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ABSTRACT

In recent years, as the demand for senior care services has further increased, it has become more 
difficult to obtain matching services from the vast amount of data. Therefore, this paper proposes 
a service recommendation framework PCE-CF based on an embedded user portrait model. The 
framework accurately describes the elderly users through four dimensions—population, society, 
consumption, and health—and constructs the user portrait model by embedding tags. The embedded 
vector of each older man is learned through the deep learning model, and different feature groups 
are meaningfully expressed in the transformation space. In addition, location context and dynamic 
interest model are introduced to process embedded vectors, and users’ service preferences are predicted 
according to their dynamic behaviors. The experiment results show that the PCE-CF framework 
proposed in this paper can improve the recommendation algorithm’s efficiency and have higher 
feasibility in personalized service recommendations.
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INTRodUCTIoN

With the explosively increasing global old-age population, elderly care services have gradually become 
a key industry of social concern. Society’s progress, especially the revolution and development of 
the Internet (Dana et al., 2022; Xiao et al., 2020a) and intelligent software (Xiao et al., 2018), has 
spawned a range of pension services, which has crucial impacts on older people’s service selection. 
However, due to their particularity, the elderly group has some distinctive characteristics such as 
health problems, old knowledge structure, and unskilled operation of electronic products when surfing 
the Internet. Meanwhile, Web service recommendation is now being researched as one of the basic 
research topics in the SOC sector. Function-based Web service recommendation, social network-based 
Web service recommendation, and collaborative filtering Web service recommendation are the three 
categories of research in this field. Therefore, it is of great practical significance compared with other 
age groups to establish an efficient service recommendation system for the elderly to achieve precise 
service recommendations.
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A recommendation system (RS) is used to solve the problem of information overload through 
a large number of Web services (Dang et al., 2021). In particular, it searches for the most relevant 
content based on the user’s specific preferences. Collaborative filtering is one of the most commonly 
used algorithms in traditional service recommendation systems (Xiao et al., 2020b), with the 
characteristics of simplicity and intuitiveness (Salhi et al., 2021). With the deepening of services 
research, recommendation algorithm based on user profiles can recommend services that suit customers 
requirements and preferences more. User profile builds different models aimed at different customers. 
Peng et al. (2018) presented a multi-view ensemble framework for constructing user profiles based on 
the data of grid users to identify the electric-change users accurately. Ahn & Shi (2009) developed a 
simple and low-cost movie recommendation system harnessing vast cultural metadata about movies 
existing on the Web and proved the potential of cultural metadata.

The pension industry should seize the opportunity to develop Internet+ and active use of Internet 
technology (Hairui, 2016; Trapp et al., 2022). However, the pension service recommendation’s current 
development still has problems (Meng et al., 2020). Aiming at the elderly population, their objective 
conditions, including health status, consumption habits, and economic status, largely determine 
their demands. Current approaches have a series of difficulties in capturing the needs and interests 
of senior citizens. Besides this, although recommendation algorithms have had in-depth research in 
e-commerce, service recommendation in the pension industry is just at the beginning stage. There is 
an excellent need for pension industry-oriented research to capture the preference of elderly customers 
and recommend appropriate services for them.

This article proposes an embedded user profile model to mine the characteristics of elder age 
groups through four dimensions set in the aged service industry. Li & Zhang (2016) analyzed the 
demand characteristics of the elderly for pension services from the perspective of embedding. Applying 
deep learning techniques to recommender systems has gained momentum due to their state-of-the-art 
performances and high-quality recommendations (Huang et al., 2018). The framework the researchers 
propose builds the user profile model in label design and label embedding (Wang et al., 2021). Label 
embedding preserves the characteristics of older customers and converses the multi-modal data with 
complex data types from diverse data sources into unified vectors wisely (Sreevidya et al., 2022). In 
addition, the embedded user profile model also deals with the tricky problem of matrix sparse, which 
dramatically improves the efficiency of the service recommendation algorithm.

The main contributions of this paper are summarized as follows:

• Design labels for elder customers in four dimensions including demographic, society, consumption, 
and health, which expresses their characteristics accurately.

• Propose a PCF-CF framework based on the embedded User Profile Model, which converses the 
multi-modal data into unified embedded vectors in the way of embedding the designed labels 
into the neural network.

