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ABSTRACT

In the current era of technology, the utilization of tablets and smart phones plays a major role in 
every situation. As the numbers of mobile users increase, the quality of service (QoS) and quality of 
experience (QoE) are facing the greater challenges. Thus, this can significantly reduce the latency and 
optimize the power consumed by the tasks executed locally. Most of the previous works are focused 
only on quality optimization in the dynamic service layouts. However, they ignored the significant 
impact of accurate access network selection and perfect service placement. This article performs the 
detailed survey of various MEC approaches with service provision and adoption. The survey also 
provides the analysis of various approaches for optimizing the QoS parameters and MEC resources. 
In this regarding, the survey classifies the approaches based on service placement, network selection, 
QoS, and QoE parameters, and resources such as latency, energy, bandwidth, memory, storage, and 
processing.

Keywords
energy consumption, fifth-generation, latency, mobile edge computing, Multimedia tasks, network selection, 
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1. INTRODUCTION

Recent advances in the cost, performance, and energy efficiency of IoT devices; network technologies 
(such as 4G and 5G) (Liu, 2013) and distributed computing architectures have led to the explosive 
growth of the Internet and mobile connectivity, in turn leading to new distributed applications in areas 
such as transportation, healthcare, mining, entertainment, and security, such as automated vehicles, 
augmented reality, cloud robotics, smart homes and cities, video surveillance and streaming, and 
Internet of Things (IoT) applications (Best-Rowden, 2018) This has led to an unprecedented growth 
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in data as well as increased the importance of latency and regulation in handling and managing 
data. The new distributed applications have characteristics that may be bandwidth-hungry (video 
surveillance, video conferencing, traffic monitoring), latency-critical (automated vehicles, robotic 
surgery, safety), and may cause spikes in activity at places or times (sporting events). Applications 
may also require high availability, low jitter, and security. Large-scale deployment of IoTs and 
industrial IoT devices (Sun, 2017) is expected to play a big role in the development of smart cities, 
which will generate large volumes of aggregated cellular data that may choke the network. On the 
other hand, devices such as sensors on the power grid or on oil pipelines may host latency-sensitive 
applications that require low latency in order to ensure that mission-critical data is transmitted and 
processed in a timely manner so that potential damage to people, property, and the environment can 
be prevented (Wang, 2018). Online video games on consoles such as Xbox Live, where reaction times 
are in milliseconds, have become extremely popular recently. Such games may be hosted by a distant 
data centre (DC), so the presence of latency and jitter could have a significant effect on gamers’ 
experience and dramatically reduce their interest in the games. Virtual Reality (VR), Augmented 
Reality (AR), and other state-of-the-art human-computer interaction applications require low latency 
and rapid processing for complex rendering algorithms as well as large volumes of data that may 
need to be transferred between a user and a DC hosting the applications (Mao, 2017). There has been 
a rush of live streaming applications (Tran, 2017) such as SnapChat, Facebook Live, and YouTube 
Live, due to the proliferation of high definition (HD) video cameras on smart phones. Similarly, 
video surveillance applications will require high-performance computer resources to run artificial 
intelligence (AI) and machine learning (ML) technologies (Wang, 2018) to identify people and alert 
human operators in real time. These applications may generate gigabytes or even terabytes of data per 
second. All in all, there is a need for a compute infrastructure that can begin to address the challenges 
posed by these emerging applications. Today’s telecom networks are not even expected to handle 
the enormous and rapidly varying capacity demands that will arise soon. One of the challenges of 
using IoT applications to their fullest potential (Taleb, 2017) is figuring out how to handle network 
traffic between end-users and application-hosting nodes while keeping infrastructure costs low and 
meeting QoS requirements of end-users, such as latency and/or throughput. One way to address the 
challenges presented by emerging IoT applications is to move the computations closer to end-users 
– that is, towards the ISP’s edge network – to reduce transmission costs, decrease network latency 
and jitter, increase reliability, and avoid network congestion. A key idea is to create a unified ICT 
infrastructure using existing large-scale distributed cloud infrastructures and augmenting (Li, 2016) 
them with compute capacities at intermediary nodes, such as radio base stations at the ISP’s edge 
network and inside its internal network. As shown in Figure 1, the unified infrastructure at the edge 
of the network, called “Mobile Edge Clouds,” can host applications closer to the end users. This helps 
solve congestion problems and meets end users’ performance expectations.

The main contribution of this article is as follows:

•	 In this paper, various optimization methods and its limitations are analyzed using the resource 
and task constraints for service selection, network selection and task scheduling process.

•	 A resource constraint based PSO approach is proposed for mobile task scheduling process in 
cloud virtual servers.

