
DOI: 10.4018/IJFSA.317104

International Journal of Fuzzy System Applications
Volume 12 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Fuzzy Logic for Solving the Water-Energy 
Management Problem in Standalone 
Water Desalination Systems:
Water-Energy Nexus and Fuzzy System Design
Ines Ben Ali, Ecole Nationale d’Ingénieurs de Tunis, LR11ES15 Laboratoire LSE, Université de Tunis El Manar, Tunisia*

Mehdi Turki, École Supérieure des Ingénieurs de Medjez El Bab, Université de Jendouba, Tunisia

Jamel Belhadj, École Nationale Supérieure d’Ingénieurs de Tunis, Université de Tunis, Tunisia

Xavier Roboam, LAPLACE, UMR CNRS-INP-UPS, Université de Toulouse, France

ABSTRACT

This work investigates an important topic of energy and water security (water-energy nexus). For this 
purpose, Water-Energy Management Strategy (W-EMS) for a standalone water desalination system 
powered by PV-Wind source is designed. The proposed W-EMS is based on fuzzy logic. In this 
context, authors focus on the design phase of the Fuzzy Inference System (FIS) through which three 
design methods are described and analyzed. The influence of FIS design on W-EMS performance 
is highlighted. First, it is shown that based on the designer’s knowledge, the handmade-FIS can 
offer good performance for the W-EMS. Then, the water-energy management is formulated as an 
optimization problem. Therefore, genetic algorithm is used to optimize the FIS design to reduce 
iterative hand-tuning trials. Furthermore, the design of the fuzzy W-EMS can be addressed by a data-
driven approach as a third step. This method shows its good performance in terms of water production 
and energy efficiency compared to the designed FISs by the two previous methods (handmade tuning 
and genetic algorithm).

Keywords
BWRO Desalination, Fuzzy System Design, Genetic Algorithm, Human Expertise, Neuro-Fuzzy, Water-
Energy Management

INTRODUCTION

Energy Management Strategies (EMSs) present a major concern for researchers (Cai et al., 2009) 
working on complex energy systems such as: decentralized generation systems (Ball et al., 2009), 
residential applications (Aki et al., 2006), block-chain for smart city (Orecchini et al., 2019), 
hybrid renewable energy system (Benmessaoud et al., 2019) as well as standalone water pumping/
desalination systems (Sallem et al., 2009; Kyriakarakos et al., 2017). Therefore, several EMSs have 
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been proposed in literature for various complex energy systems, while it is still difficult to determine 
the best approach in each situation. These EMSs can be classified into two categories: Rule-based 
and Optimization-based approaches (Salmasi, 2007). Rule-based energy management approaches are 
well known for their simplicity in implementing rules and their effectiveness for real-time supervisory 
control of energy flows into a complex energy system (Lee et al., 2000; Tekin et al., 2007). Such 
rules are designed based on intuition, heuristics, human expertise, even mathematical model, but 
without a prior knowledge of operating conditions (e.g. electric power profile, driving cycle for 
electric vehicles, etc.). The rule-based approaches, in turn, can be subdivided into: i) deterministic 
rule-based methods, and ii) fuzzy rule-based methods. Deterministic rules are generally implemented 
based on lookup tables (not real-time data) (Han et al., 2014; Garcia et al., 2009) to schedule energy 
flows between the system components. Fuzzy rule-based methods are widely adopted for complex 
real-time supervisory control issues enabling to realize a real-time and optimal power split (Arcos-
Aviles et al., 2016; Tidjani et al., 2016; Tan et al., 2021; Mitiku et al., 2019; Chanda et al., 2019). 
Indeed, three main advantages of the fuzzy inference systems can be listed as follows: i) no real-time 
calculation issues, ii) robustness (tolerance to imprecise measurements), and iii) adaptation (easy 
tuning) with real-time parameters (Salmasi, 2007; Tie et al., 2013). This paper focuses on the fuzzy 
logic theory for energy management issue.

Fuzzy inference system is increasingly used and preferred for control and energy management 
issues for several complex energy systems, namely:

•	 Micro-grids (Arcos-Aviles et al., 2016; Chen et al., 2012; Tidjani et al., 2016), and renewable 
energy generation systems (Cabrane et al., 2017; El Mokadem et al., 2009).

•	 Transport domain, such as hybrid electric vehicles (Yin et al., 2016; Naffati et al., 2013; Xu et 
al. 2018), electric bus (Gao et al., 2008; Tian et al., 2017), electric aircraft (Zhang et al., 2010), 
electric traction (Talla et al., 2015), and electric ship (Khan et al., 2017).

•	 Water pumping (Sallem et al., 2009; Yahyaoui et al., 2015) and desalination (Abdul-Fattah, 
1981) systems.

For example, in (Zhang et al., 2010) authors presented four EMSs for a local power distribution 
system of more electric aircraft. The proposed EMSs are based on two multi-objective strategies using 
fuzzy logic and two simpler mono-objective strategies based on standard PI controller. Simulation and 
experimental results demonstrated that fuzzy logic is appropriate for: i) multi-objective approaches, 
ii) processing a large number of input variables, and iii) integrating several constraints. In (Cabrane et 
al., 2017) a management strategy based on fuzzy logic theory was developed for photovoltaic energy 
storage in order to maintain the state of charge of batteries and super-capacitors within acceptable 
levels. The effectiveness of the proposed strategy to continuously meet the energy requirement of the 
load has been demonstrated. In addition, a Fuzzy Logic-based EMS (denoted FLEMS) for a residential 
grid-connected micro-grid was presented in (Arcos-Aviles et al., 2016), where the fuzzy inference 
system was designed for smoothing the grid power profile while keeping the state of charge of the 
battery within secure limits. Moreover, authors in references (Yin et al., 2016; Naffati et al., 2013) 
showed some examples of optimal adaptive FLEMS for hybrid electric vehicle with an objective to 
find the optimal instantaneous power distribution between the different energy sources in the vehicle.