• Exploit the high dimensional vectors from the neural network and implement recommended 
top-N services in the data system generated for the elderly according to the statistical rules in 
the aged service industry.

BACKGRoUNd

Pension Service
Following the accelerated speed of population aging, there is a natural tendency for pension services 
to proliferate, which leads to a great amount of research about pension services. Hairui (2016) showed 
that the pension industry should seize the opportunity for the development of the Internet+ and 
active use of the Internet technology. Li & Zhang (2016) analyzed the demand characteristics of the 
elderly for pension services from the perspective of embedding. Hodge et al. (2017) analyzed the 



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

3

importance of online elderly care services in Australia’s rural communities based on a case study in 
Clare, a small rural town in South Australia. Powell (2012) assessed the existing research evidence 
for personalization and described the conformance of the British community to the requirement of 
elderly customers.

deep Learning-Based Recommendation
Deep learning, which is good at mining patterns from large amounts of data (Stylianou et al., 2022), 
has driven recent research work (Do et al., 2020; Rasmusen et al., 2022). There is also a significant 
amount of research work on deep learning-based recommendations. In a content-based recommender 
system, Cheng et al. (2016) proposed a Wide and Deep Learning Model which jointly trained wide 
linear models and deep neural networks in the use of multi-source heterogeneous data—to combine the 
benefits of memorization and generalization for recommender systems. Liu & He (2022) put forward a 
deep learning-based trust-aware recommendation initialization recommendation method, DLIR, which 
uses deep learning to learn a better vector of potential features of users and items. Li et al. (2021) 
proposed an effective multi-dimension attention convolutional neural networks (MACNNs) model 
to analyze customer review texts and predict the pension service quality. He et al. (2017) explored 
the use of deep neural networks based on collaborative filtering. Embedding models are extensively 
used in collaborative filtering-based recommendations. Grbovic et al. (2015) leveraged user purchase 
history determined from e-mail receipts to deliver highly personalized product ads to Yahoo Mail 
users using distributed representation. Dai et al. (2016) proposed a Recurrent Coevolutionary Feature 
Embedding Process, which combines a recurrent neural network (RNN) with a multidimensional 
point process model. Zhang et al. (2016) put forward Collaborative Knowledge Base Embedding 
(CKE) using hybrid deep learning and probability matrix decomposition model.

Service Recommendation
Previous work about personalized service recommendations (Yang et al., 2021) can be mainly 
classified into three types, user modeling, content modeling, and Filtering recommendation. Cai 
& Li (2010) obtained users’ tags and used collaborative tagging to build a user profile model. The 
representations of user modeling are many and varied. Zhu et al. (2010) expatiated on the relation 
between user interest and access behavior based on vector space model and document vectorization 
and then introduced a user interest modeling algorithm. Yao et al. (2015) proposed UPPPCF, which 
builds a user model based on user preferences and project properties. In content modeling, ASWR 
extracted the user’s functional interests and QoS preferences from their usage history (Kang et al., 
2012), and many researchers extracted feature words of service content by natural language processing 
(Ahmet & Mattila, 2012; Meissa et al., 2021). The filtering recommendation mainly contains rule-
based filtering, content-based filtering, collaborative filtering, and hybrid filtering.

SERVICE RECoMMENdATIoN FRAMEWoRK

Under the aged service industry background, the researchers chose the elderly population as the 
research object. The framework is based on the embedded user profile model, and the ultimate goal 
is to recommend suitable services for older customers among massive service data. The objective 
conditions of the elderly such as health status, consumption habits, and family information, all have 
a significant impact on their preferences.

Therefore, considering the feature preference of the elderly, this framework characterizes older 
people from four aspects: demographic characteristics, social characteristics, health characteristics, 
and consumption characteristics. Secondly, the authors embed the designed label with older customers’ 
features into the neural network space and map multi-modal data into continuous digital vectors 
according to different characteristic groups.
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The service recommendation framework of PCE-CF is shown in Figure 1. In order to show the 
whole structure clearly, the authors adopt a multi-layer representation which divides the framework 
into three layers: Input Layer, User Profile Layer, and Recommend layer, and the User Profile Layer 
contains label design and label embedding.

