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ABSTRACT

COVID-19 pandemic has put health systems worldwide under pressure. Thus, establish a triage 
protocol to support the allocation of resources is important to deal with this public health crisis. In 
this paper, a structured methodology to support the triage of suspected or confirmed COVID-19 
patients has been proposed, based on the utilitarian principle. A decision model has been proposed 
for evaluating three treatment alternatives: intensive care, hospital stay and home isolation. The 
model is developed according to multi-attribute utility theory and considers two criteria: the life of 
the patient and the overall cost to the health system. A screening protocol is proposed to support the 
use of the decision model, and a method is presented for calculating the probability of which of three 
treatment is the best one. The proposed methodology was implemented in an information and decision 
system. The originality of this study is using of the multi-attribute utility theory to support the triage 
of suspected COVID-19 and implement the decision model in an information and decision system.

Keywords:
COVID-19 Triage,, Information and Decision System, Multi-Attribute Utility Theory, Resource Constraints, 
Screening Protocol

1. INTRODUCTION

The novel coronavirus disease 2019 (COVID-19), a highly contagious disease caused by the new 
coronavirus (SARS-CoV-2), has spread worldwide and put the health systems of several countries 
under pressure, with a demand for assistance exceeding in-country capacities, especially regarding 
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critical care (Guan et al., 2020; Zhou et al., 2020; Daeho & Neumann 2020, Leung et al. 2020, Prem 
et al. 2020).

In this critical scenario, objective criteria must be established to assess the need for patients to 
be admitted to and released from hospital beds, considering not only their clinical conditions, but 
also the best possible use of limited resources. Triage, as part of the health care process, is used to 
support decisions on resource allocation in such situations (Ghanbari et al. 2019).

Models of triage have been proposed to support rapid sorting and categorizing of patients based on 
their conditions and the available resources. The development of proper triage protocols is important 
for dealing with a health crisis. The ethical concept of utilitarianism, which seeks the greatest good 
for the greatest number of people, has often supported the practice of triage in disaster/emergency 
situations (Christian et al 2006, Ghanbari et al. 2019, White et al 2009).

In this paper, a decision model was developed based on the utilitarian principle, to support the 
triage of suspected/confirmed COVID-19 patients in a scenario of resource scarcity. Three alternatives 
are considered, representing the possible recommendations for a patient: intensive care, hospital 
stay, and home isolation. The model is based on Multi-Attribute Utility Theory (MAUT - Kenney & 
Raiffa 1976), an approach that it is useful for dealing with this type of decision situation, since this 
is clearly a multi-attribute decision problem that involves both the life of the patient and the overall 
cost to the health system (which may include subjective factors such as the life of other patients, as 
later discussed). Moreover, this is a stochastic decision problem, in which the probabilities of survival 
of the patient for each treatment alternative should be considered.

However, assessing a patient’s probability of survival in each of the possible treatment alternatives 
can be a difficult task for health professionals involved in the care of suspected/confirmed COVID-19 
patients. Addressing this issue, this paper presents a structured method that considers objective 
information to infer the patient’s chances of survival for each treatment alternative. The chances 
of survival are defined as ranges of possible values for the patient’s probabilities of survival: this 
approach is appropriate for dealing with the uncertainties inherent in this problem. The method 
was developed together with experts (physicians and researchers involved in the care of suspected/
confirmed COVID-19 patients), considering the knowledge acquired from their experience and from 
papers published in scientific journals.

The research methodology basically consists in model formulation and software development. The 
decision model and the method for assessing the suspected/confirmed COVID-19 patients’ chances 
of survival were coupled in a screening algorithm that was built following standard guidelines for 
attending to patients. To deal with the imprecise information related to the patients’ probabilities 
of survival by staying in an intensive care unit (ICU), in hospital or in isolation at home, a model is 
proposed to calculate the robustness index of each treatment alternative: the robustness index of an 
alternative is its probability of being the best one considering the available information. The alternative 
with the highest robustness index can be considered as the best conduct to be adopted for the patient. 
Thereafter, the proposed model was implemented in an Information and Decision System (IDS), 
named SIDTriagem (System Information and Decision for Triage of suspected/confirmed COVID-19 
patients). This system is available online for free for users worldwide at www.insid.org.br/sidtriagem/
app. The IDS was designed to improve the user’s experience, thus aiming to become a useful tool 
for helping health professionals more easily to make rational decisions, which are aligned with the 
policies established by public health authorities, even under stressful work conditions. Thus, the study 
is original since it uses the Multi-Attribute Utility Theory (MAUT) to construct a model to support 
the triage of suspected COVID-19 and operationalize the proposed methodology in SIDTriagem.

