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ABSTRACT

IoT-based healthcare systems are becoming popular due to the extreme benefits patients, families, 
physicians, hospitals, and insurance companies are getting. Cloud is used traditionally for almost 
every IoT application, but cloud located far away from the devices resulted in an uncertain latency in 
providing services. At this point, fog computing emerged as the best alternative to provide such real-
time services to delay-sensitive IoT applications. However, with the surge of patients, fog’s limited 
resources may fail to handle the explosive growth in requests requiring advanced monitoring-based 
prioritization of tasks to meet the QoS requirements. To this end, in this paper, a level monitoring task 
scheduling (LMTS) algorithm is proposed for healthcare applications in fog to provide an immediate 
response to the delay-sensitive tasks with minimum delay and network usage. The proposed algorithm 
has been simulated using the Cloudsim simulator, and the results obtained demonstrated the efficacy 
of the proposed model.
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INTRodUCTIoN

Recently, with the rising number of chronic diseases along with the rise in global population, 
researchers as well as healthcare industry are with a great hope of new smart healthcare solutions 
which can prove to be beneficial for both medical practitioners as well as patients in providing real-
time services in case of medical emergencies. Despite of the fact that smart healthcare solutions 
can prove to be rewarding, yet, industries did not opt for such smart healthcare systems due to the 
exorbitant nature of IoT solutions. But latterly, in the age of pandemic like coronavirus, it has become 
a necessity for the industries to adopt such IoT based smart solutions for the betterment of humankind.
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The Internet of Things (IoT) is an environment of diverse objects having capabilities to inter-
operate and communicate with each other over the network requiring minimum human interaction 
(Wortmann & Flüchter, 2015). In situations, when there is a need of processing large amount of data 
which requires high computing power, IoT devices alone cannot satisfy the requirements, hence uses 
Cloud to meet such requirements (Biswas & Giaffreda, 2014). Cloud computing (Mell & Grance, 
2011) is a virtualization based powerful computing technology which provides on-demand services 
such as computing power, storage, applications etc over the internet. Notwithstanding the various 
benefits of Cloud, several inescapable issues and downside is also noticed. Cloud datacenters located 
far away from the users and the presence of high traffic in Cloud results in high latency, raising 
questions about execution of tasks requiring immediate responses. There comes the need of Fog.

Fog computing, is an intermediate layer of distributed network present in between the Cloud 
and IoT which is capable of providing Cloud services with a minimal delay to the real-time IoT 
applications, being close to the source of data (Bonomi et al., 2012). The need for Fog is better realized 
in healthcare systems, when large amount of requests arrives from delay-sensitive applications like 
wearable health monitoring devices, ventilators etc. In situations of pandemic or disasters, when there 
is an unpredictable surge in the number of patients, the requests may also increase vigorously. In such 
circumstances when there is lack of an efficient task scheduling model, fog computing circumscribed 
by resources may not be able to handle the high traffic and may fail to serve the delay-sensitive tasks 
which requires immediate response.