Rest of the article is organized as follows: section 2 deals with the various concepts and 
technologies of cloud computing. Section 3 deals with the various optimization methods. Section 4 
deals with the open issues presented in MEC. Finally, section 5 represents the proposed optimization 
model with resource constraints along with experimental results.
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2. RELATED CONCEPTS AND TECHNOLOGIES

This section presents a detailed discussion of the various types of clouds, such as MCC, FC, MEC, 
and cloudlets, respectively. Figure 2 presents the detailed analysis of different edge paradigms with 
the infrastructure implementation from CORE to EDGE (Piao, 2010). Table 1 presents the detailed 
comparison of MEC, FC, MCC, and Cloudlet. From the comparison, it is observed that MEC gives 
better QoS performance as compared to the conventional edge computing paradigms (Liu, 2015). 
Finally, the open research problems and challenges of MEC are effectively analyzed and used to 
elaborate on the new research trends, which are missed in the related work.

MCC: Mobile cloud computing (MCC) combines both mobile networks and cloud computing 
(CC) together. The mobile and cloud computing methods are combined and formed as the MCC 
model. This model provides sufficient energy resources, computation, and storage capacities to the 
mobile users (MUs) (Mitsis, 2019) through a centralized cloud. The fundamental architecture of 
MCC includes the cloud servers and MUs as presented in Figure 3.

According to the MCC, the cloud server exhibits unlimited resources, and it is far away from the 
MUs. Thus, the distance between the MUs and the cloud server increases the access delay. The core 
network of MCC has reduced computing capacity and resources. The access requests generated from 
the MUs are never directly executed by the core network (Chen, 2014, Yang, 2012).

Fog Computing: The MCC is widely utilised in the lower level IoT networks, but it still creates 
multiple problems, such as location awareness, lack of mobility support, and unreliable delays in 
IoT networks. The FC is used by the IoT networks to solve the above issues. The FC effectively 
allocates flexible services and resources to the MUs (Kumar, 2010). The FC gives support to both 
connected and unconnected devices. Initially, the FC was developed by Cisco Systems to provide 
unlimited services to the edge-connected enterprise network. FC suggests less latency as compared 
to conventional cloud computing approaches. In any case, the FC method suffers from the more 
reliant continuous wireless connection. The small interruption in the connections makes the process 
fail. Thus, the complex operations are not performing accurately through the FC and it supports the 
intelligence at LAN only (Deng, 2016). Thus, a greater number of attacks and threats are affecting 

Figure 1. Application sectors of MEC
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the performance and MUs privacy information. Thus, MEC is effectively used to support security 
at both the IoT level and mobile-to-mobile communications. And MEC also supports the various 
operations of IoT networks with reduced computations.

Cloudlets: Cloudlet (Pavlos, 2018) is the small source of a cloud network formed across single MUs 
and groups of multiple MUs. These cloudlets are utilised mostly in office buildings, shopping centers, 
and public places like transportation areas and hospitals with small data servers. The main objective of 
cloudlet is to interconnect different cloud technologies and provide the maximum number of resources to 
end users with reduced latency (Chen, 2016). Cloudlets mainly depend on Wi-Fi, WMAN, and WLAN 
technologies. Thus, if any interruption is generated in these technologies, then single hop and multiple 
hop connections between MUs connected to the internet get closed. The cloudlet also suffers from privacy 
and security issues that are related to the access-based privacy issues (Ksentini, 2014). So, MEC is a 
good way to solve these problems, and it works with all kinds of communication technology standards.

Figure 2. Simplified overview of major Edge paradigms

Table 1. Comparison of features of Edge paradigms

Method Cloudlet MCC FC MEC

Scalability Average High

Availability High

Local Awareness N/A Yes

Latency, Jitter Average Low

Mobility N/A Yes

Net. Architecture Centralized Distributed, Decentralized, N-Tier

Service Virtualization Virtualization, Others Virtualization

Hardware Servers Servers, User devices Heterogeneous servers

Deployment Network Core Network Edge, Devices Near-Edge, Edge Network Edge

Ownership Private entities Private entities, Individuals Telco Companies
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The MEC: The MEC plays a prominent role in advanced 4G and 5G communications as it 
overcomes the problems generated by the Cloudlets, FC, and MCC systems, respectively. The MEC 
consists of multi-functional MCCs for performing all types of resource allocation to the end users of 
the radio access network (RAN) (Wang, 2015). But these methods failed to provide the maximum 
efficiency in the high computational environments and resulted in a reduced data offloading ratio 
(Srivatsa, 2013). Thus, the MEC is equipped with a consumer-oriented offloading service management 
unit, an operator-third party-based service management unit, and a network performance and QoE 
improvement service management unit as shown in figure 4. The primary objective of MEC is to 
route the packets between various applications based on their services. The routing is performed based 
on independent mode, tap mode, inline mode, and breakout mode, respectively. The secured session 
connection will be re-estimated between the remote server and the local MEC host during breakout 
mode (Nicholson, 2006). The best examples of breakout mode data transmission are enterprise LAN 
or local CDN applications. The secured session is maintained with the standard servers during the 
inline mode and transmits all the traffic to the MEC applications through the internet. The security 
and caching related applications are treated as inline applications that are generated in the inline mode 
of operation. The resource-based traffic is simulated during the tap mode and transmits all resources 
to MEC applications. Finally, irrespective of the data and traffic offloading ratios, the resources are 
transmitted over to the MEC applications during the independent mode (Li, 2020). But the application 
needs to register with MEC infrastructure in this mode of operation. Thus, the MEC provides the 
highest offloading rates with improved bandwidth and reduced network latency by performing the 
various modes (Yang, 2017) of operations perfectly. However, MEC technologies are suffering from 
various challenges in real-time scenarios. Various research has been conducted on the MEC and it 
is still limited. As a result, a thorough examination of various conventional MEC technologies can 
provide significant solutions to all of the problems encountered in the edge network. The survey also 
reveals the un-covered area of potential research and gives prominent directions of study.

