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ABSTRACT

The digitization of human body, especially for treatment of diseases can generate a large volume of data. 
This generated medical data has a large resolution and bit depth. In the field of medical diagnosis, loss-
less compression techniques are widely adopted for the efficient archiving and transmission of medical 
images. This article presents an efficient coding solution based on a predictive coding technique. The 
proposed technique consists of Resolution Independent Gradient Edge Predictor16 (RIGED16) and Block 
Based Arithmetic Encoding (BAAE). The objective of this technique is to find universal threshold values 
for prediction and provide an optimum block size for encoding. The validity of the proposed technique is 
tested on some real images as well as standard images. The simulation results of the proposed technique 
are compared with some well-known and existing compression techniques. It is revealed that proposed 
technique gives a higher coding efficiency rate compared to other techniques.
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1. INTRODUCTION

In current health care practices, standard medical imaging systems are used for medical diagnosis. With 
the advancement in digital and scanning technologies, these medical imaging systems have become an 
important part of the diagnostic systems. These systems produce accurate images of high quality with 
high resolution and bit depths. Such improvement in imaging systems produces large amount of medical 
data to be processed, archived and transmitted. During past few decades, enormous amount of digital 
imaging data was generated, especially in biomedical field. The volumetric scanning technologies, such 
as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) generate large number of im-
age frames and require huge amount of space for storage. These image frames consume more bandwidth 
for transmission. It is a complex task to handle transmission, archiving and manage the data produced 
during radiological process (Ravishankar & Bresler, 2011; Bhardwaj, 2017). These facts motivate the 
research in the area of efficient compression techniques for high resolution and higher bit depth im-
ages. The aim of image compression is to remove redundant or irrelevant data from the image such that 
it could be stored, transmit and processed effectively (Williams, 1991; Bell et al., 1990). Further, the 
compression techniques are broadly divided into two categories i.e. lossless and lossy. But in the field 
of medical diagnosis, lossless techniques are widely adopted because the data is not lost during recovery 
process. On the other hand, lossy technique doesn’t provide accurate recovery at the receiver side and 
may lead to wrong diagnosis (Al-Khafaji, 2013; Al-Khafaji & Ghanim, 2017; Kabir & Mondal, 2018).

In literature, different compression techniques have been reported for medical diagnosis such as dic-
tionary encoding, transformation encoding and predictive encoding techniques. It is noted the transform-
based standards cannot provide higher compression rate (Al-Khafaji & Ghanim, 2017). These standards 
contain Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) for compression. 
Other side, predictive based compression techniques perform well and provide higher compression rate 
with low complexity (Gupta et al., 2013). The joint photographic experts group- lossless (JPEG-LS) 
(DIS, 1991; Pennebaker & Mitchell, 1992; Weinberger et al., 2000) and context-based, adaptive, lossless 
image coding (CALIC) are standard predictive coding techniques for lossless compression of medical 
images (Wu & Memon, 1997). The JPEG-LS is based on low complexity lossless compression (LOCO-
I) algorithm using standard median edge detector (MED) and golomb code (Weinberger et al., 2000; 
Matsuda et al., 2000). While, CALIC technique consists of two mechanisms, one is used for prediction 
and other is applied for image encoding. The prediction is done through gradient adjust predictor (GAP) 
and image encoding is performed by using arithmetic encoding. It is noticed that GAP predictor is more 
efficient than MED, but, is computationally extensive (Avramovic & Savic, 2011). So, the CALIC is more 
efficient than JPEG-LS in terms of Bits per Pixel (BPP). Many researchers have worked on predictive 
coding techniques and adopted lossless compression for medical images.

Many researchers have worked on predictive coding techniques and adopted lossless compression 
for medical images. Avramovic and Savic developed a predictive algorithm based on edge detection and 
local gradients (Avramovic and Savic, 2011). In this work, the strengths of 2D standard predictors are 
analyzed. The analysis showed that the GAP predictor performs well for medical images. Al-Mahmood 
& Al-Rubaye adopted a compression method that is based on a combination between predictive coding 
and bit plane slicing for compression of medical and natural image samples (Al-Mahmood & Al-Rubaye, 
2014). This compression technique discards the lowest order bits and exploits only higher order bits in 
which most significant bit used predictive coding. Anitha proposed a hybrid technique that combines 
integer wavelet transforms (IWT) and predictive coding technique to improve the performance of lossless 
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compression (Anitha, 2015). IWT is applied to input image samples and predictive coding was applied 
to the output of IWT. Entropy and compression ratio are used to evaluate the compression performance. 
Gupta et al. highlighted the prediction-based compression and combined this predictive coding with IWT 
for achieving better compression ratio (Gupta et al., 2013). Performance results of proposed technique 
in terms of Bits per Pixel (BPP) and Peak Signal to Noise Ratio (PSNR) is better achieved by proposed 
technique as compare to existing JPEG 2000.

