
DOI: 10.4018/IJWSR.314948

International Journal of Web Services Research
Volume 19 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Strong Robustness Watermarking 
Algorithm Based on Lifting Wavelet 
Transform and Hessenberg Decomposition
Fan Li, Sichuan University, China

Lin Gao, Chengdu University of Information Technology, China*

Junfeng Wang, Sichuan University, China

Ruixia Yan, Southwest University of Science and Technology, China

ABSTRACT

Watermark imperceptibility and robustness in the present watermarking algorithm based on discrete 
wavelet transform (DWT) could be weakened due to data truncation. To solve this problem, a strong 
robustness watermarking algorithm based on the lifting wavelet transform is proposed. First, the color 
channels of the original image are separated, and the selected channels are processed through lifting 
wavelet transform to obtain low-frequency information. The information is then split into blocks, 
with Hesseneberg decomposition performed on each block. Arnold algorithm is used to scramble the 
watermark image, and the scrambled watermark is transformed into a binary sequence that is then 
embedded into the maximum element of Hessenberg decomposed matrix by quantization modulation. 
The experimental results exhibit a good robustness of this new algorithm in defending against a wide 
variety of conventional attacks.
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1. INTRoDUCTIoN

As a new means of digital image copyright protection, image digital watermarking technology is 
increasingly connected with various facets of society and plays a decisive role in medical images, 
commercial publicity, industrial production, information security, etc. The embedding domain of 
watermarks is generally divided into three kinds: spatial domain, frequency domain, and compression 
domain. The watermark embedding algorithm based on the spatial domain (Wu et al., 2021) features 
a low time complexity and a large watermark capacity due to its simplicity and capability to avoid 
changing the original image. However, as a conventional semi-fragile watermarking algorithm, it 
only provides adequate resistance against image compression attacks but is less robust against noise 
disturbances. Frequency-domain-based watermark embedding algorithms (Wu et al., 2021), such 
as discrete cosine transform, wavelet transform, contourlet transform, shear wave transform, vector 
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transform, and Hadamard transform, require specific alteration of the original image before embedding 
the watermark, and the watermark can be embedded by modifying, replacing, or exchanging the 
frequency band coefficients of quality images. In general, the low-frequency section contains important 
contour information of the image, while the high-frequency section contains redundant details of the 
image. If robustness is emphasized, it would be suitable to embed the watermark into low-frequency 
information, while if invisibility and embedding capacity are regarded as more important, it would 
be suitable to embed the watermark information into the high-frequency section.

Various suggestions have been proposed to improve the invisibility and robustness of after 
marking algorithms. Roy and Pal (2019) proposed a hybrid robust image watermarking scheme based 
on discrete wavelet transform (DWT) and singular value decomposition (SVD), DWTSVD. The 
Y-component of the image is decomposed into non-overlapping blocks, and the watermark is embedded 
into the singular values of these image blocks after DWT transform and SVD decomposition. This 
approach yields better robustness against geometric transformation attacks, enhancement attacks, and 
combination attacks. Naik et al. (2018) came up with a key matrix, integer wavelet, binary watermark 
embedding method based on logistic mapping to increase operational efficiency and enhance the 
security of watermark images. Makbol et al. (2017) presented an SVD-based image watermarking 
scheme to effectively overcome false positive probability (FPP) by using integer wavelet transform 
(IWT) and obtaining additional secret keys from the watermark. Thakkar and Srivastava (2021) 
disclosed a DWT-SVD watermarking algorithm with enhanced robustness and invisibility by using 
particle swarm optimization (PSO) for self-adaptation. Soleymani et al. (2019) proposed a fast 
discrete curvelet transform blind watermarking method (FDCuT) by adopting Arnold transform to 
preprocess the host image and using a strong gain factor to increase the security and imperceptibility 
of watermark embedment. In addition, two weakly correlated pseudo-noise strings used as symbols 
for each 0 or 1 bit of the watermark are highly resistant to common image watermarking attacks, 
such as noise, compression, and image quality enhancing. Nazari and Mehrabian (2021) introduced 
a secure blind watermarking algorithm based on integer wavelet transform (IWT), least significant 
bit (LSB), and chaotic sequence (iterative learning control, ILC) to increase the capacity and 
security of watermark embedment. Agarwal et al. (2015) combined watermarking and biometrics to 
improve owner identification/verification techniques based on discrete wavelet transform (DWT), 
and proposed and compared four blind invisible watermarking approaches based on face images 
and wavelets. The four methods offer respective advantages for different types of attacks. Khare 
and Srivastava (2021) suggested a new image watermarking technique that yields high robustness 
against most conventional attacks by incorporating DWT, homomorphic transform (HT), and SVD 
(DWTHTSVD). The algorithm employed in this article (Abdulrahman & Ozturk, 2019; Budiman et 
al., 2017; Li et al., 2021; Veni & Meyyappan, 2017; Wang et al., 2020) makes watermarks far more 
robust by combining discrete cosine transform (DCT) and DWT, giving full play to the strengths of 
both with advantages over either one individually. In this article (Dhar et al., 2020; Su et al., 2017), 
Hessenberg decomposition is combined with nonsubsampled contourlet transform (NSCT) and 
non-nonsubsampled shearlet transform (NSST), which are more superior in resisting attacks such as 
rotation and shear. Vaidya et al. (2019) used game theory to design a robust watermarking scheme, 
which has good robustness against various signal processing attacks. Hsu and Tu (2020) used the 
sine function-based embedding rule to embed multiple independent watermarks into different image 
blocks, which has excellent robustness against clipping attacks. Meng et al. (2021) proposed an 
adaptive reversible watermarking algorithm in the integer wavelet transform (IWT) domain. It can 
be embedded adaptively according to the size of the watermark and achieve completely lossless blind 
extraction. In order to improve the ability to resist geometric rotation attacks and solve the problem of 
high computational complexity of existing watermarking algorithms, Yang et al. (2022) proposed a 
robust zero-watermarking algorithm in spatial domain, which is robust to geometric rotation attacks 
and common image processing attacks, and has low time complexity. Bose and Maity (2022) suggested 
a sparse watermark image embedding scheme on the singular values of the pre-selected wavelet 
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sub-band coefficients of the digital images. Dictionary learning (DL) method is used to make the 
watermark image sparse. Then a watermark decoder is designed based on the theory of compressed 
sensing (CS) in the framework of alternating direction method of multiplier (ADMM).