Noticing such issues and challenges in fog and healthcare applications, researchers have done a 
lot of studies to come out with an economical and competent model (Behera et al., 2020; Rahmani 
et al., 2018; Roy et al., 2018). The authors in (Tang et al., 2019), have proposed a fog based smart 
healthcare model, consisting of three layers, namely multisource data layer, heterogeneous Fog 
network, and healthcare service layer. A novel fog enabled data sharing strategy is also introduced 
where pre-processing and re-encryption of the transferred data is done on the employed nodes to 
reduce encryption burden for healthcare applications. However, the authors have not focused much on 
resource management. A better resource management methodology would have resulted in even less 
energy consumption and better performance. In (Mahmoud et al., 2018), the authors have proposed 
an energy-aware fog based model for healthcare, that allocates the tasks to the fog nodes based on 
remaining energy consumption and CPU capacity. The main goal of their proposed strategy is to 
minimize the overall energy consumption by allocating the tasks based on DVFS (Dynamic Voltage 
Frequency Scaling) and IRR (Improved Round Robin) algorithms. Although their model proved to 
be delivering promising results, but in case of healthcare scenarios providing immediate response to 
delay-sensitive tasks should be the primary goal. Searching for energy-efficient fog nodes to allocate 
tasks instead of allocating them to the nodes which can provide immediate response, would not 
prove to be a good strategy. Whereas in (Khattak & Arshad, 2019), authors have considered traffic 
overhead, introducing a load balancing strategy for health-care applications. Their model consists of 
an algorithm that is provided with heart rate and patient category according to which they categorize 
the request as normal or critical. The second algorithm checks whether a request sent to the nearest 
fog server is capable of processing or not. If not, it shifts the request to nearby servers until a server 
with enough resources is not encountered. In case the task is found to be critical, the employed fog 
server forwards it to the cloud for further processing. Forwarding critical tasks to Cloud for processing 
would result in disastrous situations due to high latency. Delays in health-care applications cannot be 
tolerated and their model would fail in providing immediate responses to the needy tasks. Proposal of 
a priority-based task scheduling algorithm is given by the authors in (Choudhari et al., 2018), where 
the arriving tasks are first assigned with one out of the three priority levels i.e., low, medium, and 
high priority. An arrived task after being assigned with its priority level is scheduled to the fog node 
present near to the client’s location, the request is forwarded to the adjacent fog nodes until a node 
satisfying the task’s deadline is found. In worst case, when no fog node is capable of executing the 
task within its deadline, even after splitting, it is ultimately sent to cloud. However, forwarding tasks 
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to nearby fog nodes again and again would lead to an increase in service delay. It is also seen that, in 
situations of high traffic, tasks with high priority levels are rejected and sent to cloud which increases 
the probability of failure in executing tasks within their deadlines. While in (Jamil et al., 2020), a delay 
and performance-optimizing job scheduling algorithm for healthcare systems is proposed. Authors 
have considered three importance levels for tasks based on application category. Three application 
modules such as DCPB, Organizer and Patient’s Record Database are considered in their proposed 
architecture. For every insertion, the waiting list is sorted in an ascending order based on the length 
of tasks. The Shortest Job First(SJF) scheduling policy is followed in their algorithm while scheduling 
tasks from the waiting list. Nevertheless, their algorithm performed better than the existing First 
Come First Service(FCFS)algorithm in terms of average loop delay, energy consumption and network 
usage still, a lot of unavoidable drawbacks can be seen. Though the authors have prioritized the tasks, 
yet the scheduling is not done on the basis of importance level. Critical or delay-sensitive tasks are 
not served with a higher importance while following SJF. Moreover, implementation of instruction 
set based SJF would be catastrophic for critical tasks with large instruction set. Allocating virtual 
machines with low computational power to a critical task would not be a good idea as they need to 
be executed with the least possible service time.

Hence, being mindful of such issues in fog, in this paper a level monitoring task scheduling 
algorithm in fog for healthcare is proposed to provide an immediate response to the delay-sensitive 
tasks with minimum energy consumption and network usage. Moreover, giving thought to the 
drawbacks in the aforementioned papers, a level assigning algorithm is also proposed and it is made 
sure that the tasks are served according to their respective importance levels while scheduling. Some 
of the major contributions of this paper are summarized as follows:

1.  Initially a comprehensive case study on healthcare applications and the considerations of our 
model is provided. Followed by an overview of the proposed model.

2.  A level monitoring task scheduling algorithm is designed for scheduling tasks to virtual machines 
where immediate response and minimum completion time can be achieved. The necessary 
mathematical equations are formulated for the proposed model.

3.  Finally, using CloudSim, we evaluate the performance of our proposed algorithm in terms of 
average delay, energy consumption and network usage.