3. OPTIMIZATION APPROACHES

This section deals with the study of various optimization methods for providing efficient QoS 
parameters and MEC resources to the end users. These parameters provide different resources based 
on the MEC environment, such as end users, infrastructure, and service providers.

3.1 Service Placement Optimization Approaches
In MEC environments, service placement is the most important thing to think about, because better service 
placement means less latency, better network performance, and less wasted energy. In (Al-Badarneh, 2018), 

Figure 3. Mobile cloud computing (MCC) architecture
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researchers have focused on the main challenge of MEC, which is to increase the QoS constraints. In order 
to accomplish the task, the author reduced the execution time and applied a round-robin-based scheduling 
algorithm. The result of the approach provided a high rate of job completion within a stipulated interval 
of time. They have addressed the MEC issues in a cloud environment. To overcome this issue, the authors 
proposed an improved clonal selection algorithm, which is used to select the best resource and allocate 
resources to user requests with minimal time. However, this algorithm increases the make-span, response 
time, and cost. A discussion about selective algorithms for data offloading allocation for MEC architecture 
is presented in (Huang, 2018), where data offloading is allocated on demand, min-min, min-max, and 
heuristic algorithms are integrated into the selective algorithms. All three of the above three algorithms 
provide a minimised time span on allocation, and it works well only for independent jobs. Overall system 
performance is improved while system utilization is increased. Later, a hierarchically structured MEC is 
designed and implemented using knowledge management techniques (Vladyko, 2019), which are used to 
decrease the cost of the latency level agreement violations, improve the performance, reduce the energy 
consumption, and allocate the resources. The virtual machine reconfiguration is applied each time MEC 
and it takes more time and reduces the availability of the resources. Lakhan (2021-2022) proposed a fault 
tolerant workload scheduling schemes using mobile edge computing for different applications.

In (Kaur, 2018), researchers have proposed a scheduling algorithm that is most effective for 
MEC in Industrial IoT (IIoT). The scheduling process concentrates on the time allocation according 
to the job size and reduces energy consumption. They have mainly focused on QoS in terms of energy 
efficiency and effective MEC. The major drawback of this work is that the trade-off between energy 
efficiency and latency is not achieved perfectly. An improved algorithm that is dependent on software 
defined networking (SDN) has been introduced for maintaining the relationship between various QoS 
metrics of MEC has been addressed in (Peng, 2019).

Authors in (Shah, 2020) analysed the benefits of multi-access edge computing (MAEC) over 
conventional MEC, and then made the best use of MAEC to resolve the load balancing issue emerging in 
cloud computing by developing a load balancing model following virtualization resource management. 

Figure 4. Cloud process MEC services
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MAEC is a type of modified hybrid MEC; the execution shows highly improved convergence time 
and optimization results in comparison with that of the conventional MEC but failed to provide better 
latency across the Mobile Edge Hosts (MEH). To address this problem, in (Sechkova, 2018), the authors 
introduced the Network Functions Virtualization (NFV) for the MEC environment. Since hybrid clouds 
are being used for more and more large-scale applications, a workflow management service must be able 
to effectively schedule and guide the execution of the applications. This work must continue to focus 
on cost, make span, fairness, system-level efficiency, and other similar aspects as related algorithms.

All these parameters are covered in (Dai, 2019), where a joint load balancing approach is 
implemented, and where the authors primarily devised the problem of resource scheduling. After 
this, a resource scheduling policy is introduced to achieve task completion time, optimal resource 
utilization, average consumed energy, and average cost. But this SDN is suffering from Distributed 
Denial-of-Service (DDoS) attacks. Recently, to address these security issues in (Babou, 2020), the 
authors introduced the sustainable and secure load balancing scheme for MEC.

3.2 Optimization Approaches For Network Selection
The right choice of network leads to the best placement of users, a lower number of virtual paths in 
the network, and a better network span for the end users. In (Feng, 2020), authors designed a novel 
entity called dynamic network slicing involving cloud tasks and cloud service providers to perform 
the resource allocation process. A dynamic resource controller will perform resource control tasks 
by analysing the factor called traffic flow. To resolve this problem, Micro-Operator Networks 
(Sanguanpuak, 2018) were introduced for network slicing with resource allocation. Further The 
probabilistic network selection based MEC was implemented in (Forti, 2019).