Given the above state of the art, fuzzy logic is successfully used for energy management of 
complex energy systems with the advantages of: i) the adaptability and easy optimization of its design 
parameters, and ii) the ability to cover all the expected conditions into the studied system. Nonetheless, 
relatively small changes in the Fuzzy Inference System (FIS) parameters can signiðcantly affect the 
EMS performance. Indeed, the performance of a fuzzy logic-based EMS strongly depends on: i) the 
choice of the number and shape of the membership functions of each fuzzy variable, ii) the choice of 
fuzzy rules, iii) the type of the Defuzzification method, and iv) many other FIS parameters. Setting 
the FIS parameters with its control fuzzy rules primarily depends on the designer’s expertise with 
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regard to the energy management constraints, the intuitive and practical aspects about the system 
energy behavior, as well as successive experiments to ensure reliability and robustness of the process 
(Ferreira et al. 2008). In addition, the choice of these parameters is not deterministic and usually 
designers need a procedure of adjustment trials to find the suitable design of the FIS. In many cases, 
the performance of the fuzzy EMS can be improved by further hand tuning of the FIS parameters.

On the other hand, Wang et al. explained in (Wang et al., 2006) that the FIS design can be 
formulated as a search problem in large space, where each point represents a set of membership 
functions, control rules, and the corresponding system behavior. According to authors, given 
certain performance criteria, the system performance constitutes a “hyper-surface” in the space, and 
determining the optimal FIS design consists of finding the optimal location of this hyper-surface. Wang 
et al. have demonstrated through (Wang et al., 2006a; Wang et al., 2006b) that evolutionary algorithms 
(e.g. genetic algorithm) offer a good tool for hyper-surface search than conventional methods.

Another methodology to design the FIS is presented in (Courtecuisse et al., 2010) for fuzzy 
logic-based supervision of hybrid renewable generation system using a graphical modeling tool. The 
latter, which is an extension of Petri nets and grafcets approaches, enabled to facilitate the analysis, 
the determination and the implementation of fuzzy system algorithms.

Besides to the above mentioned techniques (evolutionary algorithms, graphical modeling tool, 
and hand tuning) to design the FIS for energy management field, neuro-fuzzy hybrid systems have also 
emerged as an advanced artificial intelligence technique when compared to classical fuzzy inference 
system (i.e., a Mamdani type structure FIS). Indeed, for this type of FIS, artificial neural networks are 
used to design the FIS especially when no predetermined model structure exists, but when a collection 
of input/output data of the target system is available. Those data are usually collected in simulations, 
physical experiments, or production processes, etc. Among the existing fuzzy-neural hybrid systems, 
Adaptive Network-based Fuzzy Inference System or also called Adaptive Neuro-Fuzzy Inference 
System (ANFIS) is the most popular structure and widely used in the energy management field 
(Ozturk et al., 2013; Cárdenas et al., 2012; García et al., 2013; Mahesh et al., 2016). The ANFIS is 
a hybrid structure combining fuzzy logic principle and the artificial neural network concept. During 
the training process driven by the collected input/output data, the trained FIS (a Takagi-Sugeno type 
structure) is fine-tuned (i.e.,the rules and membership functions) by the neuro-adaptive learning 
techniques so as to tailor the trained FIS to the input/output data set. For example, an ANFIS-based 
EMS for a grid-connected micro-grid was synthesized in (Leonori et al., 2017) through a data-driven 
approach relying on clustering algorithm to set the membership functions and the rule consequent 
hyperplanes. Moreover, a comparison study between fuzzy logic and neuro-fuzzy algorithm was 
conducted in (Arshdeep et al., 2012) to control the compressor speed of air conditioning system. The 
used ANFIS has proven its performance over conventional fuzzy logic to make the air conditioning 
system adaptive to the room weather with higher energy efficiency.

Fuzzy logic methods can range from the simplest one to the most complex through hybridization 
of which the list is even longer (Suganthi et al., 2015), such as neuro-fuzzy-genetic algorithm 
(Kampouropoulos et al., 2014), fuzzy Q-learning using reinforcement learning (Avanija et al., 2022), 
fuzzy logic and machine learning (Zermane et al., 2020), Mediative micro artificial neural network 
fuzzy logic (Kocharla et al., 2022), etc.

The use of fuzzy logic theory is widespread in technical literature and the industry, while using 
it in water-energy management for water desalination system to deal with energy dispatch between 
two hydro-mechanical processes (i.e.,water pumping and desalination processes) was not issued in 
literature. In the present work, the studied system consists of an autonomous Brackish Water Reverse 
Osmosis (BWRO) desalination system powered by renewable energy source (hybrid solar photovoltaic 
generator and wind turbine) dedicated to the freshwater production for small remote communities 
without access to freshwater and electrical grid. First of all, this work investigates an important topic 
of energy and water security (energy-water nexus), considering the increasing population and the 
scarcity of water in poor or developing areas, combined with the need to mitigate climate change 
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by reducing carbon emissions. Renewable energy-driven RO desalination systems are considered 
as dynamic systems characterized by multi-domain, non-linear and time-varying variables (electric 
power, water pressure and flow rates). Therefore, smart and robust control algorithms, such as fuzzy 
logic techniques, are required to improve the real-time energy control and management strategy of 
such autonomous systems. A huge number of research work on reverse osmosis desalination systems 
are published. Most of them focused on eco-design (Peñate et al., 2012; Mohamed et al., 2004), socio-
economic (Ghaffour et al., 2015) and techno-economic (Ghaffour et al., 2013; Gude et al., 2010; 
Al-Karaghouli et al., 2009; Eltawil et al., 2009; Kaldellis et al., 2004; Agrawal et al., 2016) aspects. 
However, water-energy management issue for such systems has received less attention and according 
to the authors’ knowledge related work to the fuzzy logic-based water-energy management strategy 
for desalination systems are strongly limited in literature, if not rare.

Secondly, this paper presents a non-exhaustive study, but reasonably sufficient, of the Fuzzy 
Inference System (FIS) design for such a specific application. For this purpose, based on their 
experience, authors present in this paper three different methods, among other, to design the FIS, 
which are: i) handmade tuning method based on the own designer’s expertise, ii) genetic algorithm 
(fuzzy-genetic algorithm tuning), and iii) neural network algorithm (neuro-fuzzy tuning). Authors 
explain through this application case (water-energy management for a standalone desalination 
system) the process of each design method, discuss and analyze the obtained results when 
applying each designed FIS into the water-energy management strategy. It is evidenced through 
this study that the design phase is of paramount importance for an efficient and/or optimized 
water-energy flows management into the system, especially when FIS parameters are changed. 
Authors highlight the influence of the FIS design on the performance of the Water-Energy 
Management Strategy (W-EMS); it is demonstrated that by further tuning of the FIS parameters 
such as the fuzzy partition of the input/output spaces (i.e.,universe of discourse), the choice of 
the shape and the number of the input/output membership functions, and the fuzzy control rules, 
the performance of the designed fuzzy logic-based W-EMS can be significantly improved for the 
autonomous desalination system. Moreover, the comparison between the optimization method 
by genetic algorithm and neuro-fuzzy system was not given before in the studied field although 
they are familiar methods.

