min

max min

2 1 1

1

,

,


	 (15)

The relation between q j  and the fitness of the current antibody is a linear function; with the 
increasing antibody fitness, we allocate the greater rotation angle step. On the other hand, with 
decreasing antibody fitness, we allocate the smaller rotation angle step.

In the current antibody population, the ith rotation angle step Dq
i
j  of the jth antibody is calculated 

with the formula (16).

∆θ θ α β
i
j j

i
j

i
jS= × ( ), 	 (16)

The MOP-AQAI is shown in Table 3.

Table 3. The MOP-AQAI algorithm

MOP-AQAI algorithm

Initialize the memory antibodies population:( t ¬ 0 );

Create new populationQ t( ) ;

Observe Q t( )  and obtain the observed state P t( ) ;

Calculate and evaluate the fitness of antibodies of P t( ) ;

Select the optimal individuals into ME t( ) ;

Save the antibodies which have higher fitness into memory antibody collection ME t( ) ;

while(n s£ )
     do 
        t t← +1 ;

Obtain the new observed state P t( )  according to memory antibodies;

Calculate and evaluate the fitness of antibodies of P t( ) ;

Select the optimal individuals into ME t( ) ;
        Calculate the angle of rotation step with formula (12); 

Save those antibodies into immature antibodies set IM t( ) ;
       Calculate collective mutation operator with formula (7) - (9); 
        Calculate individuals’ variation probability with formula (10); 
        Individuals mutate with their mutation probability; 

Calculate and evaluate the fitness of antibodies of IM t( ) ;
       Give these antibodies according to their fitness in descending order; 
       Select the antibodies with the highest fitness as vaccination; 
       Select the antibodies which own lower fitness, and vaccine them with formula (13); 
         Evaluate the antibodies after vaccination with formula (14); 
         If the fitness of the antibody is lower than it before vaccination, the antibody after vaccination is deleted, otherwise 
save it; 
Judge if the period of immature antibody exceeds the threshold value T1, if exceeding, then kill the immature antibody, 

otherwise, use it to match the self- antigens, save the immature antibodies into mature antibodies set MA t( ) ;
       If the mature antibody match anyone, then kill it; 
       Else turn it to be a mature antibody; 
        Judge if immature antibody exceeds the threshold value T2 in its period, if exceeding, then kill the immature 
antibody, otherwise, activate it; 

Calculate the fitness of antibody and obtain new ME t( ) .
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The Detection Mode of NMAIFS MOP-AQAI

The detection of NMAIFS MOP-AQAI has three stages:
In the preprocessing stage, the real-time packet capture such as snort obtains the flowing logs 

and extracts them as flowing detailed records.
In the training stage, NMAIFS and MOP-AQAI are two core sub-modules. NMAIFS is applied 

to reduce the redundant attributes and obtain the initial memory antibodies set with optimal features. 
MOP-AQAI is used to dynamically generate excellent antibodies with the cooperative evolution of 
multiple operators, vaccination strategy, and the quantum theory.

In the detection stage, the packet trace records are normalized and transferred as antigens; 
simultaneously, the redundant features are omitted and detected by the memory antibodies. If the 
detection results are anomalous, the IDS gives an alert, transforming the antigens into antibodies. 
Meanwhile, the antibodies are put into initial memory antibodies set for the next evolution. The 
NMAIFS MOP-AQAI intrusion detection model is shown in Figure 1.

The NMAIFS MOP-AQAI is shown in Table 4.

Figure 1. NMAIFS -MOQAI detection module
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The two core sub-modules, NMAIFS and MOP-AQAI, are used in the training stage of the 
detection to generate excellent antibodies.

The sampling records are fed into the NMAIFS sub-module and normalized by the relationship of 
different attributes. Then, antibodies’ optimal features are selected with the greedy choices algorithm. 
The flowchart for the NMAIFS sub-module is shown in Figure 2.