Most of the existing DWT methods rely on Fourier transform, and discrete wavelet operation 
calculates continuous type data while the image is stored in the form of discrete data in the computer, 
consequently resulting in some accuracy loss during watermark embedment and affecting the 
robustness of the embedded watermark. Lifting wavelet transform (LWT) is an improvement of DWT 
with speedy computation and does not rely on Fourier transform, guaranteeing image accuracy needed 
to improve watermark embedding robustness and invisibility. In this article, the authors propose a 
lifting wavelet watermarking algorithm with stronger robustness based on satisfying fundamental 
requirements in invisibility and watermark capacity. This method optimizes image distortion caused 
by DWT data truncation and enhances the fidelity of images containing watermarks. Embedding 
the watermark into the Hessenberg decomposition’s (HD) maximum element increases watermark 
resistance against external disturbances. The FOA adaptive search for optimal embedding strength 
balances the imperceptibility and robustness of the watermark. The experiments indicate that this 
method based on lifting wavelet transform and Hessenberg decomposition (LWTHD), in contrast to 
the present DWT watermarking algorithm, is more robust in terms of resistance against a wide range 
of attacks such as rotation, filtering, noise, and cropping, and has low computational complexity, 
with good practical application value.

2. ReLATeD WoRK

2.1 Lifting Wavelet Transform (LWT)
DWT decomposes the image into four frequency bands, namely LL , LH , HH  and HL , wherein 
L denotes low-pass filter and H  high-pass filter. The low-frequency sub-band LL  concentrates most 
of the image energy, and is thus called approximation subgraph. The medium-frequency sub-band 
LH  represents details of the original image in horizontal and vertical directions, and the high-
frequency sub-band HH  represents details of the original image in the diagonal direction, known 
as detail subgraph. The multi-resolution decomposition feature of wavelet transform allows it to 
possess an excellent spatial direction selectivity, and is similar to the human visual system (HVS) 
which is more sensitive to low-frequency information and less sensitive to texture changes. In this 
article, wavelet decomposition is first performed on the carrier image. Figure 1(a) is the original host 
image Lenna; the upper left, upper right, lower left, and lower right of Figure 1(b) represent the low-
frequency sub-band, horizontal high-frequency sub-band, vertical high-frequency sub-band, and 
diagonal high-frequency sub-band of Lenna respectively after the first-level wavelet decomposition.

Figure 1. Wavelet Decomposition of Image Lenna: (a) Original Host Image Lenna, (b) Four Sub-Bands After the First-Level Wavelet 
Transform of Lenna
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Lifted wavelet transform (LWT) is a special form of discrete wavelet transform (DWT). LWT 
possesses both the advantages of DWT and properties that DWT lacks. On the one hand, the 
conventional Fourier transform-dependent DWT algorithm is computationally slower than the LWT 
algorithm, which does not rely on Fourier transform, so LWT is more suitable for embedding and 
extracting watermarks. On the other hand, discrete wavelet outputs floating points, resulting in 
rounding errors in coefficient quantification. Quality of the image when reconstructed is related to 
the way the boundary is treated, and the grayscale values of the image express kernel storage in the 
form of integers (Su, 2015). In contrast, LWT can directly map the data into integers and avoid 
rounding errors. In this paper, the QR code needs to be embedded in the low frequency sub-band of 
LWT. Compared with the traditional DWT-based watermarking algorithm, it can not only ensure the 
invisibility of the watermark, but also improve the robustness of the watermark and the accuracy of 
watermark detection. The time complexity of LWT is O N N⋅ ( )( )lg , and the computational 
complexity is linearly related to the signal length, which is less time-consuming and can meet real-
time computing requirements. Through splitting, prediction, and uploading, LWT realizes the 
transformation of a series of digital signals as follows:

Splitting: The original signal S
i
 is split into two mutually disjoint subsets, i.e, odd subset S

i−1
 and 

even subset d
i−1

, which can be expressed as:

F S S d
i i i( ) = ( )− −1 1

,  (1)

Prediction: Usually, the two sets above are predictable of each other. There is no possibility of an 
errorless deduction of d

i−1
 from S

i−1
, but since P S

i−( )1  is possibly very close to d
i−1

, the 
original d

i−1
 can be replaced by the difference between d

i−1
 and P S

i−( )1 . In doing so, the 
resulting d

i−1
 will contain less information than the original d

i−1
, as in the equation below:

d d P S
i i i− − −= − ( )1 1 1

 (2)

where P  denotes the prediction operator, which needs to consider the original signal’s characteristics 
and reflects the interrelationship between the data.

Update: An update is required for the subset S
i−1

 to keep certain local characteristics. Finding a 
better subset so that it maintains the same properties as a certain scalar property of the original 
graph can be expressed as:

S S U d
i i i− − −= + ( )1 1 1

 (3)

where U  is the update operator. The odd subset S
i−1

 becomes a high-frequency component and the 
even subset d

i−1
 becomes a low-frequency component after IWT transformation. The high frequency 

component contains more detailed information, while the low frequency component contains more 
contour information that can be further decomposed.
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2.2 Hessenberg Decomposition

Definition: Matrix H h n
x y n n

= ( ) ∈( )
×,

� . If the elements of H  satisfy h y x
x y,

( )= > +0 1 , then 
H  is an upper Hessenberg matrix in the form of Equation (4):

H

h h h

h h h
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Theorem: Let A a n
x y n n

= ( ) ∈( )
×,

� , then there is an orthogonal matrix P P P
n1 2 2

, , ,� −  such that 
A  is transformed into an upper Hessenberg matrix by orthogonal similarity, that is, 
P PP A PP P H
n n− − =2 2 1 1 2 2
� �   holds.

Equation (5) is the Hessenberg decomposition formula for an n n×  matrix where P is a unit 
orthogonal matrix and H  is an upper triangular Hessenberg matrix:

P H hess A,

 = ( )  (5)

Research shows (Han et al., 2017) that in the H matrix, h 2 2,( )  concentrates most of the energy 
information of the image with good numerical stability against external interference. Therefore, the 
algorithm embeds the watermark information into this element to improve the robustness of the 
watermark. Since Hessenberg decomposition is an important step of QR decomposition, its time 
complexity is less than O n2 3 3( ) , which is lower than the traditional watermarking algorithm based 
on singular value decomposition or Schur decomposition.

2.3 Fruit Fly optimization Algorithm (FoA)
In watermark embedding, the choice of embedding strength directly affects the performance 
of the watermark. If embedding strength is too high, the invisibility of the watermark is 
poor, and it will cause more damage to the host image. If embedding strength is too low, 
the watermark is not robust enough to withstand attacks. In this article, we use the fruit 
fly optimization algorithm (FOA) to find the optimal embedding strength factor to strike a 
balance between invisibility and robustness of the watermark. Compared with traditional 
particle swarm algorithm, ant colony algorithm, etc., FOA algorithm has the advantages of 
simple and easy implementation, low time complexity and high optimization accuracy, so 
it is easier to solve practical problems.

Fruit flies have a better sense of smell and vision than other species and can sensitively perceive 
various odors floating in the air and fly toward food sources. The FOA algorithm is a simulation of 
the foraging behavior of fruit flies, which is simple to implement and can quickly find the global 
optimum. The basic procedure of the algorithm is as follows:

1.  The locations of the fruit fly population are randomly initialized. Seeking the direction and 
distance of foraging.
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2.  Since there is no way to know the location of food source from the start, the distance between 
the point and the origin is estimated first, and then the gustation concentration determination 
value is set to S . In this article, this value is set as the embedding strength factor of the watermark.