Input Layer
The recommendation model the authors propose is a continuous model, and each layer is arranged in 
order. The first layer is the data input layer. The purpose of this layer is to collect various information 
related to the service objects. The input data of this layer is mainly divided into two aspects: elder 
people’s basic attributes and older people’s historical information. The basic attributes include personal 
data, social relations, life preferences, etc. And historical information includes historical service usage 
records and historical service scoring information.

User Profile Layer
Label Design
This part mainly processes the data from the input layer. The main work is to match the collected 
data into corresponding labels the authors designed. In view of the collected data being various, the 
models from different labels are also different. In this part, the authors organize the older people’s 
features and then embed these features into the neural network. The label design of the user profile 
model involves two modules: the elderly module and the service module. The corresponding structure 
is presented in Figure 2. In the elderly module, the authors focus on analyzing the characteristics of 
elderly users. Therefore, the demographic, social, consumption, and health attributes are selected as 

Figure 1. PCE-CF framework
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entry points to describe the elderly groups. And in the service module, the authors consider service 
characteristics such as influence factors and service satisfaction.

The current mainstream labeling system is hierarchical and needs to be subdivided layer by layer. 
As for the labels of elderly users, first-level labels are an abstraction of the set of lower-layer labels. 
During the construction process, the lowermost third-level labels are mainly constructed owing to 
upper-level labels being only statistically significant but have no practical significance. The third-
level labels can be mapped to the upper two-level labels. The requirements for the underlying label 
are as follows:

1.  As it is necessary to avoid duplication and conflicts among the labels, each label can only represent 
one meaning.

2.  Labels must have certain semantic to facilitate the understanding of each label.

On the basis of the above principles, the details of each dimension in the label design are put 
forward.

• Demographic Attributes: The demographic attributes mainly contain the basic attributes of the 
elderly, and the specific label categories are shown in Table 1. In the design of the demographic 
attribute labels, the secondary labels mainly involve the gender, age, place of residence, city 
level, political outlook, education level, personality traits, and occupation of the elderly users. 
The main purpose is to grasp the basic information of the elderly to better predict and evaluate 
their needs and preferences in service selection based on these characteristics. In the data storage, 
the data type of each label is also shown in the following table.

• Social Attributes: Among the social attribute labels, the first level labels of the PCE-CF model 
are divided into family structure attributes and affordability attributes of elderly users. Considering 
the influence of family environment and social network circle on the emotion and psychology of 
the elderly, in addition, financial ability also largely influences which type and level of service 
the user chooses in the service recommendation process. Therefore, in the design of the social 
attributes label, the family structure of the elderly takes into account whether there is a spouse, 

Figure 2. User Profile Model Structure
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who lives with them or lives alone, the number of children in the family and whether the family 
atmosphere is harmonious.

Under the elderly financial ability label, we mainly consider their current income, whether 
they have a regular monthly income, whether they are subsidized by others and belong to the poor 
group, and what level the financial ability of this user belongs. The detailed label design of the social 
attributes label and the data types corresponding to the three levels of labels are shown in Table 2.

Table 1. Demographic attributes

First-Level Label Second-Level Label Third-Level Label

Demographic 
Attributes

gender male, female

age younger, middle, elderly

residence rural registration, else

city level first-tier, second-tier, third-tier

political status masses, league member, party member

culture level lower, junior, mid, higher

character intellect, mood, will

profession enterprises and public institutions, professional, office 
staff, service worker, production staff, operator, soldier, 
other

Table 2. Social attributes

First-Level Label Second-Level Label Third-Level Label

Family Structure spouse yes, no, others

living conditions live alone, live with a spouse, live with children

number of children 1, 2, 3, over three

family atmosphere harmonious, reasonably, general, less, disharmony

Economic Ability income low, middle, higher

stable income yes, no

assistance from others yes, no

economic degree tight, general, comfortable, rich
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• Consumption Attributes: Existing research shows that the elderly are more susceptible 
to surroundings compared with youth and middle-aged groups. They present features of 
purchase together in the consumption process (Hu et al., 2020). According to the consumption 
characteristics of the elderly, the consumption attributes labels of the User Profile Model are 
divided into the following six consumption patterns:
 ◦ Habitual Consumption: The elderly have formed an inherent consumption attitude in the 

long-term process of consumption. It is not easy for them to change their habit of purchasing 
a certain product or service.