In current scenario, advanced scanning techniques (MRI and CT) are applied for medical diagno-
sis. These techniques have higher bit depth images with improved image quality. This research work 
presents an efficient coding solution based on predictive coding technique for lossless compression 
of higher bit depth volumetric medical images. The proposed approach is the combination of Resolu-
tion Independent Gradient Edge Detector16 (RIGED16) and the Block Adaptive Arithmetic Encoding 
(BAAE). The proposed algorithm selects an optimum universal threshold for prediction and an optimal 
block size of residual image for encoding purpose. The experimental results show that the proposed 
algorithm achieves higher compression performance as compared to standard lossless compression ap-
proaches. Rest of the paper is arranged as follows. Section 2 describes the dataset explored for this work 
and general overview of predictive coding techniques. In section 3, RIGED16 and BAAE are proposed 
for lossless compression of 3D sets of medical images of different modalities and resolutions. Section 4 
presents different performance parameters used for evaluation of proposed technique. The experimental 
results are demonstrated and discussed in section 5. The conclusion of this work is given in section 6.

2. MATERIALS AND METHODS

2.1 Dataset

A set of medical images (MRI and CT-scan) are collected from three different sources for testing and 
comparative analysis of the proposed algorithm. All collected images are of 16 bit depth. The MRI and 
CT images are usually 12 to 16 bits deep to cover the maximum depth, but researchers have utilized all 
16 bit deep images. The lossless compression algorithm for MR and CT is designed to work with data 
that is natively of 16 bit depth. Test set I is a standard database contains 16 bit images of different image 
modalities (CT or MR) and resolutions of 256×256 and 512×512 presented in Table 1. The medical 
images presented in Table 1 belong to Cancer Imaging Archive (The Cancer Imaging Archive, 2017; 
Clark et al, 2013). Table 2 presents Test set-II. This test set is collected from different local hospitals 
including MR and CT images of different resolutions. Image slice-1 of volumetric MRI_1 and CT set 
collected from hospitals are also depicted (Figure 1).

Table 1. Test Set-I: standard dataset composed of CT and MR images of different resolutions

Sequence Resolution Slices Bits

CT_Lung_R13 (Grove et al, 2015) 512×512 67 17563648

CT_Lung_R4 (Grove et al, 2015) 512×512 68 17825792

MR_Neuro (Barboriak, 2015) 256×256 176 11534336

MR_Breast (Meyer, 2015) 288×288 60 3932160
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2.2 General Overview of Predictive Coding Technique

The correlation between adjacent pixels in 2D image is a measure of spatial (interpixel) redundancy. 
While, correlation of pixels in adjacent image slices of 3D image is temporal (interframe) redundancy. 
In predictive compression technique, spatial redundancy is removed by 2D predictors and statistical re-
dundancy is removed by entropy encoders (Al-Khafaji & Al-Mahmood, 2016). Prediction and entropy 
encoding are two major steps of predictive coding for lossless compression of an image (Shridevi & 
Vijaykumar, 2012) as shown in Figure 2.

In predictive coding technique, every pixel of an image is predicted individually from the context in 
raster scan format. After prediction, residual image is obtained by taking difference of original image 
and predicted image as shown in Figure 2. Residual image has less entropy; hence fewer numbers of bits 
are used to encode the residual image. Entropy encoder is applied to encode residual image to compress 

Table 2. Test Set-II: collected from local hospitals composed of CT and MR images of different resolutions

Sequence Resolution Slices Bits

MR_1 512×512 12 3145728

MR_2 512×512 20 5242880

MR_3 256×512 11 720896

MR_4 512×512 20 5242880

MR_5 512×512 20 5242880

MR_6 256×256 40 2621440

MR_7 256×256 20 1310720

CT 512×512 63 16515072

Figure 1. a) 1st slice of MRI_1; b) 1st slice of CT
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image losslessly. Efficiency of predictor depends on how well it predicts the image resulting in reduced 
entropy of residual image, lesser the entropy better will be the predictor. Entropy encoder’s efficiency 
depends upon its ability to reduce code length.

