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ABSTRACT

Monitoring and detecting faults during the operation of the manipulator is the prerequisite for fault 
recognition and safe operation. Accurate classification of mechanical arm faults can support to 
effectively eliminate mechanical arm faults. In this paper, the authors utilize a relative margin support 
vector machine (RMSVM) to classify and monitor the faults for mechanical arm. First, the status 
of mechanical arm are represented a high dimensional vector which consists of the mean, variance, 
correlation coefficient of the residual momentum signal in time domain, and the wavelet packet energy 
spectrum in frequency domain. The collected feature vectors for mechanical arm status are used to 
train RMSVM. A virtual prototype of mechanical arm is used to analyze the changes in the features 
of the residual momentum caused by fault and evaluate the RMSVM model for future mechanical 
arm status. The simulation results show that RMSVM can effectively detect the faults during the 
operation of manipulator.
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1. INTRODUCTION

Motor fault (Shao 2020, Chan 2020) is one of the common faults in the operation of the manipulator. 
The detection of motor fault in the operation of the manipulator is the premise to ensure safe operation 
(Shi 2016, Brkovic 2017). The accurate classification of mechanical arm faults can provide the support 
for effectively eliminating potential incidents during operating mechanical arms.

The previous mechanical arm fault detection methods include: comparing the actual actuator 
torque with the torque calculated by the model to detect whether the mechanical arm is faulty (Xu 2019, 
Ismail 2021); building a virtual prototype platform and studying the impact of collision parameters on 
collision of mechanical arms (Hua 2013, Ghaffari 2016); utilizing momentum derivative to design a 
virtual prototype for analyzing the change of the residual momentum during collision process (Shao 
2015); modeling a rigid manipulator to express the faults of the mechanical arms (Santos 2010, 
Grabbe 1994) etc.

In order to further improve the fault recognition rate, the machine learning method is introduced 
to predict the mechanical arm fault in recent years, such as support vector machine (SVM) (Scholkopf 
1997), Bayesian. In this paper, we adopt relative margin support vector machine (RMSVM) (Song 
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2017, Zhu 2017) to predict the mechanical arm fault. First, the feature vector in frequency domain 
from residue momentum is combined with the feature vector in time domain to analyze the change 
between fault source and feature vectors; then the feature vectors are collected to construct the 
training set for learning relative margin support vector machine (RMSVM) model to recognize the 
status of mechanical arms; the training RMSVM model is tested on simulated platform to verify the 
effectiveness.

The remaining of the this paper is organized as follows. The feature extraction of the signals 
from mechanical arms is described in Section 2. The relative margin support vector machine is 
introduced in Section 3 for fault recognition in the operation of mechanical arms. The experiments 
and simulation of the fault recognition method is provided in Section 4 and Section 5. The last Section 
is the conclusion and discussion.

2. FEATURE EXTRACTION AND REPRESENTATION FOR 
RESIDUE MOMENTUM SYGNAL IN MECHANICAL ARMS

The basis to analyze the mechanical arm is the associated dynamic model which is represented as 
the following equation:

M q q C q q q G q q( ) ( , ) ( , )+ + =� � � τ 	 (1)

In equation (1), q q q q T= [ , , ]
1 2 3

 is the joint vector of mechanical arm, M q( )  is the moment of 
inertia, C q q( , )�  is the Coriolis force and centrifugal force matrix, G q q( , )�  is the gravity matrix, and 
τ  is the driving torque vector.

The residual momentum operator r  is defined as following equation:

r k r dt p= + − −∫[ ( ) ]τ α 	 (2)

In equation (2), α = −C q q G qT ( ) ( )� , p M q q= ( )� , the magnification factor k  is a diagonal 
matrix whole diagonal elements are greater than zero, and p  is the total momentum of the robotic 
arm system.

When the robotic arm collides with the environment, the following equation holds:

M q q C q q G q
j

( ) ( ) ( )+ + = +� τ τ 	 (3)

In equation (3), τ
j
 is the torque which is generated when the robotic arm collides with the 

environment.
After derivation of equation (2), the dynamic �r  satisfies the following equations:

�r kr k r
j

= − + =τ , ( )0 0 	 (4)

Equation (4) shows that the change of the stable linear system is determined by the accidental 
collision force τ

j
.
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2.1 Time Domain Features
Feature extraction can reduce the difficulty of calculation and better represent the essence of 
robotic arm status, which can facilitate robotic arm fault recognition and classification. The residual 
momentum (Wang 2018, David 2011) is a one-dimensional time-varying signal. This paper adopts 
mean, variance, and correlation coefficient to construct time domain feature vector.