In (Wang, 2019), authors proposed a QoS-aware resource control scheme in 5G networks. The 
utilisation of this approach increases the utilisation of the server and system throughput along with 
achieving per-application QoS guarantees on the selected network. In (Kourtis, 2019) a methodology 
to manage the workload in the MEC databases was developed with the Small Cell Architecture. The 
workload is split by considering the QoS of the tasks that need to be allocated to the nearest smart 
cells. By doing so, better handling of cloud resources can be done. Thus, the approach can improve 
the resource control process considering the latency optimization parameters. The major drawback 
of this approach is that task execution failure is not considered as an evaluation parameter, and 
hence resource handling can be affected. To address these issues, a seamless support learning (SSL) 
algorithm was introduced in (Zhang, 2020) for joint network selection with latency optimization. These 
mechanisms can perform scheduling with the satisfaction of users’ QoS constraints. The proposed 
algorithms provide better results in terms of achieving fast and robust convergence.

Authors in (Alameddine, 2020) proposed a dynamic task offloading and scheduling mechanism in 
optimal networks using logic-based benders decomposition to provide a flexible network environment 
to all service providers. Energy consumption is often related to factors such as QoS parameters like 
power consumption levels, network loads, dynamic task timings, and so on. In (Li, 2019), the issue of 
inserting survivable virtual network functions (VNF) at least operational expenses is addressed. The 
problem of improvement is taken care of in two steps (the position of the cloud in the network and 
the mapping of the virtual connection) because of the limited number of assets and the need for more 
transmission capacity. To address all the network related issues, the (Ahn, 2019) authors introduced the 
Power Efficient Clustering Scheme in VNF for effective MEC performance. The mechanism initially 
attempts to allocate the job task to a server through a VNF. On the off chance that any of the three 
stages fails, the heuristic includes another adjoining server and emphasises the mapping procedure 
while allowing for server defragmentation, residual data transfer capacity, correspondence costs, and 
load adjusting. Plenty of techniques are utilised for cloud architecture prediction, but the accuracy 
of prediction is low. The rationale for accuracy is that requests are terribly discretionary. Models of 
requests differ frequently, so predicting the correct pattern is difficult. Researchers suggested doing 
a load forecast in MEC offers edges to some extent in comparison with the varied available services.
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3.3 Optimization Approaches for Latency
Latency is the major problem in the MEC. As the number of VNFs increases in the network, the network 
latency also increases. In (Yala, 2018), the authors suggested an algorithm known as ultra-Reliable Low-
Latency Communications (uRLLC), whose objective is to reduce the total latency of task execution 
when fulfilling the target limitations. Sarrigiannis, 2018) It is based on a reliable supply of resources 
and established the adaptive frame for cloud service. This framework renders cloud services for adaptive 
adjustment in accordance with conditions which occur during the user/consumer service or supply 
irregularities. This method mainly suffers from the dynamic allocation of resources because it results 
in an increase in network latency. In (Bi, 2020), the authors suggested a novel latency optimization 
approach for dynamic resources generated in the network. The guaranteed objectives are such that the 
users present in the same queue get dynamic allocations as per the proportion of their fair shares when 
users in diverse queues get allocations, which increases the dynamic resource usage in accordance with 
well-examined fairness characteristics like those in VNF. The computational complexity of this method 
has increased significantly. Thus, in (Yang, 2018), the authors developed a cost-effective NFVO-based 
MEC with low latency. The workflow scheduling is implemented based on the NFVO-based scheduling 
algorithm; it is used for mapping the requests of users to the suitable available resources. The workflow 
scheduling is generally carried out manually through low-latency mobile applications.

Further, the latency of the MEC is mainly dependent upon the VNF placement features. Thus, 
in (Solozabal, 2017), the authors introduced the virtual infrastructure manager (VIM), which helps 
in evaluating the fair behaviour of a resource-based algorithm. In this framework, two forms of sub-
models, Dynamic Node Model (DNM) and Dynamic Demand Model (DDM), are presented to define 
the VNF placement features of resource demand as well as identify the number of computing nodes 
within a cloud service environment. But this method is suffering from the joint optimization of VNF 
placement optimization with latency mitigation. Thus, in (Leivadeas, 2019), the authors introduced 
the VNF placement optimization specifically for latency optimization.

Further, in (Son, 2019), the authors introduced dynamic resource provisioning for latency 
optimization. This technique of MEC studies the coalition creation of the virtual paths on the cloud, 
which results in increased latency. Thus, the dynamic change of the network increases the overlapping 
of virtual paths significantly, and they need to be optimised more. Thus, to optimise these dynamic 
network-based latency issues, the Genetic Algorithm (GA) based bio-optimization algorithm was 
introduced (Ruiz, 2018). The GA selects the best paths and avoids the paths overlapping. The GA 
is also used to reduce the network delay generated due to overflow of data in VNF. But this method 
failed to provide a better QoE. The drawback of this algorithmic rule is that the extent of the populace 
that is considered is extraordinarily small to necessitate every condition. In (Ma, 2020), the authors 
introduced a MEC management technique for allocating the low latency resource in accordance with 
the versatile needs of various kinds of QoE. The solution consists of a MEC allocation algorithm to 
guarantee that heterogeneous assignments are allotted suitably to prevent biased resource usage. A 
model-based scheme for estimating the suitable number of active QoS for operating the QoE Further, 
in (Alfakih, 2021), authors presented a novel QoE-based resource allocating algorithm.