2.2.1 2D Predictors

2D predictor removes the interpixel redundancy from the 2D images and also for 3D compression pro-
cess of volumetric image, operating in frame by frame basis. Common scheme for labeling of causal 
neighbors in 2D predictors is shown in Figure 3.

Pixels in causal template are denoted as:
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Figure 2. Basic diagram of predictive coding technique

Figure 3. Common scheme of causal template for labeling neighbors
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MED and GAP are two benchmark algorithms used to minimize the entropy of images. JPEG-LS 
consists MED predictor which selects the median value among neighboring pixels N, W and W+N-
NW is simple to implement. GAP is based on the gradient estimation and form a part of CALIC. GAP 
is fixed threshold-based predictor and adapts itself to the intensity gradients of immediate neighbors 
of predicted pixel. The GED predictor is the combination of MED and GAP and takes the advantage 
of both the standard predictors. It uses local gradient estimation based on threshold (T) value as that of 
GAP and like MED, it selects median value between neighboring pixels (Shridevi & Vijaykumar, 2012). 
It is also threshold based that is user defined (Avramovic & Savicl, 2011).

The entropy encoder is a predictive coding technique that converts the residual image into a bit 
stream of low entropy. The number of bits required for encoding the information depends on entropy. 
The smaller value of entropy leads to less numbers of bits required for encoding and in turn get higher 
compression ratio. The different encoding schemes like Huffman, Run-length, Dictionary, Arithmetic 
and Bit-plane coding are also presented in literature (Anitha, 2015).

3. PROPOSED METHODOLOGY

3.1 Block Adaptive Arithmetic Encoding (BAAE) Employing RIGED16 Predictor

The 2D predictor contains a user defined threshold which makes its simple and efficient. The prediction 
of an image through GED predictor is based on threshold value. The choice of optimal threshold is very 
important for efficient prediction. In literature, no specific value for threshold is defined; the different 
values are used as threshold. This work focuses on the selection of an optimal threshold value that doesn’t 
depend upon the nature of image. Moreover, it is applicable for all modality and resolution of medical 
images. The RIGED16 is an extension of GED predictor and it is designed to make existing GED reso-
lution and modality independent. The RIGED16 specifies the optimal threshold value for prediction of 
16 bit depth images with minimum entropy for residual image. The threshold level for higher bit depth 
medical images can be up to 216. The algorithm of this model is given as:

ZV= |NW–W| + |NN–N| (2)

ZH= |WW–W| + |NW–N| 

if ZV–ZH>T, then PX=W 

else if ZV–ZH< -T, PX=N 

else PX=N+W–NW 

where T=Threshold and Zv and ZH are Vertical and Horizontal Gradients 

T=768 (common threshold for every modality and resolution of medical image) 

T=29(512) specifically for resolution 256×256 
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T=210(1024) specifically for resolution 512×512 

After RIGED16 prediction, the residual images are divided into different blocks of varying sizes and 
having error probabilities in different image regions. The whole image is divided into block size ranging 
from 4×4 to 128×128. On the basis of average absolute error, blocks are grouped and encoded separately 
through arithmetic encoder. Further, the weighted average of BPP is calculated for every block size. 
The block size with minimum BPP value is selected. To decompress the images, overhead information 
is computed which gives the side information of blocks. This information is also considered for BPP 
calculation of encoded residual image. The block diagram of proposed approach is shown in Figure 4. 
The working of proposed approach is as follows. An image slice is taken from the image data set and 
the image resolution is identified. The pixel prediction is done in raster scan order from causal template 
of an image. The RIGED16 is applied to the image slice that produces predicted image Z (x, y). After 
prediction, residual image or a prediction error image E (x, y) is obtained by subtracting Z (x, y) from 
original image Y (x, y). The residual image is further divided into optimal size blocks and blocks are 
grouped on the basis of the average absolute error. Each segmented group of residual image is entropy 
encoded and it is done through arithmetic encoder. To achieve the lossless compression of images, the 
abovementioned procedure is repeated for each frame of image and resulted in efficient compression 
in terms of BPP.