This paper is organized as follows: the specifications of the system under study and the 
experiments regarding the system energy behavior are introduced in Section 2. Then, the 
water-energy management problem is set in Section 3. These elements (i.e.,understanding of 
the system behavior and the water-energy management constraints) constitute the preliminary 
phase for the designer to set the initial fuzzy system-based Water-Energy Management Strategy 
(W-EMS). Section 4 presents the first method to design the fuzzy system, which is made by 
hand tunings mainly based on the user’s expertise. The different steps of the Hand-Made FIS 
(HMFIS) design, such as Fuzzification, fuzzy inference and the rule base are described in 
this section. Section 5 is dedicated to analyze the HMFIS performance when applied into the 
W-EMS. According to the carried-out analysis, the HMFIS design is improved in Section 6. 
The different improvements and simulation results of the improved HMFIS-based W-EMS 
are described in this section. Section 7 is reserved to explain the second method for the FIS 
design, which is based on the genetic algorithm. In this section the usefulness of the genetic 
algorithm to limit the hand adjustment trials time to find the optimal FIS design is evidenced 
compared to the improved HMFIS. The third method of the FIS design is described in Section 
8, which is the neuro-fuzzy technique (ANFIS), a data-driven method; this technique uses the 
artificial neural networks to estimate, based on input/output data base, the FIS design. The 
effectiveness of the ANFIS system to improve the performance of the W-EMS compared to 
both the handmade FIS and the GA-optimized FIS is demonstrated in this section. Section 9 
is dedicated for drawn conclusions.
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SPECIFICATIONS OF THE BWRO DESALINATION SYSTEM

Overview of the Studied System
The studied Brackish Water Reverse Osmosis (BWRO) desalination system, depicted in Figure 1, 
is dedicated to meet freshwater demand of a small community in remote areas with no access to 
freshwater and electrical grids, but where renewable energy resources are abundant. The system 
consists of small-scale standalone brackish water pumping and desalination application supplied 
with a variable generated power offered along wind speed and solar irradiation conditions without 
battery storage. An experimental BWRO desalination test bench was designed and implemented in 
the Electrical Systems Laboratory (LSE at the ENIT-UTM in Tunis-Tunisia) to be used as a prototype, 
where its freshwater production is rated at 7.2 m3/d. This experimental test bench (depicted in Figure 
2) is powered by a programmable DC power source rated at 4 kW which physically emulates the 
power generated by the renewable energy source (photovoltaic PV-wind turbine). The intermittent 
power 𝒫dc “given” according to solar and wind conditions is transferred via a  DC bus to the hydro-
mechanical processes of the BWRO test bench. Technical information about the experimental test 
bench are reported in Table 2. The studied system mainly includes two independent hydro-mechanical 
processes that are decoupled through an elevated water storage tank T1:

1. 	 The first hydro-mechanical subsystem (Water Pumping Process) is dedicated to brackish water 
conveyance from the well to the storage tank T1, using a single-stage motor-pump (denoted Well 
Pump, WP) as depicted in Figure1.

2. 	 The second hydro-mechanical subsystem (RO-Desalination Process) is devoted to producing 
freshwater through a Reverse Osmosis (RO) desalination process consisting of a multi-stage High 
Pressure motor Pump (HPP), feeding at high pressure a RO membrane to produce freshwater.

Indeed, water is a very good storage medium; the electric energy can be stored in the form of 
water into water storage tanks when renewable energy is abundant. Therefore, brackish water can be 
simultaneously pumped (stored) and desalinated when the energy supply is abundantly available, and 

Figure 1. Synoptic of the autonomous BWRO desalination system
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be stored if not. This may alleviate the expensive buck-up systems need in remote areas with good 
renewable energy resources. Within this configuration the ‘gravitational water storage’ involves an 
advantage of great importance in terms of energy efficiency improvement.

It should be pointed out that the experimental test bench was designed such as the hydraulic load 
(the RO membrane) is modular so that other membranes can be added. That’s why two RO membranes 
are considered during simulations.

Experimental Characterization of the System for Water-Energy Management
The studied system is a complex energy system which complexity is characterized by the combination 
of components of different natures and functionalities, all interacting within the system under study. 
Such heterogeneity leads to several physical phenomena coexistence and several system constraints of 

Figure 2. The BWRO desalination experimental test bench

Table 1. Specifications of the BWRO desalination experimental test bench

Component Characteristics

High Pressure Pump (HPP)

Model: EBARA EVM2 22F/2.2 
Rated Power: 2.2 kW 
Rated Pressure: 8.17-18.6 bar 
Rated flow rate: 20- 60 L/min

Well Pump (WP)

Model: PEDROLLO CP158 
Rated Power: 0.75 kW 
Rated Pressure: 2.5-3.4 bar 
Rated flow rate: 10-90 L/min

RO membrane
Model: TORAY TM710 
Feed water salinity: 4 g/L 
Maximum freshwater production: 7.2 m3/d

Storage tank (T1)
Capacity: 2180 Liters (L) 
Height 2.1 m 
Elevation height: 4 m
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different domains making difficult the modeling and the energy flows (power, water) management of 
the system under study. Given the diversification of the system constraints namely, functioning under 
variable energy supply (i.e.,variable feeding power and pressure), technological constraints of pumping 
devices (power ranges) and membrane (flow-pressure range), and functioning constraints (filling state 
of the storage tank), an experimental characterization of the desalination system is then mandatory.

Given a hydraulic load characteristic, the suitable power range [𝒫pumpmin – 𝒫pumpmax] of 
each pumping device was experimentally identified (the operating pressure range of the hydraulic 
load is intrinsically included). Indeed, the suitable hydraulic load characteristic enabling to achieve 
a water production–efficiency tradeoff was experimentally determined as depicted in Figure 3 
and Figure 4 (for more details please see (Ben Ali et al., 2020)). This is considered a first step to 
prepare the prerequisites for an effective water-energy management. According to the experimental 
characterization, the hydro-mechanical processes constraints are summarized in Table 2. It should 
be noted that these values are corresponding to 4g/L as brackish water salinity and to 4m storage 
tank elevation.