3.  The value S  is substituted into the gustation concentration determination function to find the 
gustation concentration of individual fruit fly locations. In this experiment, the gustation 
concentration determination function is set as Equation (6):

O
PSNR

W i j W i j

W i j W i j

j

N

i

N

j

N2

11

1

10
= +

( )× ( )( )

′( )× ( )( )

′

′

==

=

∑∑

∑

, ,

, ,
ii

N

=
∑

1

 (6)

where PSNR  is peak signal-to-noise ratio PSNR( ) , which is used to measure the peak error 
between the original host image and the image embedded with a watermark. The larger the 
value, the less noise contained in the carrier, the less visual distortion of the image, the more 
invisible the embedded watermark. W I j,( )  and ′ ( )W i j,  represent the pixels of the original 
image and watermark-embedded image, respectively; N  is the image size, and i j,( )  represents 
image pixel position coordinates.

4.  Fruit flies with the highest gustation concentration in the population are identified by finding 
the maximum value and recording the coordinates of the location.

5.  The fruit fly population uses visual perception to find optimization in that direction.
6.  Repeat steps (2)-(4) to determine whether the gustation concentration is better than 

that obtained from the previous iterations. If so, perform (5) until the global optimal 
concentration is found.

3. WATeRMARKING DeSIGN

3.1 Watermark Image Pre-Processing
In digital watermarking, it is not secure to only encrypt a watermark with an encryption algorithm, 
because watermark information can be extracted once an attacker breaks the encryption algorithm. 
Therefore, the watermark image needs to be scrambled first to make it look disorganized, thus 
augmenting the security of the information being concealed. Usually, digital image scrambling 
methods can be classified as linear transformations, geometric transformations, and affine 
transformations. The most widely used algorithms are Arnold, Fibonacci, Gray, Hilbert curve, magic 
square, E-curve, affine, and orthogonal Latin square transforms. All of these scramling algorithms 
are reversible, i.e., it is possible to revert to the original image after several inverse transformations. 
In this article, Arnold scrambling algorithm is employed. The Arnold transform (Kumar & Singh, 
2021), also known as cat face transform, is mapping from a regular position to a random position. 
For an image of size M M× , the Arnold transform and the inverse transform are performed as (7) 
and (8), respectively:
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where x y
T

,( )  is the pixel of the original image, ′ ′( )x y
T

,  is the pixel after mapping, N  is a positive 
integer that represents the order of the image matrix, and mod is complementation.

3.2 Watermark embedding Process
Let the matrix size of the host image I  be M M×  and the matrix size of the watermark image be 
N N× , then decompose the host image into three-primary-color channels. The study demonstrates 
(Kumar & Singh, 2021) that embedding the watermark into the red channel component can ensure 
good robustness. In this article, the red component image is selected for lifting wavelet transform, 
whereby the transformed low-frequency sub-band LL  is chunked without overlapping, and the 
subblock is Hessenberg-decomposed to obtain the maximum elements of the upper triangular H  
matrix. Since the maximum elements of the Hessenberg matrix are almost always in the second row 
and the second column, or the third row and the second column of this matrix (Su, 2016), this algorithm 
embeds watermark sequences into the second row and second column elements of the H  matrix. 
The watermark embedding procedure is as follows:

1.  Put the watermark image W
i
 under Arnold transform based on the secret key K

i
 to get a 

scrambled watermark W
i
.

2.  Transform the scrambled watermark W
i
 into 0,1 sequence.

3.  Separate the host image I  into three-primary color channels, and take out the red channel 
component image.

4.  Perform LWT on the red channel, and take out the transformed low-frequency component sub-
band LL.

5.  Perform 4 4×  non-overlapping chunking on sub-band LL . Use the secret key 
Ks i

i
= …( )1 2, , -based pseudo-random sequence to select the watermark embedding block and 

mark it as A i
i
= …( )1 2, ,  to enhance watermark security.

6.  Hessenberg decompose the selected block Ai to get the H  matrix as in Equation (9):

Q H hess A,

 = ( )  (9)

7.  Find the optimal embedding strength factor T  through FOA.
8.  Extract element ′h

22
 in the second row and second column of the H  matrix, and according to 

the embedding strength factor T obtained by FOA mentioned in 1.4, embed the 0,1 sequence 
into the H  matrix while updating h

22
 to ′h

22
, as in Equation (10):

d h T
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9.  Perform Hessenberg inverse transformation using the Q  matrix and the H  matrix with embedded 
watermark information as in Equation (11):

′ = ′B QH QT  (11)

where ′H  is the H  matrix after embedding the watermark, and QT  is the transposed matrix of the 
orthogonal matrix Q .

10.  Merge the non-overlapping 4 4×  blocks obtained.
11.  Perform inverse LWT transformation on the combined low-frequency component image to obtain 

the r-channel component image.
12.  Merge R, G, B channel component images to finally obtain the color image I

w
 with watermark.