Then all the training antibodies are inserted into the MOP-AQAI sub-module for dynamic 
evolution. The antibodies, after reduction, are placed into an initial antibody set. The antibodies 
possessing higher fitness are initial memory antibodies; the memory antibodies experience executed 
crossover, mutation, and vaccination to develop immature antibodies. Some immature antibodies 
are transferred into mature antibodies, and part mature antibodies in their life cycles are activated 
to become memory antibodies. Finally, memory antibodies are adopted to detect the antigens; the 

Table 4. The NMAIFS MOP-AQAI

NMAIFS MOP-AQAI

  The offline cache data are the original input origins. NMAIFS sub-module extracts the traffic feature data and creates 
the initial antibody set; 
  Execute the NMAIFS algorithm, reduce high-dimensional feature data and get the effective data set with the method 
that we calculate the normalized antibody mutual information between various features and different behavior categories 
in the sample data to get the best combination feature set; 
  The optimal antibodies collection with the best combination of characteristics is solved by a quantum immune 
algorithm, adaptive learning to get memory antibody collection; 
  After sampling the received data packet, extract the flow detailed record with the pre-definition features in actual 
applications; 
  Select d-dimensional important features from the flow detailed record through the NMAIFS module. Then, compare it 
with the detection model in the training phase and output the accurate detection results; 
  The antigen after detection are transferred antibody, and put MOP-AQAI, update the MOP-AQAI module.

Figure 2. The flowchart of NMAIFS
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detection results are based on the new antibodies in a fresh evolutionary round. The flowchart of the 
MOP-AQAI sub-module is shown in Figure 3.

SIMULATIONS AND ANALYSIS

To verify the effectiveness of the proposed method, NMAIFS MOP-AQAI, in the experiments, we 
take the intrusion scenario correlation benchmarks KDD99 (KDD, 2010) and UNSW-NB15 to test 
the algorithm proposed in this paper. Therefore, we use some common performance indicators as 
parameters to detect antigens and present comparison analysis, respectively, according to KDD99 
and UNSW-NB15 data sets (Moustafa, 2017). KDD99 and UNSW-NB15 both include small attack 
samples, with which we research the attack classification performances of the NMAIFS MOP-
AQAI algorithm for small samples. With the UNSW-NB15 data set, the purpose is to research the 
classification performances of novel attacks.

Data Set and Simulation Environment Setup

KDD99 Dataset
The intrusion scenario correlation benchmark KDD99 was used in the experiments to verify the 
effectiveness of the proposed NMAIFS MOP-AQAI detection method.

Lincoln laboratory provided KDD99 for experiment simulations of intrusion detection; the training 
sample set KDD99 includes 494,021 records. The test sample set includes 311,029 records. The data 
set contains Normal, Dos, the Probe, U2R, and R2L five species of samples. When we execute the 
experimental simulation, we adopted all the training samples to train and test the NMAIFS MOP-
AQAI algorithm. We show the sample distribution of the data set in Table 5.

The minimum rotation angle step length is K
1
0 001= . p , the maximum rotation angle step 

length is K
2
0 05= . p , the initial mutation probability is P

0
0 8= . , and the variation operator 

adjustments constant C is 0.08.
The anomaly detection algorithm NMAIFS MOP-AQAI was implemented with C as the 

simulation environment. The CPU is an Intel Pentium of 4, 3.20 GHz, memory is 16 GB, and the 
operating system was Microsoft Windows 2016.

Table 5. Sample distribution of the data set KDD99

No Type Training set Testing set

1 Normal 97,278 60,593

2 Dos 391,458 229,853

3 Probe 4,107 4,166

4 U2R 52 228

5 R2L 1,126 16,189

Sum 494,021 311,029
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UNSW-NB15 Dataset

The UNSW-NB15 datasets include normal samples and ten types of attacks and contain 257,673 
records (He et al., 2017). The sample distribution of the UNSW-NB15 data set is shown in Table 6.

Table 6. Sample distribution of the data set UNSW-NB15

No Type Training set Testing set

1 Normal 56,000 37,000

2 Generic 40,000 18,871

3 Exploits 33,393 11,132

4 Fuzzers 18,184 6,062

5 Dos 12,264 4,089

6 Reconnaissance 10,491 3,496

7 Analysis 2,000 677

8 Backdoor 1,746 583

9 Shellcode 1,133 378

10 Worms 130 44

Sum 175,341 82,332

Figure 3. The flowchart of MOP-AQAI
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The Data Pre-processing and Evaluation Standard

There are four steps in the testing experiment: normalization, reduction, training, and testing. We 
may easily ignore the effectiveness of some features owing small values, since there are substantial 
differences among features in the data set. Therefore, the feature data must be normalized before 
NMAIFS selects optimal features. For example, let us suppose that the antibodies set contains n 
records, fj[i] represents the ith feature of the jth record. The mean and standard deviation are calculated 
with the following equations:

f i
n

f ij j

n

j



 =




=∑

1
1

	 (17)

s i
n

f i f i
j j

n

j j



 = −




 −














=∑

1

1 1

2

	 (18)

Where f ij 

  and s i

j



  denote the mean and standard deviation of the ith feature, respectively. 