The remaining parts of the paper are organized as follows. Section II provides a comprehensive 
case study on healthcare applications and the considerations in our model. Section III scrupulously 
illustrates the proposed model. Moreover, the problem formulation and mathematical analysis is also 
done in this section. Section IV consists of a detailed discussion on the experimental setup followed 
by the result analysis of our model. Finally, the paper concludes showing the directions for future 
work in Section V.

CASE STUdy oN HEALTHCARE APPLICATIoNS

The ubiquitousness nature of fog makes it a well-qualified and an acceptable technology for various 
real-time IoT applications. Many real-time IoT applications require an instantaneous response. For 
example, in smart healthcare applications, seeking services from cloud would prove to be a disastrous 
decision due to unpredictable delays. Hence, fog being close to the source of data can be used as a 
solution for various healthcare computing tasks. Processing tasks in nearby fog nodes would provide 
immediate response and smaller delays to such real-time applications rather than sending them to cloud.

Albeit healthcare applications need to be served immediately, but there are many small small 
applications under the umbrella of healthcare that needs to be served with higher priorities. Some 
of them are delay-sensitive while others can tolerate some delay. For example, tasks from health 
monitoring applications like electrocardiogram (ECG) or ventilators are strictly intolerant to delays. 
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Whilst, tasks from hospital management systems can tolerate some delay. Therefore, such tasks also 
need to be prioritized based on the type of applications from which they have arrived. In this paper, 
three categories of applications are considered which are mentioned as follows:

1.  Critical Health Monitoring Applications: This category consists of distinct health monitoring 
applications that require computation on health condition of patients containing data such as 
blood pressure, heartbeat, oxygen level, etc. Such tasks need to be processed immediately and 
hence are assigned with highest priority or task level 1.

2.  Appointment and Display Applications: Tasks for appointment bookings, alerting users in 
case of appointment delays, display services, etc comes under this category. Applications akin 
to this category are comparatively less critical, hence can be assigned with medium priority i.e., 
task level 2.

3.  Management and Analysis Applications: Applications containing patients information 
responsible for managing databases for long-term analysis are of this category. These tasks can 
tolerate delays, therefore, are assigned task level 3.

PRoPoSEd ModEL

For a better realization of the proposed task scheduling mechanism, an overview of the model, sequence 
diagram, design as well as its implementation is scrupulously illustrated in the following subsections.

overview of the Model
The overall model is presented in this section with the help of Figure 1. It can be seen that the 
architecture consists of four layers namely User, IoT Interface, Fog, and Cloud. The user layer refers 
to the end-users of the services, for example, patients, doctors, managers, etc.

The second layer is the IoT Interface which comprises an ample mix of IoT applications such 
as smartphones, health monitoring devices, display devices, etc. The Fog layer consists of several 

Figure 1. Overview of the model
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fog nodes responsible for processing the tasks arriving from the end-users via the IoT interface. The 
uppermost layer is the Cloud having large centralized datacenters where patient’s database records are 
maintained for long-term analysis. The Fog layer is equipped with additional components like Task 
Level Accorder (TLA), Level Monitoring Task Scheduler (LMTS), and Virtual Machine Manager 
(VMM). Whenever a task arrives from the IoT interface, it is first received by TLA which categorizes 
the task based on application type. The three task levels considered in our model are already discussed 
in Section II. TLA forwards the level assigned tasks to Level Monitoring Task Scheduler (LMTS) 
which appends them into a task list further scheduling them to a suitable virtual machine (vm) present 
in fog nodes, where minimum completion time can be achieved.

The virtual machines are assigned with three computational levels i.e. VM level 1 indicating most 
powerful, VM level 2 indicating moderately powerful and VM level 3 indicating least powerful. Every 
fog node incorporates several vms and a Virtual Machine Manager (VMM). The VMM maintains 
a VM Scheduling Table (ST). For ‘n’ number of virtual machines present in a fog node, the VMM 
maintains a ST with ‘n’ number of rows. Also, the VMM plays the role of completion time estimator 
which estimates the completion time for a particular task if it is scheduled to a vm present in the fog 
node with same level as that of the task.