This paper is structured as follows: Section 2 presents a brief literature review about decision-
making in patient screening and triage. Section 3 presents the development of a decision model based 
on MAUT to support the triage of suspected/confirmed COVID-19 patients considering three treatment 
alternatives. Section 4 presents a screening protocol for suspected/confirmed COVID-19 patients the 
results from which indicate ranges of possible values for patients’ probabilities of survival with regard 
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to each alternative treatment. Section 5 presents a method for calculating the robustness index of a 
treatment alternative in a scenario where there is uncertainty related to the patients’ probabilities of 
survival. Section 6 presents the Information Decision System developed to operationalize the proposed 
model, called SIDTriagem. Finally, Section 7 draws some conclusions and makes some suggestions 
for future lines of research.

2. LITERATURE REVIEW CONCERNING SCREENING 
AND TRIAGE DECISION-MAKING PROBLEMS

Clinical practice involves decision-making at multiple levels: treatments (i.e. how to manage cases in 
terms of where and by whom) and screening methods involve costs, risks and benefits that often have 
to be considered in the decision-making process. The use of decision analysis techniques for evaluating 
treatments and screening strategies is a common finding in the literature, within several contexts.

Decision tree-based techniques are very often applied to aid decision problems in the medical 
context, since they are designed to deal with uncertainties inherent in problems. In this context, Kiberd 
& Forward (2004) used a decision tree-based model to evaluate a screening protocol for detecting 
West Nile virus in organs for transplant. Clearly et al. (2005) compared three different screening 
alternatives for asymptomatic herpes infection in pregnancy, while Wilson & Howe (2012) compared 
screening methods for dysphagia after stroke based on a cost-effectiveness analysis.

Xu et al. (2019), more recently, presented a decision tree model to evaluate alternatives for 
screening patients with acute stroke symptoms. Dolan & Frisina (2002) and Dolan et al. (2014) applied 
multicriteria decision analysis techniques for aiding colorectal cancer screening, in an approach by 
which decision-making is shared with the patient. Other operational research techniques, such as 
simulation and optimization algorithms, have also been used to evaluate screening protocols (Mclay 
et al., 2010, Wilson & Howe 2012, Bertsimas et al., 2018).

Usually, in ordinary clinical practice, a patient who needs a life-sustaining treatment receives 
it, unless it is deliberately refused, or in rare circumstances where it is not expected to have a good 
result (White et al., 2009). This rule remains valid until these resources become so scarce that it is 
not possible to treat all patients who could benefit from a specific treatment. Such circumstances may 
stem from public health emergencies caused by a variety of reasons, such as earthquakes, tsunamis 
and a pandemic (Christian et al., 2006, Cao & Huang 2012). In these exceptional, resource-limited 
circumstances, the decision-making in patient screening and triage has to consider not only his/her 
clinical condition, but also best possible use of the available resources.

When resources for health care become scarce, triage protocols can be used to guide resource 
allocation. Triage is a dynamic decision-making process that aims to determine the priorities of access 
to medical care in situations where there is an imbalance between needs and supplies (Christian et 
al., 2006, White et al., 2009).

Ghanbari et al. (2019) performed a systematic review of the current evidence to identify ethical 
principles that guide how patients should be prioritized in triage during an exceptional, resource-
limited circumstance. The authors identified various clinical and non-clinical factors that have been 
introduced to prioritize patients in a fair and transparent manner, making it clear that the decision 
components of a triage protocol have long been an important ethical issue. However, despite the most 
appropriate principles for triage remaining undefined, one of the main concerns that they observed 
in the recent evidence is that health professionals, who are not trained in triage protocols and who 
do not consider issues related to resource scarcity, may make arbitrary decisions. Moreover, without 
clear and explicit guidelines, the triage may be perceived as poorly organized by the public, further 
aggravating the ethical challenge.

In the same context of ethical issues, some studies also discuss the ICU allocation problem. In 
the study performed by Oerlemans et al. (2015), a collective responsibility has been suggested to 
alleviate moral distress caused by ethical dilemmas faced in ICU allocation problem. On the other 
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hand, McGuire & McConnell (2019) suggested that ethical and moral principles should be considered 
to obtain a common-sense to deal with this complex problem.

Moreover, some studies presented literature reviews about the ICU allocation problem in order 
to propose techniques to support this problem (He et al. 2019, Reiz et al. 2019). In Frej et al. (2021), 
the ICU allocation problem has been also investigated using the portfolio selection approach under 
the concepts of the Utility Theory.