 ◦ Hedonic Consumption: Some elderly people in wealthy conditions are biased toward flashy 
spending and focus on quality.

 ◦ Realistic Consumption: Some elderly people are accustomed to traditional consumption 
and pay more attention to utility. They purchase some rigid demands and consume sensibly.

 ◦ Convenient Consumption: The elderly pay more attention to the convenience of purchase 
and use but are not willing to spend a lot of time in the selection process.

 ◦ Blind Consumption: A small number of elderly households are too blind to consumption. 
It leads to inappropriate purchases and spawns economic loss.

 ◦ Compensatory Consumption: A lot of elderly people present powerful psychology of 
consumption compensation. They begin to balance their consumption.

• Health Attributes: According to the elderly health classification model, the elderly are divided 
into the following health levels:
 ◦ Level 1 represents the poorest health status. The old people at this level are too unhealthy 

to take care of themselves.
 ◦ Level 2 represents poor health. This level contains the elderly who suffers from serious 

illnesses and cannot take care of themselves completely.
 ◦ Level 3 generally represents health status. The elderly in this level are able to exercise 

properly though their bodies are weak due to old age or some diseases.
 ◦ Level 4 represents good health. Although there may be some problems in their physiology 

or psychology, their overall condition is good. And they belong to the healthiest group of 
the elderly.

The tag system involves the lifestyle of the elderly mainly includes some exercise conditions 
such as exercise frequency, exercise mode, exercise time, diet, whether to smoke and drink, and 
other habit issues; in terms of physical examination items include the oral condition, vision, hearing, 
skin condition, sclera condition, etc. of elderly users. The specific label design and the data types 
corresponding to the three-level label data are shown in Table 3.
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Label Embedding
The next part of the User Profile Model layer is label embedding. The main goal of this part is to 
learn a high-dimensional vector for each old customer that could summarize their portrait features. 
In this part, the authors take the feature information depicted by the designed label as input and then 
use the pre-trained Sent2Vec model (Pagliardini et al., 2017) to generate bigram embeddings based 
on 16GB of English Wikipedia text. The Wikipedia text contains about 69 million English sentences 
and about 1.7 billion words. The embedding of feature labels for elderly users is obtained as 700 
dimensional vectors:

• Selection of the embedding model:
 ◦ One-Hot Encoding: Although the one-hot encoding vector is relatively intuitive and easy to 

construct, the length of each dimension is the same as the whole dictionary, which results in 
high-dimensional sparseness, and causes a lot of wasted space. On the other hand, one-hot 
encoding couldn’t reflect the relationship among the adjacent data because it is just a simple 
representation similar to numbering. Thus, it is impossible to judge the similarity among 
different elderly customers in the situation of this article. In addition, the position of the 
one-hot encoding in the column vector can only be represented by 0 or 1. For the labels the 
authors designed in the first part of the User Profile layer, most of them are not expressed by 
only two third-level labels. In conclusion, one-hot encoding is inapplicable for this model.

 ◦ Sen2vec Model: Goldberg & Levy (2014) published a paper in 2014 and open-sourced 
Word2vec, a tool for calculating word vectors. It considers the cooccurrence among words, 
and the word vectors corresponding to synonyms would be closer in a multidimensional 
space. Based on that, Arora et al. (2016) explored the Sen2vec model, which concatenated 
words into sentences and mapped them into high-dimensional space. The characteristic 
information from the designed label is presented in the form of words, phrases, sentences, 
and numbers; therefore, the embedding model is further extended on the basis of the Sen2vec 

Table 3. Health attributes

First-Level Label Second-Level Label Third-Level Label

Health Indicators number of chronic diseases 1, 2, 3, over three

medication yes, no

health level 1, 2, 3, 4

symptom description asymptomatic, headache, chest tightness, chronic cough, 
tinnitus, dazzling ...

general situation height, weight, pulse, body temperature, respiratory rate

Lifestyle physical exercise exercise frequency, exercise method, exercise time

eating habits balanced, meat, oil and salt

smoking never smoke, smoking, have quit smoking

drinking never, occasionally, regular, daily

Checkpoints oral cavity sclera lips, dentition, pharynx

vision left eye, right eye

hearing hear, can’t hear clearly, can’t hear

skin normal, flushing, pale, yellow staining, pigmentation

sclera normal, yellow stain, congestion, other
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model. It represents the multi-modal data in joint representation and maps complex data to 
specific high-dimensional vectors uniformly.