Then, all features are normalized with formulae (19):

f̂ i
f i f i

s ij

j j

j




 =




 −











	 (19)

We show the evaluation criteria of the test results in the following:

DR
TP

TP FN
=

+
	 (20)

FAR
FP

TN FP
=

+
	 (21)

Pre
TP

TP FP
=

+
	 (22)

Acc
TP TN

TP TN FP FN
=

+
+ + +

	 (23)

TP denotes that the samples which belong to the category C are correctly recognized as the 
category C; TN denotes the samples which do not belong to the category C are correctly recognized 
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as other categories; FP denotes the samples which do not belong to the category C are wrongly 
recognized as the category C; and FN denotes the samples which belong to the category are wrongly 
recognized as not belonging to the category.

The Best Feature Set Selection with NMAIFS

In the NMAIFS sub-module, the optimal features are selected by calculating the normalized mutual 
antibodies information of the statistical characteristic and features with marked category. We select the 
normalized mutual information values in descending order according to their characteristics, which are 
the preparations for MOP-AQGA based on attributes and significance of features. The C4.5 decision 
tree algorithm was adopted to test the antigens with a varying number of characteristics. The mRMR 
(Fatemeh et al., 2011) and NMIFS (Huang et al., 2017) algorithms were compared with NMAIFS.

There are two principles of the optimal features subset. First, when the difference between DR 
and FAR of NMAIFS, NMIFS, and mRMR is greatest. Second, when the average detection rate is 
higher than 90%, those features are selected.

The NMAIFS for KDD99 Datasets

There are 41 conditional attributes in KDD99 sets. If all the features are used in intrusion detection, 
much more time will be consumed to deal with the redundant attributes. With NMAIFS, the optimal 
features are selected, which are shown in Table 7.

We conclude from Table 7 that for the five types of data sets, the subsets of NMAIFS and NMIFS 
are similar; the numbers for are generally lower than those of mRMR.

The NMAIFS for UNSW-NB15

There are 43 conditional attributes in UNSW-NB15 sets. With the same process and principles of 
KDD99, NMAIFS is adopted to obtain the best features collection. We show the optimal features 
subset in Table 8.

Table 7. The optimal attributes set of KDD99

Type NMAIFS NMIFS mRMR

Normal 30, 3, 13, 33, 14, 15, 10, 
17, 31, 36

30, 3, 13, 33, 14, 15, 10, 17, 
31, 36

13, 15, 3, 31, 10, 14, 33, 17, 18, 
21, 30, 36

Dos 3, 2, 4, 5, 26, 30, 32, 25, 
38, 39, 37

4, 3, 2, 5, 26, 30, 32, 25, 38, 
37, 39

25, 38, 2, 5, 26, 30, 32, 35, 3, 4, 
37, 39, 40

Probe 16, 7, 10, 12, 8, 23, 24, 6, 
36, 11, 39

16, 7, 23, 10, 12, 8, 11, 24, 
6, 36, 39

36, 7, 39, 8, 11, 12, 16, 24, 10, 29, 
31, 23, 34, 6

U2R 3, 14, 10, 13, 33, 15, 30, 
17, 31, 36

3, 14, 33, 10, 15, 30, 17, 13, 
31, 36

14, 8, 10, 13, 17, 18, 3, 5, 30, 31, 
15, 33, 36

R2L 31, 3, 6, 8, 10, 21, 7, 27, 
9,38, 1

31, 3, 10, 8, 21, 7, 27, 6, 
9,38, 1

6, 3, 7,, 10, 12, 1,18, 21, 27, 8, 9 
31, 38



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

16

For the ten types of samples, the optimal features subsets of NMAIFS are similar to NMIFS, the 
numbers of NMAIFS are almost less than those of mRMR.

In conclusion, for either KDD99, or UNSW-NB15, with a C4.5 decision tree algorithm, NMAIFS 
has similar feature subsets to NMIFS; NMAIFS gets a more concise feature set than mRMR. So with 
fewer features, the intrusion detection speed can be improved.