Hence, decision-making problems involving triage, screening, and allocation of patients to health 
care units are complex since involve several factors, such as: uncertainties about the patients’ survival 
and demands fluctuation. Thus, these problems can be supported by decision-making techniques to 
support health professionals (He et al. 2019).

In this paper, a decision model based on MAUT to support the triage of COVID-19 patients 
has been proposed. The model takes into account the patient’s survival probabilities and the then 
prevailing scenario in the health system with regard to the occupation of beds, as detailed in the next 
section, and it is based on the utilitarian principle, such that seek to save as many lives as possible.

3. A MULTI-ATTRIBUTE DECISION MODEL TO 
SUPPORT THE TRIAGE OF PATIENTS

The triage decision problem addressed in this paper consists of a set of alternatives that a physician must 
bear in mind when deciding on what conduct to adopt for a suspected/confirmed COVID-19 patient.

When resources are scarce, these alternatives should be evaluated considering a set of criteria. 
Therefore, the triage decision problem can be considered as a Multi-Criteria Decision Making/Aiding 
(MCDM/A) problem, where more than one alternative is evaluated considering more than one criterion 
(Keeney & Raiffa 1976, Belton & Stewart 2002, de Almeida et al., 2015).

In this paper, two criteria are considered to evaluate the possible treatments for a suspected/
confirmed COVID-19 patient: the patient’s life and the overall cost to the health system. The criterion 
of cost, which involves equipment, medication and human resources, is interpreted as follows: 
depending on the demand for health services, the treatment offered to a patient may potentially result 
in the absence of resources for another patient with a critical condition, who arrives in the health 
system after the first patient. Therefore, the criterion of cost represents the impact of the decision on 
the life of another patient.

Considering the MCDM scenario and the stochastic characteristic of the triage decision problem, a 
mathematical model based on MAUT is proposed in this paper. Based on this model, recommendations 
can be made to about which treatment for a suspected/confirmed COVID-19 patient is best. In section 
3.1, a brief background on MAUT is presented in order to introduce the main concepts that supported 
the development of the model for the triage decision problem.

3.1. A Brief Background on Multi-Attribute Utility Theory (MAUT)
MAUT is a theory which incorporates the concepts of Utility Theory (Von Neumann & Morgenstern 
1944) into a multi-criteria approach (Keeney & Raiffa 1976, Belton & Stewart 2002, de Almeida 
et al., 2015). The theory presents a robust axiomatic structure to represent the decision-maker’s 
preferences and considers an important element from Decision Theory approach – the states of nature. 
The chances of the states of nature occurring can be assigned by an a priori probability distribution 
obtained based on expert’s knowledge (Von Neumann & Morgenstern 1944, Berger 1985, Goodwin 
& Wright 2004, Edwards et al., 2007, de Almeida et al., 2015).

MAUT can be applied if there is compensatory rationality, i.e., if for the decision-maker (DM) 
it is acceptable to compensate for an inferior performance of an alternative in one criterion with a 
superior performance in another criterion. Therefore, in order to apply MAUT, the marginal utility 
function for each criterion should be obtained, and after that an aggregation can be considered to 
obtain the multi-attribute utility function. One way to generate the multi-attribute utility function is 
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by verifying some independence conditions: if some independence condition is verified, an analytic 
equation can be applied to represent the multi-attribute utility function (Keeney & Raiffa 1976, Belton 
& Stewart 2002, de Almeida et al., 2015).

Two independence conditions are considered: the utility independence and the additive 
independence. The first one is verified when for a DM the preferences for a marginal utility function 
for a criterion X do not depend on the marginal utility function of another criterion Y, and vice versa. 
The additive independence condition is more restrictive than the previous one, and if it is verified, 
the utility independence condition can be directly accepted; however, the opposite does not (de 
Almeida et al., 2015).

To verify the additive independence condition, consider two criteria X and Y. Two extreme 
scenarios are evaluated: in the first one, there is a 0.5 probability of obtaining the best consequences 
in X and Y, and a 0.5 probability of obtaining the worst consequences in X and Y. In the second 
scenario, there is a probability of obtaining the best consequence in X and the worst consequence 
in Y, while there is a 0.5 probability of the opposite occurring. If the DM is indifferent to these two 
extreme scenarios, the additive independence condition between these two criteria is verified (Keeney 
& Raiffa 1976).