• Design

The approach the authors propose depicts the elderly through four dimensions of population, 
society, consumption, and health in the User Profile Layer. The elderly data have different sources or 
forms in each dimension, and the samples may also come from data collection in different periods. 
Thus, based on the previous part, the authors divide the data of the elderly into four different modes: 
words, phrases, numbers, and long or short sentences to describe the characteristics of older customers. 
The corresponding analysis is as follows:

• Words: Some specific content information such as gender, occupation, city, and political status 
could be expressed as words in the characteristic data from the User Profile Layer. The form of 
words is mainly concentrated in the dimension of demographic attributes.

• Phrases: As a single word cannot accurately describe some data information, the authors present 
them in the form of phrases. For example, living with a spouse, never smoking, and family 
harmony.

• Numbers: The satisfaction degrees of the services are reflected by the service scores in historical 
service data of the elderly. Therefore, the form of numbers must be considered in this embedding 
model due to some information that need to be expressed by numbers, such as the health degree 
index and economic ability index.

• Long or Short Sentences: The authors need to describe different labels in more detail to express 
exact characteristics. As far as older adults are concerned, the researchers should pay more 
attention to the health attributes in service recommendations. That is, sentences are required to 
describe further information like case history and symptom description.

By means of multi-modal fusion and utilizing complementarity, the label embedding part learns 
new fusion features from original data in different modes. The researchers get a multi-modal vector 
for each old customer by transferring the fusion features into a Continuous Bag of Words (CBOW) 
(Kenter et al., 2016). The embedding diagram is shown in Figure 3.

Figure 3. The Embedding Model diagram
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The authors exploit the expansion of the CBOW model to represent the text information of different 
modes with fusion features and use the unsupervised target to train the distributed representation 
from a large number of test data sets.

The similarity between different older adults can be expressed visually from the distance in high-
dimensional space. This approach avoids the dimensional disaster in feature representation and reflects 
the correlation among different older adults, thus improving the accuracy of similarity calculation.

Recommend Layer
The last layer of the framework is the service recommendation output layer. The main goal of this 
layer is to select the nearest neighbor for target users by using the embedded vectors in the previous 
layer and then recommend top-N services that best match them:
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According to the elderly similarity, the authors find K elders more similar to the target elderly u 
and represent the set S(U, K). The authors extract the services that the elderly like in S and remove 
the services that u has used. For each candidate service I, the degree of interest of the target elderly 
u is calculated by the following formula:
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,
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where rvi is the degree of user V’s preference for i, that is service score. uv represents the similarity 
between the target old man u and the similar old man v. The prediction score formula of target elderly 
u for service i is as follows:
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rv  is the average service score of the elderly. The researchers select the first-N services as the 
output through the degree of interest of the elderly and get the top-N services that more match the 
target elderly.

EXPERIMENT ANd RESULT

Generation of data Sets
The available real data sets related to the research of pension services the authors can get include:

• www.BestShan.com contains old people’s information, their browsing records, and scoring 
records for different types of elderly care services.

• www.keai99.com contains 2315 pieces of the elderly’s basic information, including 25 
characteristics such as name, gender, birthday, place of residence, education, occupation, etc.

http://www.BestShan.com
http://www.keai99.com
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• The data set provided by Alibaba in the Alibaba Cloud Tianchi competition contains the estimated 
click-through rate of Taobao display ads, including advertising information, user information, 
and user behavior log data.

However, the above data sets have the following two problems:

• The elderly feature data is not comprehensive enough to be accurately described.
• The correspondence between elderly data and elderly care services cannot be achieved.

Since it is not currently possible to obtain information containing all the characteristics of the 
elderly, the authors consult much information on aged people services. The following constraints 
and data generation rules are set based on the correlation among different attributes to ensure the 
authenticity and reliability of the data.

Consumption Attributes Constraints
Extensive studies have shown that gender, personality, previous occupation, and education level have 
a significant impact on the consumption characteristics of the elderly. Intellectual, emotional, and 
willful personalities are divided by psychological functions that directly affect consumption patterns. 
Occupations with higher rigor would be considered more thoroughly when consuming. The higher 
the education level, the stronger the judgment ability. The elderly who have higher degrees restrain 
unreasonable consumption better, and are biased towards realistic and hedonic consumption. The 
consumption attribute constraint rules are shown in Figure 4.

