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ABSTRACT

Thyroid ultrasonography is mainly used for the detection and characterization of thyroid nodules. 
However, there is some limitation since the diagnostic performance remains highly subjective and 
depends on radiologist experiences. Therefore, artificial intelligence (AI) was expected to improve 
the diagnostic performance of thyroid ultrasound. To evaluate the diagnostic performance of the AI 
for differentiating malignant and benign thyroid nodules and compare it with that of an experienced 
radiologist and a third-year diagnostic radiology resident, 648 patients with 650 thyroid nodules, 
who underwent thyroid ultrasound guided-FNA biopsy and had a decisive diagnosis from FNA 
cytology at Siriraj Hospital between January 2014 and June 2020, were enrolled. Although the 
specificity and accuracy were slightly higher in AI than the experienced radiologist and the resident 
(specificity 78.85% vs. 67.31% vs. 69.23%; accuracy 78.46% vs. 70.77% vs. 70.77%, respectively), 
the AI showed comparable diagnostic sensitivity and specificity to the experienced radiologist and 
the resident (p=0.187-0.855).
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INTRODUCTION

Thyroid nodules are common in the general population with a prevalence of 20-60% (Dean & Gharib, 
2008) and can be either malignant or benign. The etiologies of thyroid nodules are a simple overgrowth 
of normal thyroid tissue, inflammation, or tumor. Thyroid cancer is one of the most common types 
of cancer in the endocrine system. It is the fifth most common cancer of women worldwide and the 
fourth most common cancer of women in Thailand (Pellegritit et al., 2013). Recent research showed 
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that the annual incidence of thyroid cancer has gradually increased and now accounts for 1,500 
new patients per year in Thailand (Tangjaturonrasme et al., 2018). Papillary thyroid carcinoma, the 
predominant subtype of thyroid cancer showed an increase in incidence in Thailand in a decade. 
(Bychkov, 2017; Bychkov, et al., 2017). 

Nowadays, there are many diagnostic imaging modalities to detect thyroid nodules, including 
ultrasonography, computed tomography, magnetic resonance imaging, positron emission tomography, 
and scintigraphy. In clinical practice, thyroid ultrasonography is mainly used for both the detection and 
characterization of thyroid nodules. It is preferable due to noninvasiveness, convenience, no radiation 
exposure, and relatively low price, and intervention procedures can be performed concurrently. 
However, ultrasonography has some limitations to differentiate benign thyroid nodules from malignant 
ones due to the complex structures of thyroid nodules. Consequently, thyroid ultrasonography remains 
highly subjective and depends on physicians’ experience, which causes a greater risk of misdiagnosing 
cancer and increases the number of FNA biopsies.

In the healthcare field, novel technologies have been developed in many countries for supporting 
a diagnosis such as medical records, medical text analysis, interprofessional team collaboration, and 
AI. These electronic medical records (EMRs) are useful for data sharing among medical departments 
(Taewijit & Theeramunkong, 2021). Medical text analysis uses knowledge management for disease 
prediction (Menaouer et al., 2020). The systems approach Interprofessional Team Collaboration 
(IPC) enhances outcomes of healthcare services, as well as improves the safety and quality of 
healthcare setups (Matsushita, et al. 2021). AI is used for diagnostic and therapeutic purposes in 
medical imaging. AI has shown impressive accuracy and sensitivity in the identification of imaging 
abnormality and tissue characterization. Thus, AI is expected to play an essential role in assisting 
radiologists in characterizing thyroid nodules. This can reduce errors caused by subjective factors, 
assist the diagnostic performance in avoiding unnecessary FNA biopsies, benefit further treatment 
plans for patients, and reduce healthcare costs.