Regarding the storage tank T1, the amount of the stored water is generally divided into two 
volumes: the so called “Dead Volume” where water Level L < Lmin. This volume will never be 
used because it is reserved for sedimentation of pumped water. Generally, we have to reserve 0.2m 
height for the Dead Volume in the tank. The second part is called “Useful Volume” where water 
Level is: Lmin ≤ L ≤ Lmax. This volume is reserved to be used by the RO-process to be treated. 
The maximum level was chosen at Lmax = 2m while reserving the upper 0.1m (total height of tank 
is 2.1m) as a secure margin to avoid the “tank overflow”.

The sought objective of the system is to maximize the freshwater production as much as possible 
according to the available renewable energy. For this sake, a specific water-energy management 
strategy is required to meet the objective while taking into account the system constraints.

STATEMENT OF THE WATER-ENERGY MANAGEMENT 
PROBLEM FOR THE DESALINATION SYSTEM

Besides the variable nature of the PV/Wind-turbine generator power supply, the absence of 
the electrochemical storage device such as batteries, makes the electric energy/water supply 
a challenging issue for the remote regions. Therefore, a suitable Water-Energy Management 

Figure 3. Experimental characterization of the water pumping process
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Strategy (W-EMS) is required to determine the appropriate electric power dispatching between 
the two water subsystems with respect to: i) the given generated power 𝒫dc, ii) the operating 
power range of each pumping device [𝒫pumpmin – 𝒫pumpmax],  and iii) the current filling 
state of the storage tank T1: the level L of the stored water in the tank must vary on its specified 
confines (Lmin ≤ L ≤ Lmax).

In order to resolve such an electric power dispatching problem, a “power sharing factor” 
(α) is then defined. It enables to instantaneously determine the power dispatching between the 
two hydro-mechanical processes according to the constrained water-energy management rule 
expressed by Equation 1. Given that electrochemical storage was replaced by hydraulic storage 
in water tanks, electric energy management and hydraulic energy (here water) management 
can be coupled. Accordingly, the defined W-EMS enables to manage simultaneously the 
electric energy and water flows into the system while fulfilling the technological (electric 
power range of motor-pumps) and functioning (tank filling state) constraints during the 
system operation:

 

 
HPP dc

WP dc

*

*

= ⋅

= −( ) ⋅







α

α1
	

subject to:

Figure 4. Experimental characterization of the RO desalination process for brackish water salinity of 4 g/L

Table 2. System constraints

Well Pump HP Pump Tank water level

𝒫WPmin =  120 W 𝒫HPPmin =  620 W Lmin = 0.2 m (10%)

𝒫WPmax =  1020 W 𝒫HPPmax =  1800 W Lmax = 2 m (100%)
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0 1≤ ≤α 	
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pump i

min
pump i

max
_ _ _

≤ ≤ ; i = { }1 2, 	

L L L
min max
≤ ≤ 	 (1)

where 𝒫dc, 𝒫HPP and 𝒫WP denote the generated power from the power source transferred via DC 
bus, and the assigned electric powers to the HP-Pump (HPP) and the Well-Pump (WP), respectively.

It should be pointed out that the considered case study limits the approach to 2 devices (motor-
pumps), but the methodology may be extrapolated to any number (n>2) of sub systems.

HAND-MADE FUZZY INFERENCE SYSTEM (HMFIS) DESIGN 
FOR THE WATER-ENERGY MANAGEMENT: FIRST STEP

The Fuzzy Inference System (FIS) constitutes the decision-making tool for the proposed W-EMS 
to determine the aforementioned power sharing factor. The decision-making is made on the basis 
of input states (i.e.,electric power and tank filling state) taking into consideration constraints of the 
system elements, and the defined criterion (maximizing freshwater production).

Generally, FIS design is mainly based on heuristics and the knowledge base of the user (the 
expert). It is usually characterized through the following steps: The Fuzzification, the inference 
engine and the Defuzzification.

Fuzzification
It consists of determining the “fuzzy subsets” and the linguistic variables for the inputs/outputs: 
each input and output is divided into a number of overlapped levels (fuzzy subsets) characterized by 
“membership functions”. They are developed based on the pre-defined limits of system components 
(cf. Table 2).

A two inputs-single output FIS is designed, where the generated power 𝒫dc and the current 
Filling State (FS) of the storage tank T1 (given that FS (%) = (L/Lmax)· 100) are defined as the FIS 
inputs, and the power sharing factor (α) as the FIS output.

Figure 5 shows the Membership Functions (MFs) of the input/output variables describing their 
boundaries and depicts the shape and universes of discourse. The first input 𝒫dc is divided according 
to the operating power range of the two pumps into “four” fuzzy subsets represented by “four” MFs 
using the linguistic variables {L, M, QH and H}. The acronyms description of linguistic variables 
and the numerical range of MFs are reported in Table 3. Triangular shape is chosen for {M and QH} 
membership functions, and Trapezoidal shape for {L and H} membership functions. The range of 
values varies from 120W to 2820W as the universe of discourse representing respectively the minimum 
power needed to run the Well Pump (𝒫WPmin =  120W), and the sum of maximum functioning 
powers (𝒫WPmax + 𝒫HPPmax = 2820W). The second input (FS) of the storage tank is divided into 
“three” fuzzy subsets characterized by “three” Triangle membership functions using the linguistic 
variables {L, M, and F}. Its universe of discourse is within the range of 10 – 100% representing the 
water level limits in the storage tank. As for the output, it represents the power sharing factor enabling 
to instantaneously share the current power 𝒫dc over the two pumps according to Equation 1  while 
respecting the constraints. The fuzzy output is divided into “five” overlapped levels represented by 
“five” Triangle membership functions using the linguistic variables {OFF, A, B, C and D}. Where, 
the first subset (OFF) causes the HP motor Pump (HPP) shutdown. The rest of fuzzy subsets involve 
its operation, from the subset (A) which limits the use of the HPP to a moderate ratio, until quasi-
exclusively favoring desalination (D) over the pumping mode. The output universe of discourse is 
within the range of 0 – 1.
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Table 3. Numerical ranges of the inputs/outputs variables of the HMFIS

Symbol Description Numerical range

Input 1: 𝒫dc

L Low [120 – 820]

M Medium [370 – 1410]

QH Quite High [820 – 2310]

H High [1410 – 2820]