When the additive independence condition is verified, the multi-attribute utility function for a 
pair of consequences (x, y) given an alternative a can be obtained as an additive aggregation of its 
marginal utility functions, as illustrated in equation (1):

U x y a k U x a k U y a
x x y y

, | . | . |( ) = ( )+ ( ) 	 (1)

where

k k
x y
+ = 1 	 (2)

In equations (1) and (2): x and y are consequences in the dimensions (criteria) X and Y, and a is 
an alternative in the set of alternatives A. U x y a, |( )  is the multi-attribute utility function of (x, y) 
given the alternative a. k

x
 and k

y
 are the scale constants for the criteria X and Y, and U x a

x
|( )  and 
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y

|( )  are the marginal utility functions of x and y, given the alternative a. 
The expected utility of an alternative a is then obtained considering the a priori probability 

distribution of the possible states of nature, as illustrated in equation (3):
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In equations (3) and (4): EU a( )  is the expected utility of the alternative a, (x, y) is a state of 
nature in the space of possible states of nature θ, and p x y a, |( )  is the probability of the state of 
nature (x, y), given the alternative a.
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3.2. Verifying the Additive Independence Condition in the Decision 
Problem of the Triage of Suspected/Confirmed COVID-19 Patients
For the ‘patient’s life’ criterion, the best consequence is the patient’s survival, independently of the 
conduct adopted, while the worst is his/her death. On the other side, for the cost criterion, the best 
consequence is the full availability of resources for providing lifesaving care for another patient, while 
the worst consequence is the death of another patient due to the lack of resources.

For assessing the additive independence condition, two extreme scenarios are considered:

•	 Scenario 1: there is a 0.5 probability of saving two lives (the current patient and the “future 
patient”), and a 0.5 probability of not saving either of these two lives;

•	 Scenario 2: there is a 0.5 probability of saving only the current patient’s life, and a 0.5 probability 
of saving only the “future patient’s” life. In this scenario, only one life is saved for sure.

Considering the perspective of a public health policy, which guides decisions in a systematic 
way, it is expected that a DM is indifferent to theses extreme scenarios, since the expected number of 
saved lives is the same for both cases. Therefore, it is reasonable to assume the additive independence 
condition.

3.3. The Multi-Attribute Decision Model
The decision model presented in this section was developed in accordance with the MAUT axiomatic 
structure, thus following a compensatory rationality (Von Neumann & Morgenstern 1944, Fishburn 
1976, Keeney & Winterfeldt 1991, de Almeida et al., 2015). Assuming the additive independence 
condition, in accordance with the discussion presented in section 3.2, the multi-attribute utility of a 
consequence given an alternative a can be obtained as an additive aggregation of the marginal utility 
functions for the life of the current patient and the cost to the ‘health system’ criteria, as illustrated 
in equation (5):

U S orD C k U S orD k U C
a a a L L a a C C a
� � , . � � .( ) = ( )+ ( ) 	 (5)

In equation (5): S
a

 represents the patient’s survival given the treatment alternative a, while D
a

 
represents the patient’s death. C

a
 represents the cost to the health system, given the alternative a. U  

is the multi-attribute utility function for a consequence, given an alternative. U
L

 and U
C

 are the 
marginal utility functions, and k

L
 and k

C
 are the scale constants for the ‘patient’s life’ and ‘cost’ 

criteria, respectively.
The expected utility of an alternative a is then calculated considering the patient’s probability 

of survival for that treatment, as illustrated in equation (6):
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In equation (6): p
a

 is the patient’s probability of survival given the treatment alternative a.
The scale constants and the marginal utility functions are preference-related parameters, which 

can be defined by those responsible for formulating public health policies. These parameters must 
be adjusted to reflect the situation of the health system, and are used for every patient.

The model embedded in the IDS presented in section 6 was adjusted considering the scenario 
of the health system of a Brazilian state. The scale constants for both criteria were considered to 
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be equal 0.5, since it is reasonable to expect no discrimination between the value of one life (of the 
current patient) and the value of another (of the “future patient”). In addition, the marginal utility 
for the criterion of patient’s life was equal to 1 when the patient survives, and equal to 0 when the 
patient dies, regardless of the alternative chosen: this means that all that matters is whether the patient 
survives or not.

On the other hand, the marginal utility function of the criterion cost presented different values 
depending on the treatment alternative. For home isolation, the marginal utility is equal to 1, since 
such an alternative is the most desirable as costs are nil or very low. For a hospital stay, the marginal 
utility was equal to 0.8, since this alternative is more expensive than the previous one, but not very 
much more expensive, since the availability of infirmary beds is high in the context analyzed. Finally, 
for the ICU stay, another variable to assess the marginal utility - the ICU occupancy rate – was 
considered. Such a variable consolidates information related to the current occupancy of and the 
expected demand for ICU beds.