Finally, the authors presented the QoS task scheduling-based latency optimization method in (Han, 
2020). For assigning the task requests to the processing nodes, make use of latency-based disruption 
planning in fair scheduler. This method achieves a scalable and quick-response method. This method 
provides a solution to the latency problems by maintaining both QoE and QoS, respectively.

3.4 Optimization Approaches for Energy Resources
Energy efficiency is the major concern in the field of MEC. The energy-efficient architecture depends on 
the network selection, network utilization, and number of users. In (Chou, 2016), the authors introduce 
the service based on a demand-based network selection approach for better energy resources. Thus, in 
(Chen, 2019) the authors introduced a mobility-aware service composition approach which attempted to 
combine the resources of both networking and cloud services together. The composition of the network 
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cloud services would be a most difficult process, which is resolved in this work by considering it as a 
multi-constrained optimal path problem. To optimise this problem, a multi-tenant resource allocation 
method (Tun, 2019) was developed with energy efficient properties. This method applied the Karush-
Kuhn-Tucker (KKT) conditions to solve each sub problem that occurred in the main problem.

Further, in (Sun, 2018), the authors introduced a low-latency orchestration-based energy efficiency 
improvement strategy. This grouping of resources is done to satisfy the latency and efficiency demands of 
real-time applications. This work gathers the user requirements, which would be grouped together based on 
the QoS constraints. Again, this method failed to provide the QoE while satisfying the energy requirements. 
Thus, the service chaining concept (You, 2021) is introduced to meet these challenges. Fuzzy based security 
service chaining (Li, 2017) is the popular method for providing both QoS and QoE requirements with the 
best energy resources. Fuzzy Theory will store the standard resources in the cloud storage information and 
the frequently used resources in the buffer. This can speed up the process by responding to the user’s requests 
immediately from the buffered resources. Furthermore, Edge Placement and recourse availability-based 
methods (Zhu, 2018) are introduced for chained MEC applications. This work designed a framework that 
could mitigate the impacts of cloud uncertainty and achieve good and insensitive resource allocation. The 
overall aim of this work is to eliminate the uncertainty problem and achieve optimal resource allocation. 
But these approaches are suffering from network slicing problems with reduced energy efficiency as 
the number of resources increases. Thus, in (Ksentini, 2020), the author introduced the network slicing 
based energy efficient architecture for uRLLC based 5G networks. A network-based automated service 
composition algorithm was proposed, which would gather the user requests along with their QoS constraints 
and perform the MEC process automatically by composing the required resources. However, the MEC is 
facing serious problems in the network slicing process with respect to standardization viewpoint. All the 
problems and limitations presented are presented in (Cominardi, 2020).

The solutions to all these problems are addressed by the authors in (Tomaszewski, 2020). This work 
developed the Distributed Autonomous Slice Management and Orchestration (DASMO) algorithm. For 
better emergency efficiency in each network slice, the Autonomous Slice Management and Orchestration 
(DASMO) algorithm was developed. After slicing, MEC for those large-sized tasks is done in the 
optimal manner by using the DASMO algorithm, which will search for the most optimal resource that 
satisfies the QoS requirements. Further, a joint network slicing method (Yuan, 2020) was developed 
for maintaining the QoE and QoS services with the more energy-efficient resources. This work utilised 
the sequential fixing process to obtain near-optimal solutions, and suboptimal solutions are solved by 
using the greedy approach. But still, energy-related issues are presented with respect to latency, network 
selection, capacity, service placement, and optimal allocation of resources. From the above survey, it is 
observed that the MEC performance is affected by the various threats as elaborated in Table 2.

4. OPEN ISSUES

In order to handle the expected exponential growth in demand for end-user resources from emerging 
applications, MECs must address the following main challenges addressed in the detailed literature: 

Table 2. Classification of threats in MEC

Environment Threats occurred

Network Infrastructure rogue gateway, man-in-the-middle, and Denial of service

Edge data center Rogue data center, service manipulation, privilege escalation, privacy leakage, and physical damage

Core infrastructures Rogue infrastructure, service manipulation, and privacy leakage

Virtualization infrastructure VM manipulation, privilege escalation, privacy leakage, misuse of resources, and denial of service

User devices service manipulation and injection of information
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Keeping computing and communication delays optimized, and (4) managing overall resource energy 
consumption. The following problems are studied in this paper:

4.1 How to Model the Resource Demands in Network Selection?
Understanding the resource demands and QoS requirements of applications in network selection is 
crucial when designing MEC algorithms capable of meeting the demands of emerging MEC network 
selection. The relevant parameters of an application need to be modeled to understand the underlying 
system dynamics, such as cost and performance dynamics. In (Manasrah 2018), a Hybrid GA-PSO 
Algorithm is used in Cloud Computing to give tasks to resources in the best way possible. The goal 
of the Hybrid GAPSO algorithm is to cut down on time and money as well as to spread the load of 
tasks that depend on each other across different resources in cloud computing environments. We 
have done something similar, but only used PSO in the edge layer. In (Omara, 2010), authors have 
used different kinds of genetic algorithms to solve various scheduling problems in the cloud. (Tien, 
2019) also looks at modelling delay, energy loss, and cost. Our goal is to get the best response times 
by using an evolutionary algorithm for edge orchestration.

4.2 How to Plan Capacity and Service Placement for MECs?
The performance of MEC applications may have to satisfy key performance indicators specified by the 
end-users in service placement. For example, some applications may require that the average round-trip 
time be below a certain threshold, whereas others may impose requirements on tail latency according 
to the in-service placement. Tail latency is defined as the percentage of requests that can meet the 
desired latency requirement in a given time period to maintain QoS. Also, some applications can 
have a higher priority level than others, where the priority can be defined in terms of their QoS. The 
problem is how to allocate resources to such applications in order to minimize operational monetary 
costs for MECs while meeting application QoS. In the literature, this MEC problem is also called a 
service placement problem or an application provisioning problem. (Huang, 2018) suggested a parked 
vehicle edge computing (PVEC) architecture, where the resources of PVs that are not being used 
can be used to their full potential service placement. In the PVEC architecture, VEC servers look for 
resources from PVs that are available at the right time to divide up work, and they pay PVs for their 
help. If they have to, VEC servers can also take on the remaining work. So, VEC servers and PVs 
work together to process tasks in a way called “edge-edge collaboration”. (Zhuojia Gu, 2021) came 
up with a different idea: a cloud-edge computing architecture that would allow horizontal and vertical 
collaborations and try to keep the total cost as low as possible. Horizontal collaboration means that 
nodes in the same tier can do offloading operations together, while vertical collaboration means that 
nodes in different tiers can do offloading operations together.

4.3 How to Optimally Allocate Resources to Applications 
in MECs with Reduced Latency?
The main factors that affect the MEC problem are the sensitivity of applications’ requests with 
respect to resource types; space and time variation in their demand for resources; QoS requirements; 
and the capabilities of the available compute resources. For example, an application’s requests (for 
resources) may be modeled by various parameters, such as arrival rate, service time, and data size and 
each of these parameters may be modeled using a random variable from an appropriate distribution. 
Similarly, the location of an end-user running an application may be modeled by a suitable latency 
distribution. The convex optimization method has been used a lot to solve the problem of reducing 
energy use (Wu, 2019), (Fan, 2021), (Xiang, 2021). Under the time constraint, the offloading policy 
has been optimized based on the channel gains and the amount of energy used by local computing. 
(Fan, 2020), focused on the number of users who could be offloaded, but they didn’t optimize both 
radio and computing resources at the same time. The authors looked into a problem where radio 
and computing resources have to be shared in a non-orthogonal MEC in a heterogeneous network.
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4.4 How to Handle the Overall Energy Consumption of 
Resource-Constrained IoT Devices in the MECs?
The MECs will host applications from a wide range of resource-constrained devices, making it complex 
to migrate or port applications from resource-constrained devices to the cloud and vice-versa. There is 
a need for a framework that can provide an abstraction of these heterogeneous, resource-constrained 
devices in order to allow for seamless development, deployment, and management of applications 
with reduced overall energy consumption. The framework should also make it easy to offload part 
of an application to the MECs to meet the application’s QOS requirements. The framework should 
also support simple development, deployment, and management tools to facilitate the life-cycle 
management of applications. Most of the previously existing MEC-IoT based cloud scheduling 
approaches (Abbasi, 2021), (Bagher, 2021), (Bolettieri, 2021), (Cicconetti, 2020) never consider the 
interaction between different tasks and their influences on application security needs. To solve the 
problem of cloud load balancing issue, they have developed an advanced approach that includes both 
task security requirements and the interaction in between different tasks. In order to achieve better 
security and performance, they proposed an advanced heuristic scheme that depends upon the task’s 
completion time and security needs. Furthermore, they have also introduced a new attack response 
technique to decrease several security threats in the cloud environment. Since years, there has been 
numerous research works carried out to develop an efficient and effective task scheduling algorithm. 
With the growing popularity of distributed systems, the number of challenges is also increasing. It is 
very difficult for the new researchers to understand the relationships in between various scheduling 
issues (Elazhary, 2019). These issues may influence the identification process of new research avenues. 
In this approach, they have presented an advanced classification scheme to solve these problems of 
scheduling in the distributed systems. They have performed survey on different scheduling schemes. 
It is very much essential to determine feasible solutions for satisfying the required service goals (Li, 
2021). The above presented framework has the responsibility to permit various cloud users in order 
to improve the model of estimation before the actual execution process (Liyanage, 2021).