Here, the mean of residual momentum of three-free robotic arm is represented as 
following equation:

D D D D= [ , , ]
1 2 3

	 (5)
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The variance of residual momentum of three robotic arm is represented as following equation:

V V V V= [ , , ]
1 2 3

	 (6)
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The correlation coefficient represents the similarity between residual momentums. The correlation 
coefficient of three-free robotic arm is represented as following equation:

ρ ρ ρ ρ= [ , , ]
, , ,1 2 1 3 2 3

	 (7)
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2.2 Frequency Domain Features
The wavelet analysis (Wickerhauser 2010, Torrence 1998, Newland 2013) has the characteristic of 
local amplification. The paper adopts wavelet transform to process the residual momentum after 
normalization. After the decomposition of wavelet transform, the energy of the reconstructed signal 
S
k j,

 for the j th  band of the kth  layer is represented as following equation:

E S t dt r
k j k j

m

N

j m, , ,
| ( ) | | |= =∫ ∑

=

2

1

2 	 (8)

In equation (8), N  represent the length of the signal, j k= …1 2 2, , ,  represents the order of 
decomposed frequency, r

j m,
 represents the amplitude of the discrete points in the reconstructed signal.

The number of decomposition layers is closely related to the cost of calculation. In order to 
facilitate the calculation, the number of decomposition layers is set as k = 4 .

The following equation is the wavelet energy spectrum of the residual momentum for the three-
free robotic arm:

E E E E
r r r

= [ , , ]
, , ,1 2 3

	 (9)
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The number of coefficients for wavelet transform is 3 2 484× =  in total. The features for time 
domain include mean D , variance V , and correlation coefficients ρ . Therefore, the signal is 
represented as a vector whose length is 57 for time domain and frequency domain.

3. RELATIVE MARGIN SUPPORT VECTOR MACHINE 
FOR ROBOTIC ARM FAULT RECOGNITION

The extracted features are used to learn a relative margin support vector machine model. Here, this 
paper adopts relative margin support vector machine other than original support vector machine. 
The reason is that relative margin support vector machine (RMSVM) performs better than original 
support vector machine (SVM). In order to ensure the integrity of this paper, we give a brief review 
about RMSVM.

Let X  represent the set of feature vectors of robotic arm signals, Y  represent the associated 
label set. Here, x

i
∈ �57 , y

i
∈ + −{ , }1 1 . The aim of RMSVM is to find a hyperplane f x( )  to predict 

the label of future sample x . If f x( )> 0 , the associated label of x  is 1; otherwise, the associated 
label of x  is -1. The optimal hyperplane of RMSVM must ensure that the minimum relative margin 
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between two classes is maximized. Let r
i
 represent the distance between x

i
 and f x( ) . The r+  and 

r−  are defined as following equations:

r r
x X y i
i i

+ ∈ =+
= min

, 1
	 (10)

r r
x X y i
i i

− ∈ =−
= min

, 1
	 (11)

The relative margin is defined as following equation:

γ =
++ −r r

w
	 (12)

Then, the training set is reorganized as { , , }x y r
i i i i

l
=1

. An illustration of hyperplane and minimum 
relative margin is shown in Figure 1.

In Figure 1, the triangles and circles are from positive class and negative class, respectively. 
Finding the optimal hyperplane for RMSVM can be converted as a quadratic programming which is 
written as following optimal programming:

min
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In equation (13), φ( )x
i

 is the mapping of sample x
i
 in the reproducing Kernel Hilbert space 

(RKHS). By introducing Lagrange multipliers for constraints w x r w x rT
i i i

T
i i i
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i i
≥ ≥0 0 , the optimal programming (13) can be converted as a quadratic programming with 

respect to Lagrange multipliers α
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i l, , , ,= …1 2 , which is written as following optimal programming:
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Figure 1. The illustration of relative margin support vector machine. The triangles are from positive class, while the circles are 
from negative class. The solid line is the separated hyperplane f x( ) .
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In equation (14), is the vector form of Lagrange multipliers. The sample with non-zero 
Lagrange multiplier is called as support vector. The separated hyperplane in RMSVM is written 
as following equation:

f x sign K x x b
i i

i

( ) ( , )= +










≠
∑α
α 0

	 (15)