Health Attribute Constraints
High education level and satisfactory social support are the protective factors of the elderly’s health 
behaviors while spouse-free, chronic diseases, the use of walking aids, loneliness, and depression 
are the risk factors for the elderly’s health behaviors. Besides this, age, mental health, education, 
economic ability, the number of chronic diseases, long-term medication, smoking, and alcohol 
consumption can have an impact on health status. Elderly living alone without a spouse, lower 
education, and lower-income result in poor health. Based on this, the health degree constraint rules 
are set, as shown in Figure 5.

Figure 4. Consumption Attributes Constraints
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• Age: Some studies have concluded that the older the elderly, the worse standard of health 
promotion. Other studies show that the elderly aged 60-80 years old have a higher total score of 
healthy lifestyles, and the health behavior level of elderly people over 80 years old is significantly 
reduced.

• Educational level: The results of the study show that the higher the education level of the elderly, 
the better health and living standards they have.

• Marital status: Several studies have shown that the health-promoting lifestyle scores of elderly 
people living with their spouses are higher than those of widowed, divorced, or unmarried elderly. 
The reason for the analysis may be that the widowed or divorced elderly are lonely and less 
willing to receive external health education knowledge and behaviors. However, elderly people 
with a spouse who communicate more with each other can urge both of them to develop a good 
lifestyle and healthy behavior together.

• Number of children: The survey found that elderly people with fewer children have higher scores 
on health-promoting lifestyles, which may be related to their subjective independence from child 
care. And elderly people with many children need to devote more energy and time to taking care 
of their families but are less concerned about their healthy life behavior.

description of Service Features
According to the statistical information on senior care services released by Ningbo Municipal Statistics 
Bureau (2018), the public opinion survey data shows that health conditions and financial ability have 
become the main factors considered by the elderly when choosing senior care services.

At the level of service profile description, the researchers select health degree, economic 
capability, and consumer characteristics as the main influencing factors, and further divide the service 
according to different degrees of service satisfaction. Thus they divide into a total of seven service 
types and 6000 related elderly care services. The overall matching framework of elderly data and 
service data is shown in Figure 6.

Figure 5. Health Attributes Constraints
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The researchers matched the old group and the elderly data generated according to the statistics 
of the pension service field. To ensure the real feasibility of the data, they select the service quantity 
range and make the number of services allocated to each elderly person fit the normal distribution.

Evaluation Index
Scoring Prediction
Service rating prediction is based on the degree of the elderly interest. The accuracy of score prediction 
is generally calculated by Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).

RMSE (Root Mean Square Error) measures the deviation between the observed value and the 
true value. It is commonly used as a standard for measuring the prediction results of machine learning 
models:

RMSE
m

h x y
i

m

i i
= ( )−

=∑
1

1

2( )  (4)

MAE (Mean Absolute Error) is the average of absolute error. It could better reflect the actual 
situation of the predicted value error:

MAE
m

h x y
i

m

i i
= ( )−( )

=∑
1

1
 (5)

Top-N Recommendation
The accuracy of the Top-N recommendation is generally measured by precision and recall. Let R u( )  
be the recommendation list for the elderly based on the elderly’ s data on the training set, and T u( )  
be the elderly’ s service list on the test set. The precision of the recommended result and the recall 
are:

Figure 6. Description of service features
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Experimental Results
Evaluation of the Embedded User Profile Model
It is worth mentioning that similar attribute labels are closer in the semantic space. For example, 
compared with the profession of a teacher, the older man’s political appearance is mass or party 
member embedded cosine similarity is higher. 

In order to prove the expressive ability of embedding, the researchers convert the data generated 
according to the design of the old user profile system into embedded vectors. There are 3400 pieces 
of data of seven service types, 4:1 divided into training and test sets, and passed into the KNN model. 
The researchers assign a range of values from 1 to 30 for K, changing the parameters continuously, 
and evaluate different parameter models’ ability through ten cross-validations. They use the accuracy 
as the evaluation index, and Figure 7 is obtained.