Input 2: FS

L Low [10 – 21.62]

M Medium [10 –100]

F Full [21.62 – 100]

Output: α

OFF The HPP is OFF (i.e.,Pumping only) => α ≈ 0 [0 – 0.25]

A Pumping with moderate desalination [0 – 0.5]

B Pumping and Desalination [0.25 – 0.75]

C Pumping and Desalination [0.5 – 1]

D The WP is OFF => α ≈ 1 [0.75 – 1]

Figure 5. Input/output membership functions of the Hand-Made FIS (HMFIS)
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Fuzzy Inference and Rule Base
The fuzzy inference can be defined as a “mapping formulation process” from a given input to the output 
using fuzzy logic based on a fuzzy rule base. The fuzzy inference process includes: i) membership 
functions, ii) fuzzy logic operators (AND, OR), and iii) “IF-THEN” linguistic rules making possible to 
transcribe in a simple way the user’s expertise (i.e.,the human know-how) acquired from simulations 
and experimentation with the system installed in our research laboratory LSE. (Figure 2).

In order to compute the output value (i.e.,the power sharing factor value) the mapping includes 
“Fuzzification”, “Aggregation” and “Defuzzification” sub-processes as illustrated in Figure 6: the 
degrees of membership of the “IF” parts of the fired rules are evaluated (Fuzzification phase), and 
the “THEN” parts of the fired rules are weighted by these degrees of membership, and Aggregated 
using the OR operator. This gives a resulting surface characterized by a resulting membership function 
(MF) obtained by forming the maximum of partial MFs, given that the latter are related by the OR 
operator. At the end, the Defuzzification is applied to the resulting surface to obtain a crisp value of 
the output factor (see (Lee et al., 1990) for more information on fuzzy logic controller). This factor, 
in turn, determines the references of the feeding electric powers (𝒫HPP* and 𝒫WP*)  that should 
be assigned to each motor-pump according to Equation 1.

The designed FIS was implemented using “Mamdani” architecture with 12 fuzzy control rules 
relating the two inputs with the output factor. The rule base is reported in Table 4. The performance 
of the designed FIS strongly depends on its fuzzy rule base. The latter is determined so that motor-
pumps operate on their optimal efficiency region and the tank filling state (FS) varies on its specified 
confines, with the purpose of maximizing the freshwater production. For instance, in case of Low 
power generation (“𝒫dc[i] is L”) and if the storage tank is Full (“FS[i] is F”), the user must take 
advantage of all generated power for only the desalination process to maximize freshwater production, 
therefore (“α[i] is D”) (i.e.,𝒫HPP[i] = α  ·𝒫dc[i] ≌ 𝒫dc[i]). This leads to the following rule:

IF 𝒫dc is L  AND FS is F  THEN α  is D	

In Addition, if the power generation is Quite High (“𝒫dc[i] is QH”) and if the water level in 
the tank is Low (“FS[i] is L”), the user should take advantage of the available generated power to 
thoroughly desalinate the available amount of brackish water while respecting the secure limit (Lmin) 
of the storage tank. This leads to the following rule:

IF 𝒫dc is QH AND FS is L  THEN α  is D	

In other case, if the power generation is abundant (High) (“𝒫dc[i] is H”) (i.e.,𝒫dc[i] > 
𝒫HPPmax) and if the water level in the storage tank is Low (“FS[i] is L”), the power can be shared 
between the two motor-pumps since the generated power is enough to operate simultaneously the 
two water processes as long as the tank is not used up. So, the value of the power sharing α should 
be an average value enabling the system to store brackish water and produce freshwater, as well. This 
leads to the following rule:

IF 𝒫dc is H  AND FS is L  THEN α  is B	

The “AND” method used for the FIS design is “MIN”, the implication (THEN) operator is 
“MIN”, the Aggregation is “MAX”, and the Defuzziðcation method used is the “Centroid” method. 
The latter is considered as the most popular Defuzzification method which returns the centroid of 
area under curve (step 3 in Figure 6).
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HMFIS PERFORMANCE ANALYSIS

Introduction to the Analysis
After having designed the FIS, the latter is implemented into the W-EMS in order to evaluate its 
performance. Simulation results of the fuzzy W-EMS are presented in Figure 7 for a daily power profile. 
The latter is extracted from real-data of PV-Wind power generation recorded every hour from January to 
December 2007 of a region in Southeast Tunisia: Djerba-Midoun. The considered sampling period is 2.5 
minutes (i.e., the sampling period is Ts = 2.5 x 60 = 150s). Indeed, an interpolation was performed on the 
recorded power profile in order to modify the sampling period (1 hour) which represents a long time interval 
for the W-EMS. All simulations were coded in MATLAB© Software. The presented power profile values 
vary on its universe of discourse (120-2820W) as described in the above section and the initial Filling State 
is fixed at FS0 = 15%. Simulation results show that the implemented fuzzy rules (Table 4) are coherent 
with the proposed W-EMS described by Equation 1 and its objective. Moreover, simulation results comply 
with the system constraints; the water level in the storage tank is kept varying on its confines during the day 
and the supply power of each pump is within its operating power range. For example, when the generated 
power (𝒫dc) is High and the tank filling state (FS) is also High, we can abundantly produce freshwater 
while pumping brackish water in a moderate way (i.e.,the WP water flow rate is QWP ≤ QHPP) in order 
to prevent tank overflow. This way, the designed FIS enables to take benefit of the available generated 
power while respecting the system constraints. This demonstrates the good performance of the designed 
FIS in terms of power dispatching and compliance with system constraints.

However, the designed FIS presented some limitations during the treatment of some operating 
cases out of boundaries leading to affect its performance. In order to evaluate the FIS performance, 
the power profile amplitude and the initial filling state (FS0) of the tank can be varied. These factors 
(the power amplitude and FS0) significantly influence the decision making of the FIS.

The outstanding situations are highlighted here in order to analyze the FIS performance. For this 
reason, a theoretical short-time interval power profile is chosen to focus on each studied case and show in 
details the influence of these factors on the system behavior and accordingly on the W-EMS performance. 

Figure 6. Computational process of the output factor inside the fuzzy inference system
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The power profile is sampled every five seconds for a total time scale of 200 seconds in the simulation. 
Then, some constraints are violated in order to investigate their impact on the system behavior.