4. PERFORMANCE PARAMETERS

The efficiency of pixel value predictor is inversely related to the entropy of the prediction error image. 
The entropy describes the number of bits used to represent the information of an image (Shridevi & 
Vijaykumar, 2012). The number of slices in image sequence is taken into consideration to calculate the 
weighted average of entropy. The entropy of an image and weighted average of entropy for complete 
data-set is calculated as:

H X p x p x
x Y

( ) =− ( ) ( )∑� log
e

 (3)

Entropy weighted Average = 
N

M m n S H X

m n S=
∑

× × ( )





× ×1
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� �
 (4)

Where, p(x) is probability of a symbol X.
M = Total number of datasets to be tested.
m, n = Image resolution.
S = Number of image slices in each data sequence.

The data size of compressed image depends on the BPP along with resolution of an image. Com-
pression Ratio (CR) and BPP are inversely related to each other (Avudaiappan et al., 2017; Puthooran 
et al., 2013).
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BPP = Bit depth of image
CR

 (5)

BPP weighted Average = 
N

M m n S BPP

m n S=
∑

× × 





× ×1
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� �
 (6)

Figure 4. Proposed BAAE employing RIGED16 for lossless compression



198

A Block-Based Arithmetic Entropy Encoding Scheme for Medical Images
 

5. RESULTS AND DISCUSSION

This section demonstrates simulation results of proposed approach using two test set problems. The 
performance of the proposed technique is evaluated using image datasets Test Set-1 and Test Set-2. The 
description of these image datasets is given in Tables 1-2. MATLAB simulation environment is used to 
implement the proposed approach. The proposed algorithm is also work with the same performance for 
12 bit deep images. The simulation results of proposed approach are compared with CALIC, JPEG-LS 
and other lossless compression techniques (Lucas et al., 2017; 3D-Calic implementation, 2017; JPEG 
2000 codec, 2017).

5.1 Performance Evaluation in RIGED16 Algorithm of Proposed Technique

In this subsection, proposed algorithm is analyzed for compression performance of volumetric images 
having different modalities and resolutions. The proposed approach works well for grayscale images of 
every type of modality. Initially, the coloured images can be converted into greyscale images before pre-
diction. An appropriate threshold value is selected for prediction that can provide the minimum entropy 
value for all residual images. Our proposed algorithm RIGED16 is designed to make the GED algorithm 
independent of modality and resolution. The GED is tested for different thresholds on the scale of 2n. 
For 16 bit depth images, value of ‘n’ can be up to 16. The entropy values obtained for residual images 
are predicted at different thresholds and these values are mentioned in Table 3. The weighted average is 
evaluated for complete dataset on the basis of number of slices.

Table 3. Entropy obtained by GED predictor at different threshold values on the basis of 2n

Medical Image 
Database

Original 
Entropy

Entropy Values Obtained at 2n Threshold Levels of 2D GED

8 16 32 48 64 128 256 512 1024 2048

MR_1 8.33 5.86 5.80 5.72 5.67 5.64 5.59 5.58 5.55 5.54 5.59

MR_2 6.99 5.09 5.06 5.02 4.99 4.98 4.95 4.94 4.93 4.92 4.95

MR_3 8.22 6.74 6.75 6.74 6.73 6.72 6.69 6.68 6.67 6.68 6.68

MR_4 7.59 5.36 5.33 5.28 5.25 5.23 5.21 5.20 5.20 5.20 5.20

MR_5 7.63 4.80 4.73 4.64 4.59 4.56 4.48 4.46 4.44 4.43 4.46

MR_6 7.50 6.15 6.15 6.13 6.12 6.11 6.07 6.05 6.03 6.04 6.05

MR_7 8.11 6.98 6.97 6.96 6.95 6.94 6.93 6.92 6.91 6.93 6.95

CT 8.20 7.64 7.53 7.46 7.42 7.37 7.22 7.20 7.17 7.14 7.29

CT_Lung_R13 9.12 6.45 6.32 6.26 6.21 6.17 6.12 6.10 6.09 6.08 6.09

CT-Lung_R4 7.96 7.51 7.43 7.24 7.20 7.18 7.06 7.04 7.03 7.01 7.04

MR_Neuro 7.11 6.86 6.73 6.68 6.58 6.53 6.46 6.45 6.44 6.45 6.46

MR_Breast 8.76 7.67 7.59 7.57 7.34 7.26 7.23 7.21 7.17 7.16 7.18

Weighted Average 8.49 6.71 6.62 6.54 6.48 6.45 6.39 6.36 6.33 6.32 6.36
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From results, it is observed that there is a significant variation on entropy value for different threshold 
levels on the basis of 2n. The change in entropy value is quantified as 6.71 to 6.33 when T- level ranges 
from 23 to 29. Whereas, there is minor variation in the value of entropy when threshold value ranging 
from 29 to 210. After 210, entropy again starts increasing as shown in Figure 5. The T-level can be up to 
216 for 16 bit depth image dataset, entropy value is calculated up to 216, but it keeps on increasing after 
210. Hence, T-level 210 can be considered as an optimal value providing minimum entropy.