In equation (15), K x x x x
i i

( , ) ( ), ( )=< >φ φ  is the inner product of a pair of mappings in RKHS. 
It is called kernel function. The common used kernel functions include Gaussian kernel, Polynomial 
kernel etc. The bias b  is obtained from the following equation:

b y r y K x x rC
i i j
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In optimal programming (13) and (14), the r
i
 reflects the relative position of sample x

i
 to 

hypeplane f x( ) . It can be determined by one of the following ways:
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In equation (17), ω  is a constant and satisfies 0 10 1< < < <ω ω . In equation (18), c
i
sum  is 

defined as following equation (Zhu 2016):
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The RMSVM only considers two classes. For multi-class classification problem, the problem 
need to be converted as several binary class classification problems via one versus one or one versus 
rest strategies. In one versus one, a multi-class classification problem containing p  classes is converted 
as p p* ( ) /−1 2  binary class classification problems, while in one versus rest, a multi-class 
classification problem containing p  classes is converted as p  binary class classification problems. 
Compared with one versus one strategy, the one versus one strategy needs to learn much more two-
class classification models, but it can avoid the issue that the samples in two class are imbalance, 
which occurs in one versus rest strategy.

4. ROBOTIC ARM SIMULATION AND FAULT DETECTION

This paper constructs a complete virtual prototype simulation platform for robotic arm, which is shown 
in Figure 2. The input of virtual prototype is the torque of three joints, while the output is the angle 
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and angular velocity of three joints to facilitate the simulation of robotic arm faults for calculating 
the residual momentum.

In Figure 2, the virtual prototype consists of a pedestal, three robotic arms and three joints. The 
associated parameters of the virtual prototype are reported in Table 1.

There are many types of robotic arm faults for virtual prototype of robotic arms. This paper 
considers nine faults during simulation. The description of faults is reported in Table 2.

Figure 2. The architecture of virtual prototype simulation platform

Table 1. The parameters of the virtual prototype simulation platform

Length (mm) Average diameter (mm) Weight (kg)

Pedestal 450 115 119

First arm 260 68 37

Second arm 350 43 29

Third arm 150 29 19

Table 2. The states and faults of robotic arm in virtual prototype simulation platform

Description Status

S0 Normal state Normal

S1 The motor in joint 1 motor occurs abnormal vibration fault. Motor fault

S2 The motor in joint 1 motor occurs abnormal noise fault. Motor fault

S3 The motor in joint 2 motor occurs abnormal vibration fault. Motor fault

S4 The motor in joint 2 motor occurs abnormal noise fault. Motor fault

S5 The motor in joint 3 motor occurs abnormal vibration fault. Motor fault

S6 The motor in joint 3 motor occurs abnormal noise fault. Motor fault

S7 The joint 1 occurs collision fault. Collision fault

S8 The joint 2 occurs collision fault. Collision fault

S9 The joint 3 occurs collision fault. Collision fault
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The residual momentum samples are obtained by adding simulating external signals as fault data 
samples. In the simulation, the sampling time is set as 10 seconds. By using co-simulation, a total of 
3500 sets of residual momentum signals are collected through the sliding window on the time axis. 
In collected signals, 800 sets of robotic arm are under normal status, while 300 sets of robotic arm 
are under each fault. The collected signals are normalized and processed by equation (5), (6), (7) and 
(9) to extract the features in time domain and the features in frequency domain. Finally, the collected 
signals in each set are converted as vectors whose length is 57.

The features in time domain fluctuate drastically and there is no obvious rules. Thus, it is hard to 
detect the robotic arm faults merely using time domain features. The wavelet packet spectrum under 
different faults have significantly difference. However, the regularity is not obvious. Therefore, the 
time domain features and frequency domain features are combined to recognize the robotic arm faults.