The Anomaly Detection Performance Results 
Compared with Related Works

KDD99 and UNSW-NB15 are respectively used to demonstrate the effectiveness of the NMAIFS 
MOP-AQAI algorithm. We executed respectively attacks classification and anomaly detection with 
those two sets.

The Anomaly Detection Performance 
Results Comparison of KDD99

With KDD99, the Receiver Operating Characteristic (ROC), the classification of intrusions, and 
anomaly detection are applied to verify the performances of the NMAIFS MOP-AQAI algorithm.

ROC

The NSA (Naila et al., 2020), K-means (Alyaseen et al., 2017), NMIFS (Huang et al., 2017), and 
NMAIFS MOP-AQAI algorithm proposed in this paper were used to train and test with KDD99.

Table 8. The optimal attributes set of UNSW-NB15

Type NMAIFS NMIFS mRMR

Normal 19, 36, 10, 20, 11, 21, 6, 34 19, 10, 36, 11, 20, 21, 6, 34 6, 10, 11, 15, 17, 18, 19, 20, 21, 24, 26, 
34, 36

Generic 10, 18, 15, 6, 11, 13, 16, 9, 17, 
12, 20

15, 10, 18, 6, 11, 16, 13, 9, 17, 
12, 20

3, 5, 6, 9, 10, 11, 12, 13, 15, 16, 17, 18, 
20, 28, 29

Exploits 6, 5, 10, 19, 37, 11, 41, 42, 36 10, 6, 5, 37, 11, 41, 19, 42, 36 2, 5, 6, 10, 11, 13, 15, 16, 19, 22, 36, 
37, 41, 42

Fuzzers 40, 41, 6, 15, 14, 16, 36, 11, 37, 
39, 42

40, 6, 41, 15, 16, 36,, 14 11, 37, 
39, 42

4, 6, 11, 14, 15, 16, 17, 18, 26, 36, 37, 
39, 40, 41, 42

Dos 15, 42, 11, 6, 16, 36, 39, 37, 40 15, 42, 6, 16, 11, 36, 37, 39, 40 6, 8, 9, 11, 15, 16, 18, 20, 25, 27, 36, 37, 
39, 40, 42

Reconnaissance 41, 42, 37, 9, 14, 16, 10, 17, 28 41, 37, 42, 14, 16, 9, 10, 17, 28 4, 5, 8, 9, 10, 14, 16, 17, 20, 21, 25, 28, 
30, 37, 41, 42

Analysis 6, 11, 34, 35, 12, 10, 15, 13, 16, 
14, 37

6, 34, 11, 12, 35, 10, 13, 15, 16, 
14, 37

6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 24, 26, 
27, 34, 35, 37

Backdoor 41, 10, 6, 14, 11, 16, 15, 37, 42 10, 41, 6, 11, 16, 14, 37, 15, 42 2, 3, 5, 6, 10, 14, 15, 16, 25, 26, 28, 30, 
37, 41, 42

Shellcode 18, 23, 9, 12, 10, 14, 16, 15, 
13, 17, 6

18, 9, 10, 23, 14, 16, 12, 15, 
13, 6, 17

6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 23, 
26, 39, 40

Worms 10, 5, 9, 11, 14, 13, 17, 37, 
41, 23

5, 9, 10, 11, 13, 17, 14, 37, 
41, 23

1, 5, 8, 9, 10, 11, 13, 14, 17, 19, 21, 23, 
26, 27, 32, 37, 41
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Normal, Dos, the Probe, U2R, and R2L are adopted to obtain the ROC curves. With different 
threshold values, we get the DRs and FARs, respectively, and the ROC on five sample types shown 
in Figure 4.

In Figure 4, the results show how with the increase of DR, the FAR in decreasing; compared 
with the existing common detection methods, both in the normal data set and in the abnormal data 

Figure 4. The ROC curves of different types of data sets with various algorithms for KDD99
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sets (DOS, the Probe, R2Land U2R), we can get a lower FAR a higher DR. Meanwhile, NMAIFS 
MOP-AQAI can guarantee at a relatively low rate of false positives and higher detection rate for all 
the samples. When considering the small sample sets U2R and R2L, we can get higher DR and lower 
FAR, and we have a better balance between DR and FAR.