As the minimum entropy is obtained between the range of T-levels 29 to 210. Further, the range of 
T-levels are checked between 29 and 210 with the difference of 128 (i.e., 640, 768, 896) for optimal 
universal T-level as shown in Figure 6. There is significant variation in entropy when threshold value 
changing from 512 to 768 and after 768, entropy again starts increasing. Hence, 768 threshold value is 
considered as a threshold value that can provide minimum entropy value for 16 bit depth images. For 
lower and higher thresholds, the entropy value is high but for mid threshold values like 512 to 1024, 
entropy value should be minimized. After analysis of threshold value for minimum entropy, it is noted 
that threshold value (768) provides less entropy value i.e. 6.323.

Figure 5. Entropy obtained by 2D predictor at 2n t-levels

Figure 6. Entropy obtained by 2D predictor at different threshold values in difference of 128
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The weighted average entropy evaluation is done at specific resolution of 256×256 and 512×512. 
The different threshold values are considered to obtain optimal results. The results of this parameter are 
given in Figure 7. The images with resolution of 256×256, the minimum value of entropy is obtained at 
29. For higher resolution images i.e. images of 512×512, 210 represent minimum entropy. There is slight 
variation in entropy value from 6.42 to 6.24 when T-levels vary from 29 to 210 but significant change is 
observed for higher T-levels i.e. 210.

5.2 Performance Evaluation of BAAE

The grouping of blocks is done before Arithmetic encoding and BPP values are calculated for different 
block sizes. The weighted average of BPP is calculated for different block sizes presented in Table 4. 
The overhead depends on the block size, BPP values of overhead is also tabulated. It is revealed that the 
compression performance has a significant variation for different number of block sizes. After experimen-
tal analysis on different block sizes, the best block size is selected which finally provides the minimum 
BPP value. The BPP value with overhead for compressed image is 5.60 at the block size 4×4. After 4×4, 
the BPP value starts decreasing and reaches to 5.07 for a block size of 8×8. Again, BPP values starts 
increasing after 8×8 because overhead decreases with increasing number of block sizes and the code 
length of compressed image is increases. It is found that when code length of the compressed residual 
image and overhead information of the block is combined then the lowest BPP value is obtained for a 
block size of 8×8. The image datasets include CT-Lung, MR-Neuro, MR-Breast and other human parts 
of different modalities and resolution. But, proposed approach provides same results for BPP. Hence, 
it is stated that proposed BAAE approach with RIGED16 gives optimal performance in terms of BPP.

Figure 7. Entropy obtained by GED at 2n threshold values for 256×256 and 512×512 resolution
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A comparison with and without overhead in terms of BPP is shown in Figure 8. It is seen that the 
minimum value of BPP is obtained for the smallest block size i.e. 4×4, when BPP overhead is not taken 
into consideration. The BPP value increases for higher blocks (more than 4×4) due to increase in code-
length of residual image. The overhead BPP is maximized for smaller block size i.e. 4×4, and it decreases 
with higher number of block sizes (more than 4×4) as shown in Figure 8. To take overhead (including 
code-length) into consideration, minimum BPP value is obtained for block size 8×8. The block size 
more than 8×8, code length increases and overhead decreases, resulting in minimum value of BPP that 
can be obtained for the block size 8×8.