Computer-aided diagnosis (CAD) has been considered an innovation in modern healthcare 
(Keung et al., 2018; Matsushita et al., 2018; Rathi & Pareek, 2019). CAD can effectively 
support in different domains including Thyroid cancer screening. There are three main parts 
of CAD, (a) thyroid cancer boundary segmentation, (b) significant feature analysis, and (c) 
classification. In this work, the thyroid nodule classification part is the focus. Basically, 
thyroid nodules have variations in size, shape, echogenicity, composition, and calcification. 
Therefore, the simple extracted features applied in the conventional CAD algorithms could 
limit distinction because of the simplicity. The different approaches, deep learning models, for 
example, the convolutional neural networks (CNNs) significantly were applied in knowledge 
management in identifying the appropriate prediction (Kengpol & Punyota, 2022). Moreover, 
in the past decades, deep CNNs have shown an impressive outcome in various machine vision 
contributions including in medical image processing such as object segmentation and feature 
classification (Khachnaoui & Khlifa, 2018).

MATERIALS

Patients
648 patients with 650 thyroid nodules, who underwent thyroid ultrasonography with ultrasound-
guided FNA biopsy at Siriraj Hospital between January 2014 and June 2020, were enrolled in this 
retrospective study. The inclusion criteria were as follows: (a) age equal to or more than 18 years old, 
(b) underwent ultrasound thyroid with ultrasound-guided FNA biopsy within the same day, and (3) 
had a decisive diagnosis of benign or malignant thyroid nodule by thyroid FNA cytology. According to 
the authors’ radiology database, thyroid nodules with benign cytology account for 80-90% of overall 
thyroid nodules .Therefore, we randomly selected the benign case in proportion with the malignant 
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case for each year. Patients were excluded from the study if (a) the thyroid nodules had no clear 
diagnostic findings from pathology or (b) had suboptimal ultrasound image quality.

Ultrasound Image Acquisition and Analysis
In this study, thyroid ultrasound examinations were performed using a high-frequency linear probe 
by experienced radiologists in the thyroid imaging center. The thyroid gland was scanned in both 
transverse and longitudinal planes with grayscale and color Doppler techniques based on the American 
College of Radiology accreditation standard. Then the images were stored on a picture archiving and 
communication system (PACS). There were 650 thyroid nodules in total, among which 130 were 
malignant, and 520 were benign thyroid nodules. The majority of images included were randomly 
assigned to the training, validation, and test groups, 80%, 10%, and 10% respectively.

The authors collected the ultrasound images of thyroid nodules as grayscale images on the 
picture archiving and communication system (PACS) and exported them in a PowerPoint program. 
The 10 years’ experienced radiologist and the third-year diagnostic radiology resident evaluated the 
ultrasound thyroid images for each nodule included the following: size (maximum diameter in cm), 
echogenicity (marked hypoechoic, hypoechoic, isoechoic, hyperechoic), composition (predominant 
cyst, predominant solid, solid), calcification (microcalcification, macrocalcification, none), shape 
(taller, wider) and margin (well-defined, ill-defined). The ACR Thyroid Imaging Reporting and the 
Data System (ACR TI-RADS) guidelines were used to differentiate each thyroid nodule based on its 
ultrasound features as benign or malignant.

METHODOLOGY

A thyroid nodule on a grayscale ultrasound image modality was collected when it was viewed 
using a PowerPoint program. The dataset was retrospectively selected for each representative 
image, as shown in Figure 1. After that, the thyroid nodule region was systematically cropped on 
the representative image of each nodule. The ultrasound images were statistical randomly assigned 
to the training, validation, and test groups, 80%, 10%, and 10% respectively. The overall workflow 
was shown in Figure 2.

Figure 2. shows the flow pre-processing techniques for ultrasound images before putting them 
into the AI model. Because of the number of input images, the ROI should be segmented from the 
original ultrasound images shown in Figure 1. The segmented region relied on the marks indicating 
the boundary of a thyroid nodule which were located by radiologists. The cropping process was done 
manually. After that, the image inpainting was performed to remove the marks. Finally, the ultrasound 
images were resized. In the example, the input image was resized as 180x180 pixels. Whereas the size 
of the input images was specified by the experiment with the potential candidate AI models which 
is explained in the section: Fine-Tuning the Hyper-Parameter of AI Models.