Three different scenarios of ICU occupancy rate were considered: low, intermediate and high. 
For the low ICU occupancy rate, the marginal utility for the cost criterion was equal to 0.7. For the 
intermediate ICU occupancy rate, the marginal utility for the cost criterion was 0.5. For the high ICU 
occupancy rate, the marginal utility for the cost criterion was 0.3. The ICU occupancy rate may vary 
depending on the local evolution of the COVID-19 outbreak. It is worth mentioning that in none of 
these scenarios is the worst situation (marginal utility equal to 0) considered, i.e. when it is certain 
that choosing an ICU stay for one patient will result in the death of another, later patient who will 
require an ICU stay.

The patient’s probabilities of survival for each of the alternatives, on the other hand, varies 
according to the patient and are nature-related parameters, which have to be defined by experts 
(Berger 1985, Edwards et al., 2007, Goodwin & Wright 2004). However, defining the probabilities of 
survival for a suspected/confirmed COVID-19 patient can be a difficult task for health professionals. 
To address this issue, a screening protocol to support the triage of suspected/confirmed COVID-19 
patients has been proposed with experts. This protocol is presented in the next section.

4. A SCREENING PROTOCOL TO SUPPORT THE TRIAGE 
OF SUSPECTED/CONFIRMED COVID-19 PATIENTS

To apply the multi-attribute utility-based decision model presented in the previous section to support 
the triage of a suspected/confirmed COVID-19 patient, an important element has to be evaluated: the 
patient’s probabilities of survival for each of the treatment alternatives. However, as we pointed out 
above, estimating such probabilities may be a quite difficult task for health professionals.

The COVID-19 pandemic has prompted a huge demand for knowledge to support the assessment 
of the health condition and prognosis of patients, especially as there is often the need to establish the 
best distribution of limited resources. In view of this urgent demand, several lines of research have 
been developed, and papers have been published in scientific journals and in pre-print repositories 
which present analysis and indicate the best predictors for the diagnosis and prognosis of COVID-19. 
However, the content of these papers must be assessed critically, since many of them are subject to 
a high risk of bias (Wynants et al., 2020).

To support the triage of suspected/confirmed COVID-19 patients, we have developed together 
with specialists (physicians and researchers involved in the care of suspected/confirmed COVID-19 
patients) a protocol for screening such patients, the results of which present the ranges of possible 
values for the patients’ probabilities of survival in each of the treatment alternatives. The protocol 
was developed as simple as possible, so that it can be used in the most diverse conditions, especially 
in low-income settings, where the demand for a triage protocol tends to be greater (Ayebare et al., 
2020, Howitt et al., 2020).
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The proposed screening protocol is represented in the flowchart presented in Figure 1, and the rules 
for estimating the suspected/confirmed COVID-19 patients’ chances of survival are detailed below.

When a suspected or confirmed COVID-19 patient arrives in the health system, the first action 
proposed is to register him/her and check for signs of severity. The registration has to include 
information about two important risk factors: age and comorbidities (Ji et al., 2020, Zhou et al., 2020). 
Related to the check for signs of severity, we propose the verification of four severity symptoms: 
hypoxia, tachypnoea, hypotension and altered consciousness. If no severity symptoms are verified, 
the patient can be discharged and his/her chances of survival are estimated according to Rule 1, 
presented in Figure 3.

When the patient arrives with some severity symptom, an initial intervention (performed according 
to local protocols) is required. During the initial intervention, laboratory tests can be performed to 
provide more complete information about the patient’s clinical condition. To estimate the patient’s 
chances of survival according to Rule 2, 3 or 4 (presented in Figures 3 and 4) two laboratory tests 
are required: lymphocyte counts and lactate dehydrogenase (LDH): these laboratory indicators are 
considered to be two of the best laboratory predictors for COVID-19 bad prognosis and mortality (Ji 
et al., 2020, Zhou et al., 2020, Yan et al., 2020). Moreover, these tests can be easily performed in a 
common health unit. When the required laboratory tests are not performed, the patient’s chances of 
survival are estimated according to Rule 2’, 3’ or 4’ (presented in Figures 3 and 4).

Figure 1. Screening protocol for suspected or confirmed COVID-19 patients



International Journal of Decision Support System Technology
Volume 14 • Issue 1

664

The CALL (comorbidities-age-lymphocyte-LDH) score, proposed by Ji et al. (2020), was 
considered as a base for developing the rules for estimating the patient’s chances of survival. The CALL 
score considers four factors to assess the risk of progression of illness for COVID-19: comorbidities, 
age, lymphocyte counts and LDH. The total score is obtained as the sum of the individual scores for 
the four single factors: the individual scores are obtained as shown in Table 1.