Table 4. Compression results (in BPP) of proposed technique for varying number of block size with 
overhead

Testset
BPP values for different Block Size (BPP overhead)

4×4 8×8 16×16 32×32 64×64 128×128

MR_1 4.22 (0.2343) 4.08 (0.2343) 4.10 (0.0548) 4.21 (0.0126) 4.36 (0.0029) 4.60 (0.0006)

MR_2 5.13 (0.2343) 5.05 (0.2343) 5.06 (0.0546) 5.14 (0.0126) 5.25 (0.0029) 5.40 (0.0006)

MR_3 5.97 (0.2343) 6.09 (0.2343) 6.12 (0.0546) 6.27 (0.0126) 6.41 (0.0029) 6.67 (0.0006)

MR_4 4.76 (0.2343) 4.68 (0.2343) 4.72 (0.0546) 4.77 (0.0126) 4.86 (0.0029) 4.97 (0.0006)

MR_5 4.24 (0.2343) 4.16 (0.2343) 4.18 (0.0546) 4.26 (0.0126) 4.39 (0.0029) 4.54 (0.0006)

MR_6 4.90 (0.2343) 4.50 (0.2343) 4.68 (0.0546) 4.76 (0.0126) 4.80 (0.0029) 4.98 (0.0006)

MR_7 4.48 (0.2343) 4.46 (0.2343) 4.47 (0.0546) 4.51 (0.0126) 4.54 (0.0029) 4.67 (0.0006)

CT 4.84 (0.2343) 4.82 (0.2343) 4.94 (0.0546) 4.96 (0.0126) 4.98 (0.0029) 5.39 (0.0006)

CT_Lung_R13 6.10 (0.6837) 5.40 (0.1555) 5.42 (0.0335) 5.95 (0.0074) 6.00 (0.0016) 6.05 (0.0003)

CT-Lung_R4 6.55 (0.9411) 5.63 (0.2343) 5.63 (0.0546) 6.27 (0.0126) 6.37 (0.0029) 6.55 (0.0006)

MR_Neuro 5.61 (0.5980) 5.08 (0.1346) 5.10 (0.0300) 5.52 (0.0067) 5.75 (0.0016) 5.93 (0.0003)

MR_Breast 4.77 (0.9880) 3.90 (0.2343) 3.93 (0.0546) 4.14 (0.0126) 4.36 (0.0029) 4.58 (0.0006)

Weighted Average 5.60 (0.5956) 5.07 (0.2012) 5.11 (0.0461) 5.47 (0.0105) 5.57 (0.0024) 5.77 (0.0005)

Figure 8. BPP obtained by proposed technique for different block sizes, with and without overhead
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It is clear that there is significant difference between BPP values at 4×4, with and without overhead. 
After 8×8, BPP values obtained with and without overhead are nearly equal and for higher block size 
after 16×16, BPP values are equal for both cases, because the overhead is very less resulting in no ef-
fect of overhead.

5.3 Comparison of the Proposed Technique with the Lossless 
Compression Standards CALIC and JPEG-LS

Table 5 presents the comparative analysis of compression performance in terms of BPP for the com-
pressed images. BPP values obtained from proposed technique are compared with simple RIGED16 + 
Arithmetic encoding (without block segmentation). This comparison is made to demonstrate the im-
portance of optimal threshold selection for prediction and the choice of optimal block size for 2D block 
partitioning of residual images before encoding. From experimentation results, it is observed that the 
proposed technique performs better in terms of compression ratio compared to RIGED16 + Arithmetic 
Encoding. The weighted average of BPP using RIGED16 + Arithmetic is 5.93, whereas, the proposed 
approach obtains BPP values 5.02. When, residual image is directly encoded by Arithmetic encoder 
(without block partitioning), then a larger value of BPP is obtained as compared to block partitioning 
image. The proposed approach outperforms than simple RIGED16 + Arithmetic encoding (without 
blocking) by 17.48% in terms of BPP values.

Table 5. Compression performance results (in BPP) using proposed technique and simple 
RIGED16+arithmetic encoding for both the test sets given in Section 2

Testset
Compressed Image Size (BPP) %Improvement of Proposed 

Method

RIGED16+ Arithmetic Encoding 
(Without Blocking) Proposed Approach Over RIGED16+Arithmetic 

Encoding

MR_1 5.04 4.08 23.45

MR_2 5.60 5.05 10.92

MR_3 6.72 6.09 10.29

MR_4 5.22 4.68 11.60

MR_5 4.76 4.16 14.27

MR_6 4.73 4.50 5.13

MR_7 4.79 4.46 7.21

CT 5.41 4.82 3.91

CT_Lung 6.17 5.40 14.20

CT-Lung 6.93 5.63 23.16

MR_Neuro 6.36 5.08 25.31

MR_Breast 6.62 3.90 69.53

Weighted Average 5.93 5.02 17.48
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Table 6 presents the comparative results of proposed approach and other existing technique like CALIC, 
JPEG-LS, JPEG-2000. Further, 3D signal, 3D extension of JPEG 2000 (JP3D) (JPEG 2000 codec, 2017), 
M-CALIC, 3D CALIC (3D-Calic implementation, 2017) and High Efficiency Video Coding (HEVC) 
(ITU-T and ISO/IEC, 2013) are also used for comparison. It is observed that proposed approach provides 
more efficient results as compared to other techniques. However, the results are validated by the results 
obtained on the benchmark dataset.