When observing Figure 8-(b) and Figure 9, a poor decision-making of the fuzzy W-EMS is 
noticed during some time intervals, that are illustrated through inappropriate behavior of the system 
in these figures. This is caused by a violation of some constraints related to the system operation. 
This problem can be split into two sub-problems:

•	 The first one is related to the first FIS- input variable which is the generated power 𝒫dc.
•	 The second one is related to the second FIS-input variable which is the filling state FS of the 

storage tank.

These two problems are analyzed in the following two subsections.

Table 4. Fuzzy rule table for the designed Hand-Made FIS (HMFIS)

α
𝒫dc

L M QH H

FS

L OFF OFF D B

M A D D C

F D D D D

Figure 7. Simulation results of the fuzzy logic-based W-EMS for a daily power profile
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Influence of the First FIS-Input Variable: The Electric Power (𝒫dc)
This problem is illustrated by Figure 8. The simulation started with a full tank (i.e.,initial tank filling 
state FS0 = 100%) using a variable power profile denoted (A) (Figure 8-(a)) where its maximum 
magnitude value is 2820W. This case shows the good performance of the fuzzy W-EMS. Nonetheless, 
when using the power profile (B) depicted in Figure 8-(b), where the maximum magnitude value 
reaches 3700W, while maintaining the same initial filling state of the tank, there is inappropriate 
behavior: the maximum limit in the storage tank is exceeded at the instant t2 (i.e., tank overflow). 
Indeed, during the interval time [t1 – t3] the input power is no longer into the universe of discourse 
(i.e., 𝒫dc >  2820W). As a  result, the fuzzy system gives a  random value of the power sharing factor 
(e.g. here α = 0.5).

Influence of the Second FIS-Input Variable: The Tank Filling State (FS)
The effect of the filling state violation reveals through two different cases: in Figure 8-(b) at t ≥ t3, 
a poor behavior of the system is noticed although the input power is within the universe of discourse: 
the two pumps operate simultaneously (i.e.,pumping and desalination mode) which is inacceptable 
because in this case the Well Pump must be switched off. This is explained by the fact that the water 
level or the filling state (FS) of the tank is actually out of universe of discourse [10 – 100%]. Secondly, 
in case of empty tank (FS0 = 9% < FSmin) as depicted in Figure 9, normally the system should pump 
water in the well to increase the water level in the storage tank, while the High Pressure Pump (HPP) 
must be switched Off. However inacceptable behavior is noticed: the two pumps operate simultaneously 
during the interval time [t0 – t1]. This can be explained by the fact that this case (i.e.,constraint 
violation on the filling state) has not been treated beforehand (FS0 ∉  [10 – 100%]). As a result, when 
an input value does not belong to the universe of discourse, it leads to a random decision-making.

Figure 8. Simulation results of the fuzzy W-EMS for: (a) power profile (A) and FS0=100%, (b) power profile (B) and FS0=100%
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In the light of the above analysis, the FIS could be effective and offer good performance in terms 
of power dispatching, when varying the operating conditions of the system and for different input 
power amplitudes, by providing “the necessary intelligence” to the FIS to be designed. This enables 
to prevent in real-time approach the occurrence of any mistreated case beforehand (i.e.,during the 
off-line phase). For this sake, in the next section the FIS design will be improved in order to perfect 
its intelligence.

HMFIS DESIGN TUNING AND IMPROVEMENT: SECOND STEP

The performance of the FIS, and accordingly, the fuzzy logic-based W-EMS depends on the number 
and shape of the membership functions of each fuzzy variable, and on the choice of the fuzzy rules. 
The adequate choice of these parameters is crucial to reach the water-energy management objective 
(maximizing the freshwater production of the desalination system following weather conditions) and 
for maintaining the tank filling state FS within its specified confines. For this purpose, the designed 
FIS will be improved in this section by adjusting and tuning some setting parameters, namely:

Figure 9. Simulation results of the fuzzy W-EMS for the power profile (A) and initial tank filling state FS0=9%
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•	 The number of membership functions of the two fuzzy inputs.
•	 The fuzzy rule base.

Indeed, a priori additive fuzzy rules are planned to the previous rule base to deal with the 
exceptional cases mentioned in the previous section. The improvements are explained below.

Improvements on the First Fuzzy Input Variable: 𝒫dc
Universe of Discourse Tuning
Assuming that we already knew the input power profile, we can predefine the appropriate universe 
of discourse to this profile. Given the previous power profile (B), we can choose [0 – 4000W] as the 
universe of discourse of the 𝒫dc variable which is an oversized profile with respect to the system 
requirements. The chosen range concourse meets the alleged requirements.

Membership Functions Tuning
The chosen universe of discourse can be subdivided more than previously into “six” overlapped 
levels using the linguistic variables {Quite Low (QL), Low (L), Medium (M), Quite High (QH), 
High (H) and Very High (VH)}. The membership functions of the input variable are shown in 
Figure 10. A Trapezoidal shape is chosen for the membership functions {QL and VH}, and 
Triangle shape for others.

Improvements on the Second Fuzzy Input Variable: FS
Universe of Discourse Tuning
For the same raisons, the filling state range [0 – 105%] is defined as universe of discourse of the FS 
variable. Indeed, the tank is 2.1m height corresponding to 105% value since we have defined the 
maximum storage limit (Lmax = 2m) as 100% to prevent tank overflow.

Membership Functions Tuning
Based on the chosen universe of discourse, “five” membership functions {Empty (E), Low (L), 
Medium (M), Full (F) and Overfilled (OF)} are set. Trapezoidal shape is chosen for the membership 
functions {E and OF}, and Triangle shape for others (Figure 10).

It should be noted that parameters for the output variable are kept the same as shown in Figure 5.

Figure 10. Membership functions of input variables of the improved Hand-Made FIS (HMFIS)
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Improvements on the Rule Base
The new rule base is composed of the initial 12 fuzzy rules given in Table 4 to which are added additive 
fuzzy rules in order to ensure the robustness and reliability of the process to deal with critical cases. 
The improved rule base includes now 30 fuzzy rules that are reported in Table 5.