The extracted features are used to train RMSVM model. The collected samples are split as training 
set and test set by using 10-fold cross-validation. The radial basis function (RBF) is used as the kernel 
function in RMSVM. In RMSVM, the relative margin r

i
 is determined by equation (18). The penal 

factor in RMSVM and the width in RBF kernel are tuned to ensure best cross-classification accuracy. 
The one versus rest strategy is adopted as multi-class classification. The robotic arm fault classification 
accuracy is reported in Table 3.

In Table 3, we compare the features from time domain, frequency domain, and time domain & 
frequency domain. For the classifier, we compare SVM and RMSVM. From the result in Table 3, 
when using support vector machine as classifier, the robotic arm fault recognition accuracy achieves 
89%, 91%, 95% for time domain features, frequency domain features, time domain & frequency 
domain features, respectively; when using relative margin support vector machine, the robotic arm 
fault recognition accuracy achieves 90%, 93%, 98% for time domain features, frequency domain 
features, time domain & frequency domain features, respectively. It can be found that the time domain 
& frequency domain features perform better than merely using time domain features or frequency 
domain features; the RMSVM can achieves 98% when using time domain & frequency domain 
features, which is superior to classical SVM.

5. INDUSTRIAL ROBOTIC ARM FAULT RECOGNITION

In this experiment, we adopt industrial robotic arm to verify the proposed robotic arm fault recognition 
method. The industrial robotic arm consists three joints. In this experiment, we consider the movement 
of joint 2 and joint 3. The other joints are fixed. During the process of experiment, arm 1 is fixed 
and arm 2 moves counterclockwise 40 degrees and artificially creates collision faults by placing a 
workbench in the motion space of the robotic arm. During the operation of robotic arm, the angle 
and angular velocity data are collected to calculate the residual momentum.

In general, the cycle of the residual momentum changes obviously during normal motion, while 
the residual momentum changes significantly when a collision occurs. Due to the strict packaging 
of industrial robotic arms, it is difficult to collect the information of abnormal motor vibration and 
noise fault. In this experiment, we only evaluate and repeat the above normal and collision fault. We 
create collision faults at different time. The time domain features and frequency domain features of 

Table 3. The robotic arm fault recognition accuracy in virtual prototype simulation platform

SVM (o-vs-r) RMSVM (o-vs-r)

Time domain features 89% 90%

Frequency domain features 91% 93%

Time domain & frequency domain features 95% 98%
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the residual momentum are input into classifiers. We also compare time domain features, frequency 
domain features, and time & frequency domain features to represent residual momentum of robotic 
arm signals. For classifier, we compare support vector machine (SVM) and relative margin support 
vector machine (RMSVM) as well. The associated experimental results are reported in Table 4.

In Table 4, when using support vector machine as classifier, the robotic arm fault classification 
accuracy achieves 88%, 90%, 93% for time domain features, frequency domain features, time & 
frequency domain features, respectively; when using relative margin support vector machine as 
classifier, the robotic arm fault classification accuracy achieves 89%, 92%, 96% for time domain 
features, frequency domain features, time & frequency domain features, respectively. It can be 
concluded that using time & frequency domain features performs better than merely using time domain 
features or frequency domain features; using relative margin support vector machine as classifier is 
better than using support vector machine as classifier for mechanical arm fault recognition.

6. CONCLUSION

In order to ensure safety during the operation of the mechanical arms, it is necessary to monitor 
and recognize the fault status of the mechanical arms in time. In order to monitor the status of the 
mechanical arms, we first set the distributed sensors on mechanical arm to collect the status signal 
of the mechanical arm, then extract the features in frequency domain from residue momentum, lastly 
learn a relative margin support vector machine by using the training set consisting of the samples 
from the extracted features. The proposed monitoring and recognizing faults method for mechanical 
arms is evaluated and verified on a virtual prototype platform and a real mechanical arm dataset. In 
the future work, the feature extraction should be further improved to enhance the fault recognition 
for mechanical arms.
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Table 4. The robotic arm fault recognition accuracy in industrial robotic arm

SVM (o-vs-r) RMSVM (o-vs-r)

Time domain features 88% 89%

Frequency domain features 90% 92%

Time domain & frequency domain features 93% 96%
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