Figure 1. (A) Malignant thyroid nodule and (B) Benign thyroid nodule
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The workflow for the AI model used in this paper as shown in Figure 3. depicts the end-to-end 
process for predicting the types of thyroid nodules. The pre-processed ultrasound image is the input. 
Despite the small data set, image augmentation was used to increase the training group’s sample 
size. After that, a pre-trained model was used to predict the thyroid nodule in the input image as the 
output. The prediction result was either benign or malignant.

In this study, the transfer learning method was employed due to the limitation of dataset size. 
One common approach for transfer learning is to use the pre-trained model (Torrey & Shavlik, 2010), 
in which the model is pre-trained with data from the different domains. In this case, the authors 
used the pre-trained model based on the ImageNet dataset and subsequently trained with datasets 
from the hospital. There were four pre-trained models as potential candidates; VGG16 (Simonyan 
& Zisserman, 2014), InceptionV3 (Szegedy et al., 2016), DenseNet121 (Huang et al., 2017), and 
EfficientNet (Tan & Le, 2019) were transferred with the binary classification to distinguish between 
benign and malignant thyroid nodules on the top of their structure.

VGG16 is a classical CNN model. The network uses small 3x3 kernels and pooling sized 2x2 
for the convolutional layers which were consistently arranged throughout the whole architecture. The 
other components are two fully connected layers followed by a softmax layer. The 16 in VGG16 was 
referred to the layers that have weights and the total number of parameters is approximately about 
138 million parameters.

InceptionV3 is a fewer parameters CNN model composed of 42 layers. The upgraded inception 
model version 3 was done by reducing the dimensions to avoid the drastic alternation of the input 
dimensions for better performance, utilizing smart factorization methods for enhancing computational 
efficiency, regularizing by having Batchnorm or Dropout operations for increasing contribution of 
the auxiliary classifiers.

DenseNet121 is a Deeper CNN using the architectures such as highway networks, residual networks, 
and fractal networks in the direct connectivity pattern. Its design aimed to maximize information and 
gradient flow from the input layer until the output layer. Moreover, to directly connect every layer makes 
the network not need to learn redundant feature maps, thus the parameters can be reduced.

Figure 2. Pre-processing techniques for input images

Figure 3. The overall workflow of AI
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EfficientNet is a scaling-up CNN model. It uses a technique named compound coefficient to 
increase its accuracy and efficiency. The compound scaling method is the balancing dimensions 
in width, depth, and resolution by scaling with a constant ratio. The model was developed using 7 
models with various dimensions for compound scaling.

Fine-Tuning the Hyper-Parameter of AI Models
These four state-of-the-art models were evaluated with the training and validation groups. The basic 
hyper-parameters of the CNN pre-trained models were adjusted for fine-tuning the models. There 
are a lot of numbers in the hyper-parameter adjustment, but the authors had chosen only the values 
that demonstrated significant results.

The first hyper-parameter was the size of the input images that control the fixed size of the input 
layer for the pre-trained models. Although the pre-processed images were segmented in different 
sizes based on the boundary of thyroid nodules, the shape of the input images for the pre-trained 
models had to be fixed. In this study, the shape of the input images was two-dimensional colored 
images, thus, the size of the input would be image width x image height x channel(color). In this 
experiment, the fine adjustment of the input size parameter was examined, however, there were three 
significantly different results shown in Table 1. From the table, the pre-trained model which has the 
highest performance was DenseNet121 with 180 x 180 x 3 for the size of the input image parameter.

The second hyper-parameter was the batch size that controlled the number of training samples 
to work through before the pre-trained models’ internal parameters were updated. As the size of the 
input parameter, there were three significantly different results, shown in Table 2. From the table, 
the pre-trained model with the highest performance was DenseNet121 with the batch size being 8.

The last hyper-parameter was the number of epochs that controlled the number of complete passes 
through the training group. Table 3 shows three significantly different results. From the table, the 
pre-trained model with the highest performance was DenseNet121 with 200 epochs.