For a CALL score of 4-6 points, the patient has a probability of progression of illness less than 
10% and is considered to be at low risk. For a CALL score of 7-9 points, the patient has a probability 
of progression of the illness of 10-40% and is considered to be at intermediate risk. Finally, for a CALL 
score of 10-13 points, the patient is considered to be at a high risk of progression of the illness (Ji 
et al. 2020). Note that based only on the patient’s age and comorbidities, it may be possible to draw 
some prior conclusions, e.g.: a patient over 60 years old and with comorbidities cannot be considered 
at a low risk regardless of the results of the laboratorial tests. On the other hand, a patient under 60 
years old and without comorbidities cannot be considered at a high risk according to the CALL score.

Ji et al. (2020) performed a Receiver Operating Characteristic (ROC) analysis to assess the 
performance of the CALL score model: the area under the ROC curve was 0.91, with a 95% confidence 
interval between 0.86 and 0.94. Therefore, the CALL model can be used to support the evaluation 
of the health condition of suspected/confirmed COVID-19 patients.

The rules for estimating the patient’s chances of survival are presented in Figures 3 and 4. The 
chances of survival are presented as a verbal scale, the translation of which into a numerical scale 
is presented in Figure 2.

In a general way, the rules for estimating the patient’s chances of survival state the following: 
1. If a patient arrives at the health system without severity signs, he/she has a significant chance of 
surviving isolation at home; otherwise, the chances of survival at home are significantly low. 2. If it 
is possible to stabilize the patient’s severity symptoms with the initial intervention, then the chances 
of survival in a common hospital bed are significant; otherwise, the chances of survival in these care 
conditions are not good. 3. Finally, since sending the patient to an ICU stay does not guarantee his/
her survival, then it is reasonable to expect that the worse his/her initial condition, the lower his/her 
chance of survival even when receiving intensive care.

Table 1. The calculator of CALL score

Points

Comorbidity

Without 1

With 4

Age (years)

£ 60 1

> 60 3

Lymphocyte counts (lymphocytes/µl)

> 1000 1

£ 1000 (lymphopenia) 3

LDH (u/l)

< 250 1

250 – 500 2

> 500 3

Adapted from Ji et al. (2020)
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Given the wide variety of factors involved in assessing a patient’s survival probabilities for 
different treatments, it is not possible to accurately estimate these probabilities based on a restricted set 
of information, such as those requested in the screening protocol for suspected/confirmed COVID-19 
patients presented in this section. Thus, the proposed screening protocol results in the indication of 
ranges of possible values ​​for the patient’s survival probabilities for the three treatment alternatives: 
in cases where the required laboratory tests are not performed (Rules 2 ‘, 3’ and 4 ‘), such ranges of 
values may be wider, as a result of less relevant information being available.

Figure 2. Verbal scale for chances of survival

Figure 3. Rules 1, 2 and 2’ to estimate the patient’s chances of survival
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Simply by considering ranges of possible values of the patient’s probabilities of survival it is 
not possible to apply the decision model presented in section 3 directly, since, it may transpire, for 
different combinations of values within the indicated ranges, the alternatives with greater expected 
utility may be different. To address this issue, we propose the robustness index for each alternative 
be calculated: the robustness index of an alternative is basically the probability that this alternative 
is the best one, i.e., it has the greatest expected utility, under the conditions presented. A method 
for calculating the robustness index for the three treatment alternatives considered in this study is 
presented in the next section.

5. THE ROBUSTNESS INDEX

The multi-attribute utility-based decision model presented in section 3 contain two types of 
parameters: the preference-related parameters, which do not depend on the patient, and the nature-
related parameters: the patient’s probabilities of survival for each of the three treatment alternatives. 
Once the preference-related parameters are defined, the ranking of the treatment alternatives for a 

Figure 4. Rules 3, 3’, 4 and 4’ to estimate the patient’s chances of survival
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patient depends basically on his/her probabilities of survival. However, estimating these probabilities 
precisely is a very difficult task even for an expert with a lot of information about the patient’s clinical 
condition: a more feasible approach is the indication of ranges of possible values for these probabilities.