13.  The flow chart of watermark embedding is illustrated in Figure 2.

3.3 Watermarking extraction Process
A blind watermarking algorithm that does not require the participation of the original data during 
watermark extraction is proposed in this article. Before watermark extraction, it is necessary to use 
Scale Invariant Feature Transform (SIFT)to geometrically correct the watermarked host image, so 
that the image to be extracted and the original host image maintain the same geometric shape. The 
scale-invariant feature transformation was proposed by Lowe (2004). A characteristic of SIFT point 
is that the value will remain even if the image suffers from rotation, scaling, rotation, translation, and 
brightness-change. The watermark extraction steps are described below:

1.  Using SIFT to perform geometric correction on image I
w

 (watermarked image).
2.  Separate RGB channels for the image I

w
.

3.  Take out the red channel image and perform LWT to get the transformed low-frequency 
sub-band LL .

4.  Perform a 4 4×  non-overlapping chunking process on sub-band LL , and use the pseudo-random 
sequence selection waters based on the secret key Ks i

i
= …( )1 2, ,  to choose a watermark 

embedding block A i
i
= …( )1 2 3, , .

5.  Perform Hessenberg decomposition on the selected block A
i
 to obtain the H  matrix.

6.  Obtain the second row and second column element ′h
22

 of the H-matrix, and extract the watermark 
information from h

22
 containing watermark information via Equation (12):

′ =
( ) >
( ) ≤








w
if h T T

if h T T

1 0 5

0 0 5
22

22

, mod , .

, mod , .

ˆ

ˆ  (12)

where T  is the embedding strength factor derived from FOA. ′h
22

 is the second row and second 
column element of the H  matrix after embedding the watermark, and ′w  is the extracted 
watermark sequence.

7.  Through Arnold scrambling of the extracted watermark sequence, finally obtain the extracted 
watermarked ′w .
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Figure 2. Watermark Embedding Flow Chart
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Figure 3 gives the watermark extraction process.
In this article, PSNR  (peak signal-to-noise ratio) and NC  (normalized correlation) coefficient 

are used to measure the invisibility of the embedded watermark and the robustness of the extracted 
watermark. PSNR  is one of the most common image quality evaluation metrics and an error 
comparison pixel by pixel. If the value is greater than 40 dB, it indicates excellent image quality (the 
watermark-embedded image is very close to the original host image). If PSNR  value is 30-40 dB, 
it means that image quality is relatively good (with a little distortion but acceptable). A PSNR  value 
between 20 and 30dB suggests a poor image quality (distortion visible to the naked eye). If PSNR  
is smaller than 20, image quality is unacceptable. In fact, when PSNR  is greater than 35, it is already 
difficult for the naked eye to discern differences in the image. The PSNR  calculation formula is 
shown in Equation (13):

PSNR
MAX

MSE

MAX

MSE
I I= ⋅












= ⋅











10 20

2

lg lg  (13)

where   MAX
I

 denotes the maximum value of the pixel color, which is 255 if each sampling 
point is expressed in an 8-bit binary. MSE  is the mean square error, which is used to measure 
the extent of differences between two images of the same size; the more significant the 
differences between the pixels of the two images, the larger theMSE . The MSE  value of two 

Figure 3. Watermark Extraction Flow Chart
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identical images is 0. NC  coefficient (Xiao et al., 2020) is the main indicator of image 
similarity. The comparison of two images in terms of correlation between corresponding pixels 
reveals that the higher the NC  value of two images is, the closer the NC  value is to 1. NC  
value is derived from Equation (14):

NC x x

x i j x i j

x i j x i j

j

N

i

M

j

N

i

M1 2

1 2

1
2

2
1

11

11

,

, ,

, ,

( ) =
( ) ( )

( )

==

==

∑∑

∑∑ (( )
==
∑∑
j

N

i

M

11

 (14)

4. PeRFoRMANCe eVALUATIoN

Based on different image features, the standard images on USC-SIPI were selected for testing. The 
size of the test images was 512 512× . In this paper, the authors only choose Lenna, baboon, and 
peppers to demonstrate. As shown in Figure 4 (a), (b), and (c), and the binary image in Figure 4 
(d) is selected as a 64 64×  watermark image. The three images containing watermarks are 
respectively subjected to the following ten attacks: (a) cropping, (b) scaling, (c) brightness 
adjustment, (d) occlusion, (e) salt-and-pepper noise, (f) JPEG compression, (g) Gaussian noise, 
(h) line drawing, (i) median filter, and (j) rotation. PSNR  is used to measure the invisibility of 
the embedded watermark, the value of which is positively correlated with invisibility of the 
watermark embedded. NC  coefficient is adopted to measure the robustness of the extracted 
watermark, the value of which approaching to 1 indicates that the image has good robustness. 
According to the FOA algorithm, the optimal embedding strengths of the three images Lenna, 
baboon, and peppers are 50.0, 49.75, and 49.45, respectively.