Table 1. The evaluation of the pre-train models by adjusting the size of the input images parameter

Pre-Train Model

Size of the Input Image (Pixel x Pixel x Channel)

280 x 280 x 3 180 x 180 x 3 80 x 80 x 3

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

VGG16 74.78 74.07 75.23 74.38 73.78 73.38

InceptionV3 73.75 73.45 73.22 73.12 72.89 72.01

DenseNet121 78.87 77.76 81.10 80.21 75.65 75.31

EfficientNet (B0) 69.29 65.19 68.06 65.17 68.72 65.11

Table 2. The evaluation of the pre-train models by adjusting the batch size

Pre-Train Model

Batch Size (# of Training Samples)

8 32 128

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

VGG16 75.23 74.38 63.08 62.87 60.55 60.01

InceptionV3 73.22 73.12 69.55 67.98 60.68 59.99

DenseNet121 81.10 80.21 77.15 75.13 71.09 70.11

EfficientNet (B0) 68.06 65.17 65.98 64.11 60.45 60.00
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After considering the experimental results from Table 1 to Table 3, the pre-trained model named 
DenseNet121 overcame others. Therefore, the DenseNet12 was utilized for further experiments.

Data Augmentation
According to the few numbers of the training group, the data augmentation was randomly conducted 
according to batch size setting. The examples of data augmentation are displayed in Figure 4. There 
were three techniques used, rotation, zoom, and shear. The range of rotation, zoom, and shear was 
randomly set between 0 to 20 degrees, 0 to 20 percent, and 0 to 10 respectively. The effectiveness 
of adding augmented data is shown in Table 4. The pre-trained model with data augmentation had 
better performance compared to the none.

From previous experimental results, the pretrain model, DenseNet121 was applied to help 
diagnose thyroid nodules as benign or malignant thyroid nodules. After that, prediction of AI was 
compared to the blinded experienced diagnostic radiologist and the third-year diagnostic radiology 
resident based on US images on the test group.

Table 3. The evaluation of the pre-train models by adjusting the number of epochs

Pre-Train Model

The Number of Epochs

50 200 800

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

VGG16 70.11 69.05 75.23 74.38 73.65 72.87

InceptionV3 70.34 70.00 73.22 73.12 71.39 70.65

DenseNet121 75.23 14.22 81.10 80.21 78.87 77.08

EfficientNet (B0) 65.88 63.89 68.06 65.17 66.88 65.76

Figure 4. Example of data augmentation

Table 4. The evaluation of the data augmentation

Data augmentation
Rotation, Zoom, & Shear

Sensitivity Specificity

No 73.01 72.22

Yes 81.10 80.21



International Journal of Knowledge and Systems Science
Volume 13 • Issue 1

7

Outcome Measurement
The primary outcome was the diagnostic performance of AI for the diagnosis of malignant and benign 
thyroid nodules. The secondary outcome was the diagnostic performance of the AI compared with 
that of the experienced radiologist and third-year diagnostic radiology resident.

Data and Statistical Analysis
All statistical analyses were done by using SPSS software version 26. The continuous data were 
presented in means, standard deviation, and number, while the categorical data were presented in 
percentages. The diagnostic performance of thyroid nodules was presented as sensitivity, specificity, 
accuracy, positive predictive value, and negative predictive value. For categorical data between benign 
and malignant thyroid nodules, the Chi-square test and independent T-test were used to compare 
the two. The Cohen’s Kappa statistic was used to compare the interobserver agreement of the final 
diagnosis of AI, the experienced radiologist, and the resident.

RESULTS

Demographic Data
There were 650 thyroid nodules from 648 patients with a mean age of 54.89±14.19 years (range 
18-86 years). Female patients (n=568, 87.7%) were predominant in the study (Table 5). Of the 650 
nodules, 520 (80%) were found by pathology to be benign, and 130 (20%) were found to be malignant 
(Table 5). The mean size of nodules was 1.8 cm (range 0.1-6.0 cm), and most of the patients had a 
single nodule (30.2%) (Table 6).