The Classification of Intrusions

Five different categories of datasets are applied to simulate the algorithm’s classification ability to 
verify its effectiveness. Each dataset runs ten times; the average values are taken as the test results. 
Finally, the MDPCA–DBN (Yang et al., 2019), NMIFS + QWNN (Huang et al., 2017), and the 
NMAIFS MOP-AQAI algorithm proposed in this paper are compared. The results are shown in Table 9.

As it can be seen from Table 9, the detection results of NMAIFS MOP-AQAI are obviously 
better than MDPCA – DBN, which has higher DR, Acc, Pre, and lower FAR. Particularly for small 
samples sets U2R and R2L, the entire performances are more superior.

Compared with NMIFS + QWNN, according to the large sample dataset, the NMAIFS MOP-
AQAI’s DR is a little lower than NMIFS + QWNN, but the DR reaches over 96%. Furthermore, 
because of the small data samples, such as U2R and R2L, detection performances are higher than 
NMIFS + QWNN. So NMAIFS MOP-AQAI’s classification ability is better than the other two 
algorithms on the five attack types, particularly for the U2R and R2L small sample sets.

Table 9. Detection performance comparisons of classification on KDD99

Type Methods DR Acc FAR Pre

Normal

NMAIFS MOP-AQAI 98.90 99.41 0.45 98.12

MDPCA-DBN 71.42 N/A N/A 97.38

NMIFS+QWNN 99.92 99.84 0.08 N/A

DOS

NMAIFS MOP-AQAI 99.49 99.48 0.49 99.82

MDPCA-DBN 96.34 N/A N/A 81.09

NMIFS+QWNN 98.83 98.88 0.10 N/A

Probe

NMAIFS MOP-AQAI 96.35 99.82 0.12 91.10

MDPCA-DBN 85.85 N/A N/A 73.94

NMIFS+QWNN 84.85 88.57 0.56 N/A

U2R

NMAIFS MOP-AQAI 85.70 99.81 0.01 37.40

MDPCA-DBN 11.82 N/A N/A 6.50

NMIFS+QWNN 84.85 88.57 0.56 N/A

R2L

NMAIFS MOP-AQAI 96.83 99.75 0.01 98.26

MDPCA-DBN 57.30 N/A N/A 17.25

NMIFS+QWNN 79.00 88.79 88.79 N/A
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The Anomaly Detection

The third comparison concerns the anomaly detection of NMAIFS MOP-AQAI, which comprises 
longitudinal comparisons, such as immune algorithms, and horizontal comparisons with other 
machine learning algorithms. All the attacks were abnormal samples for simulations; we adopted the 
testing sets for detection, each dataset group runs ten times, and we get the average values. Different 
algorithms’ anomaly detection performance comparisons are shown in Table 10.

The results in table 10 show that the NMAIFS MOP-AQAI algorithm has a higher DR, and Acc 
than the other five algorithms and the FAR is lower than the other five algorithms. At the same time, 
the Pre of NMAIFS MOP-AQAI is lower than MDPCA-DBN but higher than AI+PI.

The Comparisons for UNSW-NB15

With UNSW-NB15, the ROC and anomaly detection were adopted to verify the performances of 
NMAIFS MOP-AQAI algorithm.

ROC

With the same process and principles of KDD99, the NSA (Naila et al., 2020), K-means (Alyaseen 
et al., 2017), NMIFS (Huang et al., 2017), and the NMAIFS MOP-AQAI algorithm proposed in this 
paper were used to train and test with UNSW-NB15 set, the ROC curves on ten data set types are 
shown in Figures 5 and 6.

Table 10. The comparisons for KDD99 (the N/A reflects an unknown value)

Method DR Acc FAR Pre

AI+PA (Chou et al., 2020) 98.72 95.90 1.56 89.70

MDPCA-DBN(Yang et al., 2019) 61.57 66.18 13.06 95.51

WIDMoDS (Feng et al., 2021) N/A 98.8 N/A N/A

SR+DL (Wu et al., 2020) N/A 94.2 N/A N/A

MS-NIDAM (Xi et al., 2021) about 92.00 N/A about 5.00 N/A

NMAIFS MOP-AQAI 99.18 99.68 0.25 84.94
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Figure 5. The ROC curves of different types of data sets with various algorithms for UNSW-NB15

Figure 6. The ROC curves of different types of data sets with various algorithms for UNSW-NB15
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Figures 5 and 6 show that NMAIFS MOP-AQAI performs better than NSA, K-means, and NMIFS. 
In UNSW-NB15, Analysis, Backdoor, Shellcode, and Worms are small sample sets, the DR is the 
highest, and the FAR is the lowest in the four algorithms. Meanwhile, NMAIFS MOP-AQAI has a 
better balance between DR and FAR.