As indicated above, a way to evaluate the set of treatment alternatives considering the ranges 
of possible values for the probabilities of survival is by calculating the robustness indexes of the 
alternatives, i.e., the probabilities of one of these alternatives being the one with the greatest expected 
utility. A method for making this calculation is presented below:

In the triage decision problem addressed in this paper, three treatment alternatives for a suspected/
confirmed COVID-19 patient are considered: a, b and c, where a, b and c could be a stay in an ICU 
stay, a stay in hospital and isolation at home, in any order.

Once the preference-related parameters are defined, alternative a is better than alternative b 
(i.e., the expected utility of alternative a is greater than the expected utility of alternative b) if the 
inequality (7) is verified:

p p
b a b a
G< ( ),

	 (7)
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Considering that p
b

 follows a probability distribution with a probability density function f
bp
. 

For a given p
a
x= ,the probability of alternative a being better than alternative b is given by equation 

(9):

P G x H x
b a b a b

p < ( ){ } = ( ), ,
	 (9)

where

H x f w dw
a b

G xa b

b,

,( ) = ( )( )
∫ 0 p 	 (10)

The same development can be applied in order to compare alternative a with alternative c. Then, 
for a given p

a
x= , the probability of alternative a being better than alternative b and also being 

better than alternative c is H x H x
a b a c, ,

. .( ) ( )
Finally, considering that p

a
 follows a probability distribution with a probability density function 

f
ap

, the probability of alternative a being the best one, i.e., the robustness index of alternative a, is 
given by equation (11):
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RI a H w H w f w dw
a b a c a

( ) = ( ) ( ) ( )∫ 0
1

, ,
. . p 	 (11)

Since only three treatment alternatives are being considered in the analysis, the equality (12) 
must be verified:

RI a RI b RI c( )+ ( )+ ( ) = 1 	 (12)

In this study, we considered that the probability distribution of p
a

 for any treatment alternative 
a is a uniform probability distribution limited by the extreme values of the range of possible values 
of the patient’s probability of survival, e.g.: if the patient’s chance of survival for a treatment alternative 
a is low, then the probability distribution of p

a
 has the probability density function described by 

equation (13):
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Assuming such uniform probability distributions for the patient’s probabilities of survival, the 
robustness index for the three treatment alternatives can be calculated. Based on this index, the person 
responsible for triaging the suspected/confirmed COVID-19 patient can define the most appropriate 
treatment alternative.

6. AN INFORMATION AND DECISION SYSTEM TO SUPPORT THE 
TRIAGE OF SUSPECTED/CONFIRMED COVID-19 PATIENTS

To make the proposed methodology accessible for health professionals involved in the triage of 
suspected/confirmed COVID-19 patients, an IDS named SIDTriagem was developed and made 
available for free at the link www.insid.org.br/sidtriagem/app. The IDS is intended to be a useful tool 
to facilitate rational decision-making, in line with the policy strategies established by public health 
authorities. To use the system, a health professional must register on the system, enter the required 
information, and create his/her own password, which will be asked for whenever he/she uses the system.

Figure 5 shows the initial screen of the system for the screening module. In order to obtain a 
recommendation for triaging the patient, the user first has to enter some basic information about the 
patient being analyzed (name, age, gender) and to inform if it is a first contact with the patient or an 
evaluation after an intervention to stabilize signs of severity. Information regarding risk factors, mainly 
related to critical comorbidities, is required, as well as information regarding the severity symptoms 
verified in the first check. If the consultation is being conducted after an initial intervention that 
sought to stabilize severity signs, new information about the severity symptoms is required, as well 
as information regarding the laboratorial tests. When no laboratory test is performed, the user can 
indicate that. Finally, the user has to enter the ICU occupancy rate (low, intermediate, high) and how 
confident is he/she with all the information provided (very confident, confident, neutral, unconfident, 
very unconfident, or even N/A). The parameter of the ICU occupancy rate can be defined by public 
health authorities, depending on the conditions of use of the system.
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Once the required information has been entered, by clicking on the “Calculate” button, the 
system identifies the patient’s chances of survival according to the method presented in section 4 
and calculates the robustness index of all the treatment alternatives.

Figure 6 shows an example of using the screening module of the SIDTriagem for a generic 
patient: a 65 year-old man, who has diabetes and is obese. The patient arrives at the health unit with 
two severity symptoms: hypoxia (SpO2 < 94% in ambient air) and tachypnoea (respiratory rate > 22 
breathes/min). Under these circumstances, an initial intervention, with supplemental oxygen therapy, is 
required to stabilize the severity signs. After such an intervention, suppose that the severity symptoms 
are no longer verified, and that there is information about the laboratory tests: the lymphocyte count 
is lower than 1000 lymphocytes/µl, and LDH is between 250 and 500 u/l. As to the ICU occupancy 
rate, suppose that it is intermediate.