In the test group, there were 65 nodules from 65 patients with a mean age of 51.42±16.18 years 
(range 18-83 years). Of 65 nodules, 52 (80%) were found by pathology to be benign, and 13 (20%) were 
found to be malignant. The patient’s age and nodule size were significantly different between benign 

Table 5. Demographic data of all patients and the test data set

Variables
Number (%) or Mean ±SD

All Data Set 650 Nodules The Test Set 65 Nodules

Age (years) 54.89±14.19 51.42±16.18

Male 80 (12.3) 10 (15.4)

Female 568 (87.7) 55 (84.6)

Size (cm) 1.8 (0.1-6.0) 2.3 (0.4-6.0)

Number of Nodules

1 196 (30.2) 21 (32.3)

2 140 (21.6) 12 (18.5)

3 90 (13.9) 10 (15.4)

4 70 (10.8) 7 (10.8)

5 51 (7.9) 3 (4.6)

>5 101 (15.6) 12 (18.5)

Benign Nodules 520 (80) 52 (80)

Malignant Nodules 130 (20) 13 (20)
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and malignant groups. (p<0.001, p<0.001, respectively) The demographic data such as gender and 
number of nodules showed no statistical difference between benign and malignant groups (Table 6).

Nodule Characteristics
The ultrasound features of overall thyroid nodules in the test group were as shown in Table 7. The 
majority of the ultrasound characteristics which were significantly associated with malignant thyroid 
nodules were microcalcification (p<0.001) and a taller shape (p=0.003). In contrast, benign nodules 
tended to present with wider shapes and no calcification. Most benign and malignant groups also had 
solid compositions. No significant difference in the echogenicity and margin was seen comparing 
benign and malignant groups.

Table 6. Comparison of demographic data of benign and malignant thyroid nodules in the test group

Variables Total Benign (52) Malignant (13) P-value

Age 51.42±16.18 55.17±15.23 36.38±10.23 P<0.001

Male
Female

10 (15.4%) 
55 (84.6%)

7 (13.5%) 
45 (86.5%)

3 (23.1%) 
10 (76.9%) 0.405

Nodule Size 2.3 (0.4-6.0) 2.4 (0.5-6.0) 0.9 (0.4-2.0) P<0.001

No. of Nodule
1
2
3
4
5
>5

21 (32.3%) 
12 (18.5%) 
10 (15.4%) 
7 (10.8%) 
3 (4.6%) 

12 (18.5%)

19 (36.5%) 
11 (21.2%) 
7 (13.5%) 
3 (5.8%) 
2 (3.8%) 

10 (19.2%)

2 (15.4%) 
1 (7.7%) 
3 (23.1%) 
4 (30.8%) 
1 (7.7%) 
2 (15.4%)

0.078

Table 7. Comparison of ultrasound features of benign and malignant thyroid nodules in the test group

Variables Benign Nodules 
(n=52) Malignant Nodules (n=13) P-Value

Echogenicity
Marked Hypoechoic
Hypoechoic
Isoechoic
Hyperechoic

10 (19.2%) 
12 (23.1%) 
18 (34.6%) 
12 (23.1%)

4 (30.8%) 
6 (46.2%) 
1 (7.7%) 
2 (15.4%)

0.127

Composition
Solid
Predominant Solid
Predominant Cyst

28 (53.8%) 
16 (30.8%) 
8 (15.4%)

12 (92.3%) 
1 (7.7%) 

-

0.047

Calcification
Microcalcification
Macrocalcification
None

14 (26.9%) 
5 (9.6%) 

33 (63.5%)

12 (92.3%) 
- 

1 (7.7%)

P<0.001

Shape
Wider
Taller

43 (82.7%) 
9 (17.3%)

5 (38.5%) 
8 (61.5%)

0.003

Margin
Well-defined
Ill-Defined

41 (78.8%) 
11 (21.2%)

11 (84.6%) 
2 (15.4%)

1.000
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Diagnostic Performance of AI for Differentiating 
Benign and Malignant Thyroid Nodules
The diagnostic performance values of AI were calculated as shown in Table 8. The sensitivity, 
specificity, accuracy, positive predictive value, and negative predictive value of AI were 79.92% 
[46.19-94.96], 78.85% [65.30-88.94], 78.46% [66.51-87.69], 47.62% [33.21-62.43], and 93.18% 
[83.38-97.38], respectively.