4.5 Traditional Issues of Meta-Heuristic Algorithms
Gravity search is a meta-heuristic optimization technique based on natural phenomena. This method 
is frequently employed to address problems with mobile edge load scheduling (Huang, 2019). It 
incorporates the fundamental ideas of Newton’s gravitational law as well as others. This model 
is used to reduce transfer time and overall costs by planning cloud resources for virtual machines. 
Load balancing between the cloud resources and mobile edge devices allows optimum exploitation 
of the physical infrastructure while lowering run time (Mansouri, 2021). Quality of service (QoS) 
measures, such as response time, cost, performance, and resource utilization, can be improved by 
implementing load balancing in the cloud. A simplistic scheduling approach has a finite-sized multiple 
queue that takes on cloud services and allocates incoming tasks to adequate resources. The auto-
scaling mechanism requires monitoring of task dynamics such as the time of waiting, time of waiting, 
number of queued tasks, and number of tasks awaiting. The quality of the self-scaling mechanism is 
reduced by frequent VM allocations and deallotment. The main goal of any cloud provider’s resource 
provisioning is to get more resources used (Pasumpon Pandian, 2022).

4.6 Research Gaps
(Zou, 2021) proposed a hybrid service selection model in mobile edge computing. In this paper, a 
genetic algorithm-based service selection process is performed using the limited resource constraints. 
(Wang, 2021) proposed an edge-to-edge data storage service using an adaptive method. In this work, 
a hybrid data storage and service selection method is used to improve the task scheduling process 
of offloading data. Due to the lack of computing resources and data storage for largely offloaded 
tasks, a distributed resource constraint-based optimization model is required for the scheduling 
process. (Alkhalaileh, 2020) proposed a data-intensive offloading technique using mobile edge cloud 
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computing. A non-linear integral optimization function is proposed for task offloading computation. 
This model is independent of resource constraints for the scheduling process. (Ali Shakarami, 2020) 
proposed survey on different offloading approaches in mobile edge computing. In this paper, machine 
learning-based offloading tasks are implemented and tested on different tasks. They classified 
supervised and unsupervised learning models for task offloading in mobile edge computing. The 
main issues with the supervised learning models include how to schedule a large number of tasks 
and being independent of resource constraints. The following table represents the summarization of 
tools and language used to implement the model for scheduling process.

5. PROPOSED OPTIMIZATION AND PERFORMANCE COMPARISON

In the section, an enhance version of PSO scheduling model (Chen 2020) is proposed using resource 
constraints. In this work, different resource constraints are used to optimize the offloading process. In 
the proposed approach, a new resource constraint based PSO model is proposed which is independent 
of the existing system. Also, this model has better computational runtime than the conventional 
approach. In Figure 5, mobile edge cloud systems are source devices to migrate or offload components 
during computation of the Amazon’s EC2 cloud servers. Mobile devices need to select the wireless 
medium for component migration. Mobile devices, select available cloud wireless networks like 3G 
or Wi-Fi networks randomly. The data migration time between cloud upload, cloud download and 
energy statistics will be recorded.

In this model, we assume that the available cloud networks and the time of the application are 
not altered. When multiple networks are available on your local device, the face detection controller 
needs to choose the best network before deploying (e.g., Wi-Fi network or 3 G with the greatest 
frequency). A load-balancing algorithm that is efficient is needed to make the most of resources. 
An in-depth analysis of cloud computing most important aspects is carried out, as are comparisons 
of existing load balancing algorithms. As a method of partitioning the cloud, this technique focuses 
on the relationships between distinct cloud divisions. A person can be either overloaded, normal, or 
idle at any given time.

This system assumes each cloud server, can executes N virtual machines on the remote cloud 
environment. Let < >M

i i
,T  represents the memory usage type of the ith representative virtual 

machine and T {t , }, j, t ,' ' '
( )i ij ij ij ij ij i j

t t t t= ∀ < < +1  represents server leasing periods and t , '
ij ij
t

represents the start and ending runtime virtual machine instance. Let f( , )M T  represents cost 
computed by multiplying the total price with total runtime hours.

Key notations used in the Traditional PSO problem definition

VM
i
: Represents with virtual machine instance.

VM
Ti

: Represents leasing periods of the ith  virtual machine.

f(VM , )
i T
VM

i
: Represents a cloud price function for leasing a virtual machine instance.

Table 3. Represents the summarization of Tools and Platform

Reference Tools Platform

[84] CLOUDSIM Java

[85] IFOGSIM Java

[86] IFOGSIM Java

[87] CLOUDSIM Python
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Where r Î ( , )0 1  arbitrary value selected by the server. (i.e.) if r=1, all tasks are executed locally 
otherwise executed remotely.