According to Figure 7, the best K value is obtained. When K = 16, accuracy = 0.9588. When 
the best K value is transferred into the model for training, the score is 0.9706. At this time, the ability 
of the model is the best. The researchers reduced the dimension of 3400 pieces of data from the 700 
dimensional vector through TSNE, and the visualization results are shown in Figure 8.

Figure 7. Accuracy of the KNN model



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

15

Figure 8 shows that the elderly groups with similar characteristics are closer in the embedding 
space. Therefore, based on this kind of language embedding, the researchers can better judge the 
similarity between the two sentences of the elderly and then achieve more accurate predictions to 
recommend services more precisely.

Results

Algorithm Performance
Set top-N = 10, and the nearest K value is 10∼30, that is, 10 best services are recommended for the 
target user. When K value is 28, the performance is best. At this time, precision=0.7792 and recall 
= 0.7125.

In the case of N = 11, the authors change the K value, and calculate the value of MAE and 
RMSE, which is consistent with the best K value for calculation of precision and recall. When K is 
28, the value is the lowest, MAE = 0.4937, and RMSE = 0.5659. The results are shown in Figure 9.
Comparative Experiment of the User Profile Model
The researchers propose four dimensions of population, society, consumption, and health in the label 
design of the user profile layer to describe the elderly service objects. Owing to the generated data 
system is the division of service types based on the economic ability, health degree, and consumption 
characteristics as the main influencing factors, the researchers control them separately and test the 
algorithm’s performance. The experimental results are shown in Figure 10.

It can be seen from the results that each dimension set by the User Profile Layer has an impact on 
the overall performance of the algorithm, and the algorithm performance is the best when considering 
four dimensions comprehensively.
Comparative Experiment
The researchers conducted the comparative experiment in the same data set:

• User Profile: Build the User Profile Model through feature extraction, create document vectors 
for each service to represent its property, and then implement service recommendations by 
calculating similarity.

• LFM: This approach decomposes the user-service matrix into two-factor matrices connected 
by latent factors and calculates the element in factor matrices through the optimization method.

Figure 8. TSNE visualization
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• User-Based CF: The similarity between the elderly is calculated based on their service scores, 
and the satisfaction degree of the target elderly with the target service is predicted according to 
the similarity and their historical behavior.

• Service-Based CF: The similarity between services is calculated by the elderly’s rating of 
services, and a recommendation list is generated for them according to the similarity of services 
and their historical behavior.

The researchers control the number of recommended services, select the nearest neighbor as a 
variable, and compare evaluation indexes of the five algorithms. It can be seen from Figure11 that 

Figure 9. Results

Figure 10. Results of Comparison
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the index of MAE and RMSE are greatly affected by the nearest neighbor K. When the value of K 
is 20~40, the approach PCE the researchers propose has greater advantages.

As a result of the comparison of precision and recall with other competitive methods, it is 
pretty obvious that the proposed model PCE-CF has better performance. Service-based CF always 
performs worst while the user profile method behaves much better. And the result shows that the 
top-N recommendation is less affected by the value K.

CoNCLUSIoN

This article proposes a collaborative filtering service recommendation framework of PCECF based 
on the embedded User Profile Model. The researchers designed labels for older customers to sort out 
their characteristics through complex multi-modal data and then embedded the labels into a neural 
network to obtain a unified vector. By means of label embedding, the researchers extract the preference 
of older customers by multi-modal fusion to make better the performance of recommendations. To 
illustrate better, the framework is divided into three layers: Data Input Layer, User Profile Layer, and 
Service Recommended Layer.

The results of extensive experiments show that the labels of the User Profile Model this article 
designed further enhance the effectiveness of the traditional recommender systems approaches, 
and embedding the designed labels into neutral network spaces effectively ameliorates the problem 
during the conversion of complex data with high dimensions. This article demonstrates that this 

Figure 11. Results of Comparison
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approach can significantly outperform the existing service recommendation algorithm. In future 
work, the researchers will enrich the modes of the User Profile Model and continue to optimize the 
recommendation model by considering the dynamic behavior attributes of the elderly. At the same 
time, the data processing will be further optimized, and the data will be collected and cleaned by 
existing techniques so that they can be compatible with the user portrait model proposed in this 
paper. Enhancing the inclusiveness of the model and increasing the generality of the model also 
need further research.
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