Diagnostic Performance of AI, an Experienced Radiologist, 
and a Resident for Nodule Classification
The overall diagnostic performance values among the three groups were calculated as shown in 
Table 9. There was no statistical difference in diagnostic sensitivity and specificity among the AI, an 
experienced radiologist, and a resident (p=0.187-0.855). The AI showed higher diagnostic specificity 
and accuracy than an experienced radiologist and a resident without statistical significance (specificity 
78.85%, 67.31%, 69.23% and accuracy 78.46%, 70.77%, 70.77%, respectively). The sensitivity of AI 
was lower than the experienced radiologist and higher than the resident without statistical significance 
(79.92%, 84.62% and 76.92%, respectively).

Inter-Observer Variability
The summary of inter-observer variability among the AI, the experienced radiologist, and the 
resident is demonstrated in Table 10. The Kappa value between AI and the experienced radiologist 
was 0.450 [0.225–0.675], which was interpreted as moderate agreement. The Kappa value between 
AI and resident was 0.239 [0.000-0.489], which fell under the fair agreement category between the 
two groups. In contrast, the Kappa value between radiologist and resident was 0.684 [0.503-0.864], 
showing substantial agreement.

Table 8. Diagnostic performance of AI, the experienced radiologist, and the resident for differentiating benign and malignant 
thyroid nodules

Diagnostic Values AI Experienced Radiologist Resident

Sensitivity [95%CI] 79.92 [46.19-94.96] 84.62 [54.55-98.08] 76.92 [46.19-94.96]

Specificity [95%CI] 78.85 [65.30-88.94] 67.31 [52.89-79.67] 69.23 [54.90-81.28]

Accuracy [95%CI] 78.46 [66.51-87.69] 70.77 [58.17-81.40] 70.77 [58.17-81.40]

PPV [95%CI] 47.62 [33.21-62.43] 39.29 [29.13-50.46] 38.46 [27.39-50.87]

NPV [95%CI] 93.18 [83.38-97.38] 94.59 [82.83-98.45] 92.31 [81.40-97.05]

Table 9. Comparison of AI, an experienced radiologist, and the resident in terms of diagnostic sensitivity and specificity

Sensitivity (p-value) Specificity (p-value)

AI vs. Experienced Radiologist P=0.725 P=0.187

AI vs. Resident P=0.855 P=0.266

Experienced Radiologist vs. 
Resident P=0.625 P=0.834
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DISCUSSION

Recently, the computer-aided diagnosis system for the diagnosis of thyroid nodules has been studied 
worldwide. Xu et al. (2020) reported a meta-analysis of 19 studies with 4,781 nodules, which suggested 
that overall classic machine learning and deep learning-based system demonstrated comparable 
diagnostic sensitivity and specificity to experienced radiologists (sensitivity 87% [78–93] vs 87% 
[85–89], specificity 85% [76–91] vs 87% [81–91]). A previous study by Gao et al. (2018) reported 
that the computer-aided diagnosis system had comparable sensitivity but lower specificity than the 
experienced radiologists (sensitivity 96.7% vs 96.2% p=0.19) (specificity 48.5% vs. 75.7%, p<0.01). 
Similarly, a study by Choi et al. (2017) showed the same results (sensitivity 90.7% vs 88.4%, p>0.99) 
(specificity 74.6% vs 94.9%, p=0.002).