Simulation Results of the Improved HMFIS-Based 
Water-Energy Management Strategy
Simulation results show that the improved HMFIS is able to properly deal with water-energy management 
problem discussed in the previous section. In Figure 11-(a) where the storage tank is initially full, the 
improved fuzzy water-energy management strategy (W-EMS) reaches to manage simultaneously the 
electric energy and water flows into the system while respecting the constraints. The FIS gives the priority 
to the desalination process over pumping process by giving higher values for the power sharing factor 
(α). In order to prevent tank-overflow the pumping process operates in moderate manner (i.e.,QWP < 
QHPP) simultaneously with desalination process. This seems very interesting since it leads to take benefit 
of the abundant renewable energy while respecting the system constraints. Moreover, in Figure 11-(b), 
where the tank is initially totally empty the improved FIS imposes the HP Pump (HPP) shutdown despite 
the abundant generated power in order to prevent the “vacuum suction” problem. In such conditions the 
priority is given to the pumping process where the Well Pump (WP) operates with its maximum water 
flowrate (QWP = QWPmax). In order to be effective, and after a certain moment, it becomes possible 
to switch-On the HP pump to operate in moderate manner such as: QWP > QHPP. This permits to take 
benefit of the abundant renewable power leading to maximize the freshwater production.

In order to evaluate the improved HMFIS performance over a long period of time, a weekly power profile 
is applied. It is extracted from the real data of PV-Wind power generation of Djerba-Midoune region where the 
sampling period is set to 2.5 min. Simulation results are shown in Figure 12 demonstrating the good performance 
of the improved HMFIS in terms of power dispatching and compliance with the system constraints.

In light of the above outcomes, the improved HMFIS-based W-EMS enables, on the one hand to 
effectively manage the water/power flows into the desalination system, and on the other hand to make 
good use of the renewable generated power in order to maximize as much as possible the freshwater 
production while respecting the technological (power ranges) and the functioning (filling state of 
the tank) constraints of the system.

The next section is dedicated to show how optimization algorithms can significantly reduce the 
time of hand-adjustment trials and improve the FIS design.

FIS DESIGN OPTIMIZATION TECHNIQUE: GENETIC 
ALGORITHM-BASED FIS DESIGN (GAFIS)

As previously explained, the design phase of a fuzzy inference system (FIS) consists of the choice 
of its different parameters, namely:

Table 5. Fuzzy rule table for the improved HMFIS

α
𝒫dc

QL L M QH H VH

FS

E OFF OFF OFF OFF OFF OFF

L OFF OFF OFF D B D

M OFF A D D C D

F OFF D D D D D

OF OFF D D D D D
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Figure 11. Simulation results of the fuzzy W-EMS for: (a) power profile (B) and FS0=100%, (b) power profile (B) and FS0=0%

Figure 12. Simulation results of the fuzzy W-EMS for a weekly power profile
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•	 The number and shape of membership functions (MFs) per input/output and the location of their 
characteristic points/parameters.

•	 The fuzzy rules.
•	 The Defuzzification method.

This phase was essentially based on hand and iterative adjustment trials according to the expert 
analysis of obtained results: first of all, the initial FIS design was set by: i) setting the MFs of input/
output variables (i.e.,number, shape, location and mapping), ii) setting the initial rule base, and iii) 
choosing the Defuzzification method. Then, the MFs of the input/output variables have been adjusted 
while tuning the rule base and even the Defuzzification method. Nonetheless, in energy management 
optimization problems it is very difficult to find an optimal combination of all of these parameters. 
Indeed, each choice of design parameters leads to a new different FIS that may affect the W-EMS 
performance as previously explained. The best possible solution provides better power dispatching, 
but needs lots of human expertise and a huge number of tests to be found. Therefore, to find an 
optimal FIS design and limit adjustment trials time, an optimization algorithm appropriate for FIS 
design problems should be used, namely the Genetic Algorithm (GA). In order to make the design 
optimization more efficient, only the FIS parameters that have major effects on the FIS performance 
should be considered. Indeed, after an in-depth expertise following the previous study, the designer 
is able to discern whether the FIS parameter has a great or negligible influence on the final result. 
Hence, those parameters that most influence the FIS performance (accordingly the performance of 
the fuzzy W-EMS) for this application are determined as:

•	 The MF parameters for both input variables: the placement of the first point (i.e., first parameter: 
a ) for each Triangle MF. Indeed, a Triangle MF is characterized by three parameters: a , b  and 
c , where a  and c  define the base and b  defines the height of the Triangle. 

•	 The fuzzy rules (only those presented in bold type in Table 5).
•	 The Defuzzification method.

The genetic algorithm (GA) optimization process of the improved HMFIS was performed on a 
daily power profile, where the optimization objective is to maximize the freshwater production. This 
phase was detailed in (Ben Ali et al., 2018) where the performance of the GA optimized FIS (denoted 
GAFIS) was evidenced in terms of freshwater production compared to the HMFIS.

The optimized membership functions of the inputs of the GAFIS (genetic algorithm-optimized 
FIS) in comparison with those of the Hand-Made FIS (HMFIS) are depicted in Figure 13. The 
optimized rule base is reported in Table 6. The Defuzzification method obtained by the GA 
optimization is the BISECTOR method instead of the previously chosen Centroid method.

Comparison results between the HMFIS and the GAFIS are reported in Table 7 for different 
seasonal power profiles. When applying the GAFIS for different input power profiles, better results 
(i.e., higher freshwater quantity) are always obtained compared to the HMFIS results (improvement 
of 3.3% during Autumn). In addition to freshwater production, higher stored amount of brackish 
water (improvement of 63% in Summer) can be noticed in Table 7, and less energy loss are noted 
when using the GAFIS (based on the consumed energy Ec and non-consumed energy Enc as key 
performance indicators). These findings demonstrate the usefulness and effectiveness of the genetic 
algorithm as an optimization tool for FIS design.