The proposed RIGED16+BAAE approach achieves 5.29 BPP value, whereas 2D-CALIC and JPEG-
LS approaches achieve 5.39 and 5.49 BPP values respectively. The BPP values obtain by other lossless 
image coding techniques like JPEG 2000, JP3D, M-CALIC, 3D-CALIC and HEVC are 5.55, 5.51, 5.75, 
5.58, 5.48 and 5.36 respectively. Hence, the proposed approach obtains minimum BPP value among all 
other approaches. The proposed approach is also compared with most recent and highly efficient 3D-
MRP algorithm. It is observed that 2D compression process of proposed approach is simple and efficient 
and gives comparable results as compared to 3D-MRP-13. The percentage improvement of proposed 
approach over other lossless coding techniques is given in Table 7.

Table 6. Comparison of compression performance (in BPP) using proposed technique and existing 
compression methods for Test Set I

Test-set
Compressed Image Size (BPP)

CALIC JPEG-
LS

JPEG 
2000 JP3D M-CALIC 3D 

CALIC HEVC 3D-MRP Proposed 
Approach

CT_Lung_13 5.43 5.65 5.53 5.62 6.09 5.72 5.83 5.31 5.40

CT_Lung_4 5.81 5.80 6.01 5.96 5.96 5.89 5.74 5.99 5.63

MR_Neuro 5.11 5.29 5.36 5.16 5.38 5.34 5.06 5.04 5.08

MR_Breast 4.11 3.93 4.16 4.07 4.28 4.22 3.94 4.00 3.90

Weighted Average 5.39 5.49 5.55 5.51 5.75 5.58 5.48 5.36 5.29

Table 7. Percentage improvement by proposed technique over existing compression methods for Test Set I

Test-set
%Improvement of Proposed Approach

2D-CALIC JPEG-LS JPEG 2000 JP3D M-CALIC 3D 
-CALIC HEVC 3D-MRP

CT_Lung_13 0.59 4.63 2.44 4.05 12.84 6.01 8.01 -1.72

CT_Lung_4 3.2 2.98 6.74 5.98 6 4.7 1.98 6.37

MR_Neuro 0.73 4.19 5.62 1.59 5.94 5.11 -0.29 -0.78

MR_Breast 5.24 0.65 6.57 4.19 9.77 8.21 0.97 2.53

Weighted Average 1.90 3.65 4.99 4.18 8.64 5.52 3.47 1.65
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The proposed method achieves better compression performance and outperforms than standard CALIC 
and JPEG-LS by 1.90% and 3.65% respectively in terms of BPP value. The average compression gain 
of 4.99% and 4.18% is achieved over JPEG 2000 and over its 3D extension (JP3D). On comparing with 
remaining coding techniques M–CALIC, 3D-CALIC and HEVC, percentage improvement of proposed 
RIGED16+BAAE technique is 8.64%, 5.52% and 3.47% respectively. When compared with 3D-MRP 
then the percentage difference of proposed RIGED16+BAAE and 3D-MRP is 1.65%. The improvement 
in compression performance is due to the selection of optimal threshold prediction value for higher 
inter-pixel redundancy removal and optimal block size selection for removing coding redundancy in 
the proposed technique.

6. CONCLUSION

This paper presents a new image compression algorithm based on threshold selection for prediction and 
choice of optimal block size of residual image for encoding. The proposed approach is developed for 
efficient lossless compression of volumetric images using RIGED16. Further, block based arithmetic 
encoding is also used to process volumetric image data independently. The effectiveness of proposed 
approach is verified using standard test-set and dataset collected from local hospitals. This approach 
provides higher compression efficiency as compared to standard CALIC and JPEG-LS techniques. The 
proposed approach achieves percentage improvement of 1.90%, 3.65%, 3.47% and 1.65% over CALIC, 
JPEG-LS, HEVC and 3D-MRP techniques respectively.
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