Figure 5. Mobile to cloud deploying model
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The local execution speed in the energy efficient task scheduling system can be determined 
using objective function

max{ / min{ / ,{log( / ), }}}
, , , , ,
E E I E I i
i k
l

i k
l

i k
l

i k
r

i k
r

k
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	 (1)
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1 	

Equation (1) gives the optimal response time of all tasks, for each value of k $ I r
i k,

, I l
i k,

 equals 
to 1. If the number of tasks in the application increases, then the equation (1) fails to find the optimal 
results and worse leasing allocation.

Proposed resource constraint based PSO approach has following positive innovations than the 
conventional PSO method in mobile edge task scheduling process.

1. 	 Proposed model has better multiple resource constraint scheduling process.
2. 	 Current model has better computational runtime(ms) than the conventional approaches for 

multiple resource and task scheduling process.
3. 	 Current model has better local power optimization than the conventional approaches.
4. 	 Current model has better local optimization and global optimization for task to resource allocation 

process.

5.1 Experimental Results
Experimental results are simulated in CLOUDSIM and VanetMobiSim simulator for PSO and existing 
task and resourced scheduling process. Proposed and traditional methods are tested on VANET 
application-oriented data with different tasks and cloud instances. For simulation different parameters 
such as simulation area 2km, communication range 115m, uniform number of resources to each task, 
total number of service vehicles are 30. Proposed model is simulated with realistic united states census 
traffic map for service and task scheduling process. Here, Particle swarm optimization (PSO), Ant 
colony optimization(ACO) and Firefly optimization algorithms are implemented and tested on mobile 
cloud task scheduling process. In this simulation, small and medium virtual instances are used to 
test the performance of each approach for scheduling process. In this proposed simulation setup, a 
dynamic number of tasks, mobile nodes and edge servers are taken as input along with the resources. 
Here, resources are scheduled dynamically during the task scheduling process.
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In the above experimental result, different mobile tasks are scheduled using the optimized PSO model 
to the available resources and tasks. Each task and its computational time are computed for resource analysis.

5.2 Performance Metrics and Analysis
In this experimental result, different performance metrics such as energy consumption, runtime and task 
scheduling accuracy are used to perform the comparison of proposed model to the conventional models. 
Figure 2 represents the analysis of different resource constraint task scheduling approaches in mobile 
edge computing. In this fig 2, energy consumption of each mobile node for the task scheduling process 
is analyzed along with the conventional models. Figure 3, represent the performance analysis of different 
task scheduling models for runtime analysis. Also, figure 3 represents the comparative analysis of different 
task scheduling approaches for mobile task scheduling process in terms of efficiency. Figure 3 describes 
the task scheduling efficiency of proposed model to the conventional models on different mobile tasks.

6. CONCLUSION

In this paper, different meta-heuristic optimization models are used to test the scheduling process of 
different types of virtual machines and tasks. Since most of the conventional optimization models are 

Figure 6. Comparative analysis of different resource constraint task scheduling approaches in mobile edge computing (energy 
consumption)
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difficult to schedule the tasks with different virtual machines. Also, as the size of the mobile edge 
offloading tasks increases, it is difficult to find the optimal load balancing meta-heuristic models due 
to the problem of local and global resource optimization process. In this work, different scheduling 
models are tested on different virtual machines for task scheduling process. In this work, a resource 
optimization based PSO approach is implemented to test the task scheduling process on mobile edge 
cloud computing environment using CLOUDSIM toolbox.

In this paper, a hybrid resource constraint-based particle swarm optimization is developed in 
order to improve the mobile edge computing task scheduling. In this paper, small and medium level 
cloud virtual machines are used to compute the local and global best PSO optimization parameters 
for scheduling process.

The following are the major enhancements that can be integrated to the traditional PSO model 
in order to achieve better QoS, scheduling time and resource scheduling process.

Figure 7. Comparative analysis of different resource constraint task scheduling approaches in mobile edge computing (runtime 
computation)

Figure 8. Performance analysis of proposed resource constraint PSO scheduling algorithm to the existing algorithms on different 
mobile tasks
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•	 Development of hybrid QoS measures that will be effectively utilized for the optimization of 
MEC’s access network selection and service placement.

•	 Implementation of effective optimization approaches using meta-heuristic algorithms like particle 
swarm optimization, cuckoo search algorithm, and gray-wolf optimizer etc. to enhance the service 
of quality optimization through access network selection on network congestion.

•	 To develop a machine learning based mobile edge task classification for scheduling process in 
small to large scale virtual instances.

The above research gaps are used to improve the task and resource scheduling process in mobile 
edge computing for large scale applications. These research gaps significantly improve the latency, 
power and computational time for scheduling process.

Table 4. Represents the challenges in MEC

Challenge Description

Programmability Network selection, session management and usability

Mobility Service placement, seamless handoff, and connectivity

Distribution Soft state, N-tier management, and cooperation

Resources & Tasks Latency and overall energy consumption optimization, offloading, Task scheduling, and 
Resource allocation

Virtualization context and container awareness, VM lifecycle

Infrastructure Accountability, monitoring and interoperability
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