In this study, the authors developed AI from the CNN model to differentiate malignant and benign 
thyroid nodules. The sensitivity, specificity, and accuracy of the authors’ system were 79.92% [46.19-
94.96], 78.85% [65.30-88.94], and 78.46% [66.51-87.69], respectively, which were comparable with 
the previous studies (84.6%, 80%, 88.1%; 80.2%, 82.6%, 81.7%) (Kim et al., 2019; Yoo et al., 2018). 
In Tables 8 and 9 the AI showed no statistical difference in diagnostic sensitivity and specificity 
when compared with the experienced radiologist and the resident (p=0.187-0.855). Although, the 
specificity and accuracy were slightly higher in AI than the experienced radiologist and the resident 
(Specificity 78.85% [65.30-88.94] vs 67.31 [52.89-79.67] vs 69.23 [54.90-81.28], accuracy 78.46 
[66.51-87.69] vs 70.77 [58.17-81.40] vs 70.77 [58.17-81.40], respectively). According to the result, AI 
might provide added diagnostic value in detecting malignant nodules for the experienced radiologist 
in clinical practice. This system also assists inexperienced radiologists in making a final diagnosis 
and avoiding unnecessary FNA biopsies. Although, the reported specificity of the experienced 
radiologist was relatively low when compared with previous studies (86.4%-95.5%) (Choi et al., 
2017; Yoo et al., 2018), the population bias might explain this. All patients in this study underwent 
FNA biopsies, indicating that the included nodules might have some gray zone features which 
were difficult to diagnose by ultrasound. The diagnostic sensitivity of AI also showed no statistical 
significance between the experienced radiologist and the resident. However, we found that AI had 
higher sensitivity than the resident and lower than the experienced radiologist (79.92%, 84.62% and 
76.92%, respectively). Therefore, this system would be useful for ruling out malignant nodules for 
inexperienced radiologists.

Inter-observer variability in differentiating malignant and benign thyroid nodules showed 
substantial agreement between the experienced radiologist and the resident (K=0.684). Similarly, all 
diagnostic performance variables such as sensitivity, specificity, and accuracy for the experienced 
radiologist and the resident showed no significant difference. In contrast, the AI showed moderate 
agreement and fair agreement between the experienced radiologist and the resident, respectively 
(K=0.239, 0.450). This was probably due to the learning process, which had not been elucidated yet.

There were several limitations in our study. First, our sample size was small for the training, 
validation, and test groups, which influenced the diagnostic performance values. Further studies 
where the quantity of data is increased by collecting more ultrasound images from different centers 
and different ultrasound manufacturers would improve this diagnostic performance system. Second, 
our study was a retrospective study and collected data from a single center in Siriraj hospital. There 

Table 10. Inter-observer variability among AI, the radiologist, and the resident for differentiating benign and malignant thyroid nodules

Reader 1 Reader 2 Kappa (95% CI)

AI Experienced Radiologist 0.450 [0.225–0.675]

AI Resident 0.239 [0.000-0.489]

Experienced Radiologist Resident 0.684 [0.503-0.864]
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could be some selection bias. Third, we included only nodules that had a definitive diagnosis. The 
undetermined or nondiagnostic cytology was excluded, which would limit the generalizability of 
the results. Fourth, the radiologist’s diagnostic performance was limited by the static images instead 
of dynamic images, which might have led to misinterpretation according to the Thyroid imaging 
reporting and data system (TI-RADS) guideline.

CONCLUSION

The AI shows comparable diagnostic performance to the experienced radiologist and the resident. 
This system also demonstrates good specificity and accuracy, which may have the potential to assist 
radiologists in diagnosing thyroid cancer. However, there were some effective pre-trained models 
that have not been investigated such as WSDAN (Weakly Supervised Data Augmentation Network). 
It is a fine-grained visual classification model which is suitable for distinguishing the thyroid 
nodules in TI-RADs. Another way to improve the pre-trained model is by obtaining more data from 
hospitals in Thailand. In addition, to improve healthcare systems in Thailand, developing a thyroid 
nodule assessment mobile application combined with deep learning together should steer the users 
(radiologists). They will detect malignancy of the thyroid nodule in no time (Rathi & Pareek, 2019).
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