4.1 Imperceptibility evaluation
In this experiment, the invisibility of watermark embedding is measured by PSNR . The watermark 
is embedded into the images Lenna, baboon, and peppers via the embedding strength factors 50.0, 
49.75, and 49.45, respectively, calculated according to FOA. The host images PSNR  before and 
after watermark embedment are shown in Table 1. As can be seen from the table, the PSNR  values 

Figure 4. Host Images and Watermark Image: (a) Lenna, (b) Baboon, (c) Peppers, (d) Watermark

Table 1. PSNR Values of Different Images Before and After Embedding the Watermark

Image Lenna (50.0) Baboon (49.75) Peppers (49.45)

PSNR 39.7041 40.8225 40.0511
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of the three images are greater than 38.0, indicating that the perceptible errors before and after 
watermark embedment are outside the range distinguishable by the naked eye. Judging from the visual 
effect, there is no significant difference between the watermarked images and the original host images; 
in other words, invisibility is good.

4.2 Robustness evaluation
4.2.1 Rotation Attack
Among image attacks, rotation attack is a very common geometric attack method that uses rotation 
transformation to change the spatial position of image pixel. In this article, for watermarked images 
subjected to rotation attack, SIFT is harnessed firstly for geometric correction, and then the watermark 
extracted. The watermark values extracted from Lenna, peppers, and baboon after being attacked by 
rotations in varying degrees are given in Table 2. In the algorithm proposed in this article, the NC  
value of the extracted watermark is almost always above 0.75 when attacked from any angle, especially 
90-degree rotation whereby the NC  value reaches 1. This is because when subjected to a 90-degree 
attack, there is no loss of pixel values, so the 90-degree rotation attack has no effect on the extraction 
of the watermark. Similarly, when the image is rotated 180 degrees, 270 degrees, and 360 degrees, 
the extracted NC  value is still 1.

4.2.2 Geometry Attacks
The images Lenna, baboon, and peppers are attacked as such: Cropping 1/16, 1/8, 1/4, 1/2, and 3/4 
of the images; Occluding 3 blocks, 6 blocks, and 9 blocks randomly; shrinking 0.5 times, reducing 
0.5 times, 0.7 times, and 0.9 times; and magnifying 1.2 times and 1.5 times. The cropped, masked, 
and scaled images and the extracted watermark images are shown in Figure 5 (a)-(l). Table 3 presents 

Table 2. NC Values for Different Images Resisting Rotation Attacks From Different Angles

Degree of rotation Lenna Peppers Baboon

Left 1° 0.995186 0.974749 0.958172

Right 1° 0.976025 0.973500 0.958853

Left 2° 0.964074 0.963408 0.946178

Right 2° 0.967411 0.962328 0.946990

Left 3° 0.955180 0.953359 0.937881

Right 3° 0.957028 0.952753 0.937498

Left 5° 0.943413 0.934380 0.917511

Right 5° 0.950870 0.993372 0.916861

Left 10° 0.900129 0.892389 0.873360

Right 20° 0.845457 0.834568 0.811753

Left 30° 0.811482 0.800573 0.777533

Right 40° 0.800165 0.785076 0.761458

Left 50° 0.776142 0.785251 0.762614

Right 60° 0.810315 0.800549 0.772185

Left 70° 0.840000 0.834119 0.811563

Right 80° 0.901859 0.891256 0.842975

Left 90° 1.000000 1.000000 1.000000
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the NC  values of the extracted watermark. The experimental results demonstrate that the watermark 
NC  value extracted by this algorithm is still 1 after different degrees of cropping attacks. This is 
because in this article, in order to improve the images’ anti-cropping robustness, the four regions of 
a host image, namely the top, bottom, left, and right, are embedded with complete independent 

Figure 5. Different Images Subjected to Different Extents of Cropping, Occluding, Scaling Attacks, and Extracted Watermarks: (a) 
Lenna Cropped by 1/6 and the Extracted Watermark, (b) Lenna Cropped by 1/8 and the Extracted Watermark, (c) Baboon Cropped 
by 1/4 and the Extracted Watermark, (d) Baboon Cropped by 1/2 and the Extracted Watermark, (e) Peppers Cropped by 1/2 and 
the Extracted Watermark, (f) Peppers Cropped by 3/4 and the Extracted Watermark, (g) Lenna Occluded by Three Blocks and The 
Extracted Watermark, (h) Baboon Occluded by Six Blocks and the Extracted Watermark, (i) Peppers Occluded by 9 blocks and 
the Extracted Watermark, (j) Lenna Reduced by 0.5 Times and the Extracted Watermark, (k) Baboon Reduced by 0.9 Times and 
the Extracted Watermark, (l) Peppers Amplified by 1.5 Times and the Extracted Watermark

Table 3. Cropping, Occlusion, and Scaling Attacks in Varying Degrees, and NC Values of Extracted Watermarks