Sequence diagram of the Model
The order in which various activities taking place in the model starting from the arrival of tasks till 
their scheduling is illustrated here with the help of a sequence diagram as shown in Figure 2.

In the first instance (Seq.No. 1.1) all the virtual machines present in various fog nodes are 
assigned with VM levels. The VM levels are assigned based on the computational power of the vms 
using Algorithm2 presented in the next subsection. At the start, it is also noticeable that the tasks 
arrive from various IoT (Seq.No. 1.2), and according to the category of application, TLA assigns 
task level to the arrived task (Seq.No. 2, 3). Algorithm1 presented in the next subsection depicts 
the behavior of TLA. Then the arrived task is forwarded to the LMTS (Seq.No. 4) which in return 

Figure 2. Sequence diagram of the model
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acknowledges TLA that the forwarded task is received (Seq.No. 5). The received task is further 
appended into an arrived task list maintained by the LMTS (Seq.No. 6). For each time a task is 
to be scheduled, the LMTS selects a task having the highest task level among tasks present in the 
arrived task list which means it first looks for the most delay sensitive ones, then it looks for tasks 
with task level 2, and 3 (Seq.No. 7). During (Seq.No. 8), the status of all vms such as VM level 
and estimated completion time is requested from the VMMs and hence they return the status of 
all vms from the maintained ST consisting of parameters like vm id, vm levels, scheduling queue 
and estimated completion time for each vm (Seq.No. 9). The estimation of completion time for 
scheduling the selected task on the complementary virtual machines with same level is calculated 
(Seq.No. 10) and a suitable vm with minimum completion time is selected for scheduling the task 
(Seq.No. 11, 12). The VMM for the scheduled vm updates its ST (Seq.No. 13). After execution 
of a task the responses are turned in to the users accordingly (Seq.No. 14). If necessitates, the 
information is uploaded to Cloud for analysis and backup (Seq.No. 15,16). The Algorithm3 present 
in the following subsection depicts the behavior of LMTS.

design and Implementation
The notations used in the design and implementation of our model is presented in Table 1.

The assumptions and derivations for equations used are presented further in this section. Let αt
wn 

be a binary function which returns 1 if task level of Taskt is same as the computational level of VMw
n:

α
t
wn t w

nif Level issameasLevel

otherwise
� �
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,�
=
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0
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Then the expected average completion time for Taskt on all virtual machines with same level 
can be calculated as:

Table 1. Notation table

Notation Description

FogNn nth number fog node

FogNList List of all fog nodes

VMw
n wth virtual machine present in FogNn

VMListn List of virtual machines present in FogNn

Wn Total number of virtual machines in FogNn

MIPSw
n MIPS of wth virtual machine in FogNn

VMw
n.STQueue Scheduled tasks queue of VMw

n

VMw
n..TotalST Total number of tasks present in VMw

n.STQueue

VMw
n.STQueue.CT Estimated completion time for executing all the tasks present in VMw

n.STQueue

Taskt tth number task

TList List containing all the arrived tasks

expCTt
wn Expected average completion time for Taskt on VMw

n with same level

Levelw
n Computational level assigned to VMw

n

Levelt Priority level assigned to Taskt

VMMn.STable Scheduling table of VMMn
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The VMw
n.STQueue.CT used in equation (1) can be calculated as:

VM STQueue CT
VM STQueue InstLength

w
n

i

VM TotalST
w
n

iw
n

⋅
⋅ ⋅

⋅ =
=

⋅

∑� � 1 MMIPS
w
n

 (3)

Now the estimated completion time of Taskt if scheduled to VMw
n can be derived by adding 

estimated completion time for executing all the tasks present in VMw
n.STQueue with the estimated 

execution time for Taskt on the particular VM, as interpreted in equation (4):
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The network usage for all the arrived tasks can be calculated as:

NetUsage Lat NetUse
t

Tlist length

t t
� � �*�

.
=

=∑ 1
 (5)

Algorithm 1. Task Level Accorder
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where, Lati is the latency for Taskt, and NetUset is the network usage of Taskt.