By clicking on the “Calculate” button, the results appear for the user as shown in Figure 7. A 
table with each alternative and the respective robustness index is shown to the user. In Figure 7, it 
can be seen that, given these conditions of the patient and considering the ICU occupancy rate, the 

Figure 5. Initial screen of the screening module of the SIDTriagem
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recommended alternative for this patient was a common hospital stay, with 88% of robustness. In 
second place was the alternative of sending the patient to the ICU, with 12% robustness. Finally, there 
is zero possibility of isolation at home being the best alternative for this patient.

An alternative type of visualization of the results is provided for the user, as shown in Figure 
8. The user chooses in which way he/she prefers to visualize the results: by viewing the tabular 
information presented as a table in Figure 8 in the form of a bar chart. Finally, on the right side 
of Figures 8 and 9, it can be seen that system asks the user to help it improve the model by giving 
feedback, by indicating whether or not he/she intends to follow the recommendation made by the 
system. When the user clicks on the “Conclude” button, another window is opened for the user to 
write any additional comments, if he/she wishes.

It is worth mentioning that the values of the parameters of the decision model embedded in the 
system are those presented in section 3. However, such parameters can be adjusted to better reflect 
the realities of other health systems. A request to make such an adjustment must be made to the 
authors of this paper.

Figure 6. Input data on SIDTriagem for a generic patient
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7. CONCLUSIONS

The COVID-19 disease put the health systems of several countries under pressure. During the 
COVID-19 pandemic, health professionals deal with a complex problem concerning the admission 
of patients with suspected/confirmed COVID-19 from hospital beds, considering the limitation of 
resources.

Hence, in this study a structured methodology to support the triage of suspected or confirmed 
COVID-19 patients has been proposed to support health professionals in prioritizing which patients can 
be cared for given the scarcity of health system resources. The originality of this study is concerning 
the using of the Multi-Attribute Utility Theory to construct this methodology. Also, it has been 
implemented in a particular Information and Decision System (IDS), named SIDTriagem, which is 
available online for free at www.insid.org.br/sidtriagem/app . The SIDTriagem is an important tool 
which makes the methodology accessible to support health professionals to take rational decisions 
regarding the triage of suspected/confirmed COVID-19 patients. An illustration of using the system 
was also discussed in this study to demonstrates how users can used the system.

The structured methodology is underpinned by a Multi-Attribute Utility-based decision model 
which was developed based on the utilitarian principle, thus seeking to save as many lives as possible 
given the resource-limited circumstances.

The triage problem presents three treatments (an ICU stay, a hospital stay and isolation at home) 
as alternatives to solve the triage problem. Moreover, the decision model has two types of parameters: 
the preference-related parameters, which should be defined considering the overall situation of the 
health system, and the nature-related parameters, namely, a patient’s probability of survival for each 

Figure 7. Results and recommendation (tabular view)

Figure 8. Results and recommendation (graphical view)
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treatment alternative. Since estimating patients’ probabilities of survival can be a daunting and ethical 
challenge, screening protocol has been proposed to support the assessment of patients’ probabilities 
of survival.

As result ranges of possible values for such probabilities have been indicated in this paper. To deal 
with the uncertainty related to these probabilities, the robustness index for each treatment alternative 
has been presented. The robustness index of an alternative is the probability of this alternative being 
the best one given the presented conditions.

It should be highlighted that the central objective of this paper was to structure a protocol for 
screening of patients in health units. The SIDTriagem which is a support tool to operationalize such 
protocol and make it usable in practice.

Nevertheless, future studies shall better explore the system itself, maybe considering simulation 
scenarios to evaluate the effectiveness of the system, and perhaps surveys to the users, in order to 
evaluate usability and reliability. Still for future studies, the authors should investigate the application 
of the SIDTriagem in health care units in Recife – Brazil. Thus, based on the results of the use of 
this IDS, some suggestions can be made to improve the screening protocol and the IDS interface in 
order to provide a better user’s experience.

Moreover, other factors should be investigated to been included in the decision model for triage 
of patients in health care units. Other diseases can also be investigated, not only the COVID-19. In 
this context, future works involve studies of other pulmonary diseases, such as Asthma and Cystic 
Fibrosis. Other studies investigate diseases supported by MCDM/A approach (Mohamed, 2022). Also, 
Decision System have been performed to support important problems faced by society (Papathanasiou 
et al., 2021, Martins, et al., 2021; De Oliveira et al., 2021).
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