Type of attacks Lenna Peppers Baboon

Cropping
1/16 1.000000 1.000000 1.000000

3/4 1.000000 1.000000 1.000000

Occlusion

3 blocks 0.960988 0.961406 0.958034

6 blocks 0.936324 0.924216 0.927550

9 blocks 0.891973 0.896347 0.893706

Scaling

0.5 0.999976 0.999678 0.993482

0.7 0.981545 0.988092 0.922169

0.9 0.974410 0.987759 0.962208

1.2 0.961753 0.979621 0.957367

1.5 0.999952 0.979887 0.962660
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watermarks, improving the anti-cropping performance of the watermark by 75%. So, an uncorrupted 
watermark region can always be found to protect the watermark, regardless of cropping attack degrees. 
The NC  value of the extracted watermark is still greater than 0.89 in the case of as many as nine 
occlusion blocks, indicating that the proposed algorithm is robust against occlusion attacks. After 
any degree of scaling attacks, the NC  value of the watermark mostly stays above 0.96, and the NC  
value of the extracted watermark is even as high as 0.9999 after a 0.5 times reduction. Either 0.5 
times reduction or restoration is presented in an integer form, and the accuracy loss of the image is 
very small, almost negligible (0), so damage inflicted upon the watermark is minimal.

4.2.3 Other Conventional Attacks
The NC  values of watermarks extracted after other conventional attacks on Lenna, peppers, and baboon 
ranging from Gaussian noise to salt-and-pepper noise, median filter, and JPEG compression are detailed 
in Table 4, from which it can be seen that the values of extracted watermarks for the three images 
attacked by Gaussian noises 0.005, 0.01, 0.02, and 0.05 mostly remain above 0.8. For the three images 
attacked by 0.005, 0.01, 0.02, and 0.05 salt-and-pepper noises, most of the extracted watermark’s NC  
values are higher than 0.9, indicating that the algorithm proposed in this article is robust against Gaussian 
noise and salt-and-pepper noise attacks. For the median filter attacks of 3×3 and 5×5, the NC  values 
of watermarks all stayed above 0.85, suggesting that the algorithm is quite robust in resisting median 
filter attacks. The NC  values of extracted watermarks are all greater than 0.95 after JPEG compression 
attacks because this algorithm embeds the watermark into the LWT low-frequency sub-band of the host 
image, which contains more contour information. Since JPEG compression compresses the high-
frequency sub-band information of the image that contains more detailed information, and has little 
effect on the low-frequency sub-band, therefore this algorithm is more robust against JPEG compression.

4.3 Contrast experiment
The method proposed in this paper is further compared with literature on DWTSVD (Roy & 
Pal, 2019), FDCuT (Soleymani et al., 2019), and DWT (Agarwal et al., 2015), DWTHTSVD 
(Khare & Srivastava, 2020), based on JPEG compression attack, median filter attack, Gaussian 
filter, Gaussian noise, salt-and-pepper noise, scaling attack, and cropping attack. From Table 
5, it can be observed that the algorithm LWTHD outperforms method DWTSVD, FDCuT, 

Table 4. Other Conventional Attacks in Varying Degrees, and NC Values of Extracted Watermarks

Other conventional attacks Lenna Peppers Baboon

Gaussian noise

0.005 0.965254 0.969726 0.977410

0.01 0.935336 0.934180 0.945430

0.02 0.907900 0.847415 0.867483

0.05 0.865774 0.736317 0.776954

Salt-pepper noise

0.005 0.999743 0.997159 0.987490

0.01 0.995580 0.992217 0.976962

0.02 0.983901 0.977389 0.940738

0.05 0.904126 0.913324 0.879096

Median filter
3×3 0.954220 0.969225 0.964177

5×5 0.850900 0.878150 0.870182

JPEG compression
10 0.964130 0.994069 0.984137

30 0.9748636 0.995640 0.989011
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Table 5. Watermark NC Values Extracted via Conventional Attacks Contrast Experiment