The Anomaly Detection

Similarly, the anomaly detection is used to analysis the intrusion detection indexes of NMAIFS 
MOP-AQAI.

All nine types of attacks are abnormal samples for training; the detection sets are used for detection, 
and each dataset group runs ten times and calculates the average values. Different algorithms’ anomaly 
detection performance comparisons are shown in Table 11.

Results in Table 11 show that the detection rate and accuracy of the NMAIFS MOP-AQAI 
algorithm proposed in this paper are higher than other algorithms. The Acc is 13.85% lower than 
SL+DCA, 9.68% less than NSNAD, and 1.31% less than DCA+NSA. Therefore, the NMAIFS MOP-
AQAI algorithm strikes a better balance between DR and FAR.

In conclusion, whether for KDD99 or UNSW-NB15, NMAIFS MOP-AQAI has a higher DR, 
Acc, Pre, lower FAR, a better balance between DR and FAR, and a better classification ability and 
anomaly detection ability. In particular, for small sample sets, it has superior detection performance.

CONCLUSION

This paper applied the NMAIFS algorithm to obtain the best features collection, by which we got an 
effective dimension reduction of the multiple dimensional features to improve the detection speed. 
Then, we developed a cooperative evolution of multiple operators based adaptive parallel quantum 
artificial immune algorithm. In which, we used individual similarity evaluation operator, individual 
fitness evaluation operator, and individual similarity evaluation operator to update individual’s 
mutation probability; simultaneously, we applied parallel quantum and vaccination strategies to 
improve the adaptive artificial immune algorithm for the diversity of individuals. The goal is to obtain 
effective classifiers for high DR and low FAR. At last, with KDD99 and UNSW-NB15, experiment 
results on anomaly data from real network traffic showed that the proposed method NMAIFS MOP-
AQAI has a higher DR, lower FAR, and better adaptivity, especially for small samples. While the 
drawback of the algorithm is that for unknown attacks, the performance needs further research. The 
future jobs are to research the zero-day attacks and how to detect the unknown attacks and deploy 
the algorithm in the Internet-of-Things (Ivan et al., 2021; Yuan et al., 2021).

Table 11. Detection performance comparisons of classification on UNSW-NB15(the N/A reflects an unknown value)

Method DR Acc FAR Pre

SL+DCA (Wu et al., 2020) N/A 98.73 N/A 99.17

NSNAD (Naila et al., 2020) 91.34 92.00 9.76 95.00

DCA (Farzadnia et al., 2021) 95.90 78.70 59.20 61.83

DCA+NSA (Ehsan et al., 2021) 99.10 97.30 15.30 86.63

NMAIFS MOP-AQAI 99.58 99.26 0.46 85.32
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APPENDIX

Table 12. The abbreviations used in this research

Abbreviation The full name

IDS Intrusion detection system

NMAIFS MOP- AQAI Normalized mutual antibodies information feature selection and adaptive quantum 
artificial immune with cooperative evolution of multiple operators

NMAIFS Normalized mutual antibodies information feature selection

MOP- AQAI Adaptive quantum artificial immune with cooperative evolution of multiple operators

GA Genetic algorithm

AI Artificial immune

FSA Feature selection algorithm

mRMR Minimal- Redundancy- Maximal- Relevance

NMIFS Normalized mutual information feature selection

MIFS Mutual information feature selection

AE - CGAN – RF Autoencoder - conditional, the generative adversarial networks and the random forest

WIDMoDS An intrusion detection model based on dynamic weighted values

NSA Negative selection algorithm

NSNAD Negative selection for network anomaly detection

DCA Dendritic cells algorithm

DL Deep learning

PA Parallel automaton

MDPCA-DBN Modified Density Peak Clustering Algorithm and Deep Belief Networks

AA-HMM Anti-adversarial hidden markov model for network-based intrusion detection

MS-NIDAM Multisource neighborhood immune detector adaptive model

MI The mutual information

QWNN Quantum wavelet neural network

SR Semantic re-encoding

ROC Receiver operating characteristic