EXPERIMENTAL SETUP ANd RESULT ANALySIS

In subsection 4.1, a detailed description on the experimental setup, simulation tool used and the 
conducted experiments is provided. Also at the end, an analysis of the results achieved are done in 
subsection B.

Experimental Setup
The CloudSim simulator, a framework for modeling and simulation of cloud-fog environments was 
used for evaluating the efficacy of our model. Two datacenters DatacenterFog and DatacenetrCloud 
were instantiated. With adding functionalities to the submitCloudlets() method of Broker class, it was 
capable of monitoring task levels and finding a suitable virtual machine for a selected task, which 
means technically it was depicting the behavior of LMTS. The driver program of the simulator was 
set up to sporadically generate a bunch of tasks. The task levels were assigned by taskLevelAccorder() 
method defined inside the driver program. For evaluating the performance of the proposed model, 
three experiments were conducted with varying infrastructure i.e., 20, 50 and 100 fog nodes. In each 
experiment, 10 simulations were conducted with increasing the number of arriving tasks by 25 for 
each simulation. However, due to page limitation, result comparison for low and high fog infrastructure 
could not be presented in the following subsection.

Algorithm 2. VM Task Level Assignment

Algorithm 3. Level monitoring Task Scheduling
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Performance Evaluation
For evaluating the performance of our model and for comparing the results with other existing models 
like FCFS and SJF (Job scheduling algorithm proposed by (Jamil et al., 2020)), two main parameters 
were considered i.e., average delay and network usage.

Average Delay
Figure 3 shows the result comparison for medium fog infrastructure with the existing models. 
It is clearly perceptible that in situations when large number of requests arrived, the proposed 
model shows supreme performance than the existing FCFS and SJF (Jamil et al., 2020) in terms 
of average delay.

However, it is seen that in the initial stages (25-50) the performance of our model is quite 
same as that of FCFS and SJF, but, later on with increasing no. of tasks the model proves itself as 
superior. This minimal increase in the average delay in the initial stages is due to the traversing of 
all the 50 scheduling tables maintained by the VMMs present in the fog nodes. Nonetheless, it is 
also comprehensive that with the increase in the number of tasks (125-250) the proposed model has 
undoubtedly shown an outstanding performance with minimizing the average delay up to 30% of SJF 
and about 50% of FCFS. Hence, with the increase in the number of tasks, this constant traversing 
delay seems to be trivial.

Network Usage
An increase in the number of tasks and fog nodes leads to network congestion which results in latency 
and performance degradation. Hence, network usage is also considered as an evaluation parameter.
The network usage can be computed using equation(5) derived in Section III. From Figure 4, it can 
be seen that with an increasing number of tasks, the gap of network usage between our model and 
the other existing model widens. The proposed model shows a much better performance by saving 
about 25% to 30% of network than SJF and 45% to 50% of network than FCFS.

Figure 3. Average delay with varying number of tasks
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CoNCLUSIoN ANd FUTURE woRK

With the ever increasing needs for an efficient IoT based healthcare solution, the uses of Fog for any 
such solution has become a new normal. But Fog having limited resources may fail to handle such a 
huge traffic in absence of a proper task scheduling model. Henceforth, considering the challenges in 
fog, in this paper an efficient level monitoring task scheduling model for healthcare applications is 
proposed to provide immediate response to the delay-sensitive tasks with in healthcare applications 
along with minimum network usage. Through rigorous simulation and performance evaluation, it is 
clearly evident that our proposed model has outperformed the existing models like FCFS and SJF 
(proposed by Jamil et.al. (2020)) in terms of average delay and network usage. In the future, the 
authors shall be implementing reinforcement based prediction models for scheduling along with a 
focus on load balancing and maximum resource utilization of fog nodes.
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Figure 4. Network usage with varying number of tasks
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