Type of attacks DWTSVD DWTHTSVD DWT FDCuT LWTHD

JPEG 
compression

10 / 0.9995 / 0.7900 0.9641

15 0.9525 / / / 0.9668

20 / / / 1.0000 0.9703

30 0.9999 / / 0.9749

50 0.9831 0.9999 / / 0.9790

60 0.9998 / / 0.9859

80 0.9959 1.0000 0.991 / 0.9924

95 0.9968 / 0.9981 / 0.9987

Median filter
3×3 0.9796 0.9994 / 1.0000 0.9542

5×5 0.9741 0.9973 / 1.0000 0.8509

Gaussian filter
3×3 0.9611 0.9999 0.9985 / 0.9740

5×5 0.9621 0.9999 0.9897 / 0.8977

Gaussian noise

0.00001 / 0.9985 0.9984 / 1.0000

0.0001 / / 0.998 / 1.0000

0.001 0.9975 / / 0.9726

0.01 0.9368 / / / 0.9353

0.02 / / / / 0.9079

0.03 0.9342 / / / 0.8903

0.05 0.9294 / / 0.9700 0.8658

0.1 0.9278 / / 0.9000 0.7964

Salt-pepper 
noise

0.001 0.9998 0.9989

0.01 0.9715 0.9980 1.0000 / 0.9956

0.02 / / / / 0.9839

0.03 0.9593 / / / 0.9425

0.05 0.9583 / 0.9396 1.0000 0.9041

0.95 / / 0.0274 / /

0.1 0.9461 / / 1.0000 0.8503

Scaling

0.1 / / 0.0268 / 1.0000

0.25 0.9605 / / / 1.0000

0.5 0.9655 / / 1.0000 1.0000

0.9 / / 0.8987 / 0.9744

1.5 / / / 1.0000 1.0000

2 0.9659 0.9999 / / 1.0000

Cropping

1/10 / / 0.9435 1.0000 1.0000

1/8 0.9864 / / / 1.0000

1/4 0.9609 / / 0.9500 1.0000

1/2 0.9479 / / / 1.0000

3/5 / / 0.6284 / 1.0000
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DWT, and DWTHTSVD in terms of withstanding JPEG compression due to the fact that it 
embeds the watermark into the low frequency domain of LWT, while compression attack has 
little effect on the watermark because it compresses the high frequency domain. The algorithm 
is robust enough to resist Gaussian noise and salt-and-pepper noise attacks. The watermark 
NC  value is above 0.79 when Gaussian noise and the salt-and-pepper noise reach 0.1. This 
is because the second row and second column element of the Hessenberg decomposed H  
matrix contains the maximum energy of the whole matrix and has the stable numerical 
characteristic conducive to resisting external disturbances. Obviously, the NC  values of this 
algorithm perform better against scaling and cropping attacks than those covered in method 
DWTSVD, FDCuT, DWT, and DWTHTSVD, with all cases even reaching 1.0. This outstanding 
performance is attributed to the fact that this algorithm uses the SIFT operator to make 
geometric adjustments after scaling attacks to restore the image to the original size. The scaling 
factors are integer multiples after 0.5, 0.1, and 1.5 times of scaling, which do not affect the 
image’s pixel accuracy, and so the NC  value stays as high as 1.0. When scaling factor is 0.9, 
the result would be pixel accuracy loss, but even then, the NC  value is still as high as 0.97. 
Moreover, the algorithm LWTHD divides the host image into four separate parts to embed the 
watermark, which significantly enhances watermark anti-cropping performance, and the NC  
values of the watermark extracted remain at 1.0 even after various degrees of cropping. Overall, 
the minimum and maximum NC  values of this algorithm are 0.79 and 1, respectively, indicating 
that the algorithm is robust against various types of conventional attacks.

Regarding filter and noise attacks, the NC   value of the extracted watermark tends to decrease 
slightly as attack intensity increases, but the  NC  value is still greater than 0.79 on the whole, 
suggesting that the algorithm LWTHD is a robust watermark extraction method.

The watermarking algorithm based on DWTSVD, DWTHTSVD, and DWT embeds the 
watermark in the DWT domain, which is easy to cause a large loss of precision, and has high 
time complexity and large storage space, which is inconvenient for hardware implementation. 
This algorithm embeds the watermark in the IWT domain, which improves the accuracy of 
watermark extraction, reduces the time complexity and saves storage space. The watermarking 
algorithm based on FDCuT is only suitable for grayscale images, but this algorithm can be used 
for color images. Compared with the traditional watermarking algorithm, this algorithm has the 
following advantages:

1.  The embedding and extraction process meets the requirements of blind watermarking.
2.  Invisibility and robustness meet practical application requirements.
3.  The time complexity is low, which can meet real-time watermark embedding and extraction.

5. CoNCLUSIoN

Here, the authors propose a robust watermarking algorithm based on lifting wavelet transform 
(LWT) and Hessenberg decomposition (LWTHD), which has important implications for 
information security and copyright protection. Embedding the watermark information into the 
maximum Hessenberg decomposition element of the low-frequency sub-band after performing 
LWT can effectively avoid external interferences. Embedding the watermark image into the four 
separate areas on the top, bottom, left, and right of the host image can effectively withstand 
cropping attacks. Distortion correction using the SIFT algorithm during watermark extraction 
can effectively resist geometric attacks. The fruit fly optimization algorithm (FOA) can 
adaptively find embedding strength to achieve an optimal balance of invisibility and robustness. 
The experiments show that the algorithm LWTHD exhibits high robustness, especially in 
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resisting attacks such as rotation, cropping, salt-and-pepper attack, JPEG compression, and 
salt-and-pepper noise. The screen shot attack is not considered in this paper, which will be 
the next research content.
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