Till now, the design phase of a “Mamdani-FIS structure” was introduced. The basic structure 
of a Mamdani-type FIS is a mapping process that maps input characteristics to input membership 
functions (MFs), the latter to control rules, in turn, rules to the different output characteristics, then, 
output characteristics to output MFs, and finally, the output MFs to a single crisp output value. In 
such a system, MFs and fuzzy rules are either chosen and predetermined by the expert, or obtained 
based on a tuning procedure using an optimization algorithm to find the optimal design.
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Figure 13. Membership functions of the two inputs for the GAFIS and the improved HMFIS

Table 6. Fuzzy rule table for the GA optimized FIS (GAFIS)

α
𝒫dc

QL L M QH H VH

FS

E OFF OFF OFF OFF OFF OFF

L OFF OFF A A C D

M OFF D B B B D

F OFF D C C C D

OF OFF D D D D D

Table 7. Comparison of obtained results of the water-energy management strategy with HMFIS and GAFIS tested for different 
seasonal power profiles

Freshwater (m3) Brackish water (m3) Ec (kWh) Enc (kWh)

Autumn

GAFIS 747 1.49 1939 625.9

HMFIS 722.7 1.242 1898 667

Gain (%) 3.3 16.7 2.1 6.6

Winter

GAFIS 755.9 1.897 1964 618.8

HMFIS 731.8 0.747 1925 657.5

Gain (%) 3.2 60.6 2 6.3

Spring

GAFIS 817.24 1.85 2130 688.4

HMFIS 795 1.242 2095 723.4

Gain (%) 2.8 37.5 1.7 5.1

Summer

GAFIS 789.29 772.35 2071 683.9

HMFIS 772.35 0.699 2028 726.6

Gain (%) 2.2 63 2.1 6.3
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Another method may also be useful for tuning the FIS parameters that can be classified among 
data-driven approaches. This approach is explained in the next section.

NEURO-FUZZY DESIGN TECHNIQUE: ANFIS

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a Takagi-Sugeno FIS whose MFs parameters are 
tuned and adjusted using a given input/output data set (see (Jang, 1993; Jang et al., 1995) for more 
information about ANFIS). This adjustment enables fuzzy system to learn from data they are modeling.

When to Use Neuro-Adaptive Learning
Supposing that the designer aims to apply a fuzzy inference system to the presented BWRO desalination 
system for which he already has a collection of input/output data that he wants to use for modeling 
or other similar scenario. However, the designer does not have a predetermined model structure. In 
such modeling situations, designer cannot discern what MFs should look like by simply looking at 
data. Given that the shape of MFs depends on their parameters as previously demonstrated, modifying 
those parameters may affect the MF shape and, accordingly, the FIS performance. Hence, instead of 
just looking at the data to choose arbitrarily the MF parameters, the latter here can be automatically 
identified using Fuzzy Logic Toolbox neuro-adaptive learning techniques so as to tailor the MFs 
to the input/output data. This enables designer to account for variations in data values. Indeed, the 
aforementioned Fuzzy Logic Toolbox learning technique is integrated in the ‘anfis’ function available 
in MATLAB software, that accomplishes the tuning and adjustment of MF parameters based on the 
training collected data.

Model Learning and Inference
The neuro-adaptive learning method is a network-type structure working similarly to that of neural 
network using either back propagation alone or in combination with least squares method for 
membership function parameters estimation (Jang, 1993). These neuro-adaptive learning techniques 
offer to the fuzzy modeling procedure a method to learn information about a given data set. So, the 
fuzzy logic toolbox ‘anfis’ command allows training the FIS model to emulate the given training data 
by modifying the MF parameters according to a given error criterion. In other words, it computes the 
MF parameters that best enable the associated FIS to track the input/output data.

Model Validation Using Testing Data Set
Model validation constitutes the process to check how well the trained FIS model predicts the checking 
data set output values. During this process, the designer uses a testing (or checking) input/output 
data set on which the resulting FIS was not trained. Usually, the training and testing data sets are 
gathered based on observations, simulations, or physical experiments of the target system, and are 
stored in two separate data files.

ANFIS Design Example
The Neuro-Fuzzy Designer application available in MALAB software is used to generate and train a 
new Sugeno- type FIS (two inputs-one output as shown in Figure 14) for water-energy management 
of the BWRO desalination system. The used input/output database here is collected from results of a 
deterministic rules-based water-energy management strategy which was previously performed (see 
(Ben Ali et al., 2020)).

Figure 15 depicts the input membership functions of the resulting ANFIS. Table 8 shows the 
simulation results of the ANFIS-based W-EMS, which are very close to the GAFIS-based W-EMS 
results during Spring. The presented ANFIS, using the neuro-adaptive learning technique, enables 
to improve, on the one hand, the total water production of the studied system, and the system energy 
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Figure 14. ANFIS structure

Figure 15. Gaussian membership functions of the inputs

Table 8. Comparison of fuzzy W-EMS results obtained with the improved HMFIS, the GAFIS and the ANFIS tested during Spring

ANFIS GAFIS Improved HMFIS

Freshwater (m3) 816,64 817,24 795

Brackish water (m3) 2,1 1,98 1,24

Ec (kWh) 2247 2129,5 2094,5

Enc (kWh) 570,94 688,41 723,43
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efficiency (by presenting the lowest value of Enc) on the other hand. Therefore, users can apply the 
obtained ANFIS for real-time energy management.

CONCLUSION

This work investigates an important topic of energy and water security (water-energy nexus), 
considering the increasing population and the scarcity of water in poor or developing areas, combined 
with the need to mitigate climate change by reducing carbon emissions. The main innovation lies in 
the application field in that the use of the fuzzy logic in water-energy management for desalination 
systems to deal with energy dispatch between two hydro-mechanical processes (pumping and 
desalination) was not issued in literature.

In this context, the paper is focused on the detailed description of how a Fuzzy Inference System 
(FIS) can be designed for water-energy management. For this purpose, based on their experience, 
authors presented three different methods, among other, to design the FIS, which are: i) handmade 
tuning method based on the designer’s expertise, ii) genetic algorithm (GA), and iii) neural network 
algorithm (NNA). Authors explained, through a specific application (water-energy management 
for a standalone renewable energy-driven desalination system without electrical storage device) the 
process of each design method. Authors highlighted the influence of the FIS design on performance 
of the Water-Energy Management Strategy (W-EMS).

Firstly, the study showed that the W-EMS performance can be improved by further tuning the 
design parameters of the fuzzy system (the FIS) such as: i) the fuzzy partition of the input/output 
spaces (i.e. the universe of discourse), ii) the choice of the input/output membership functions, iii) the 
fuzzy control rules, and iv) the Defuzzification method. In addition, it was demonstrated that based 
on human expertise, heuristics, and intuition the choice of these parameters is not deterministic and 
usually requires an adjustment trial procedure to find the optimal FIS. Relatively small changes in 
these parameters involve a new fuzzy system requiring large human expertise and a big number of 
tests to find the optimal design.

Secondly, it was shown that given performance criteria, evolutionary algorithms like GA (or 
also particle swarm optimization, PSO) offer good tools to find the optimal design, while limiting 
adjustment time and keeping a minimum of human analysis in the optimization phase.

Thirdly, another interesting design approach of the FIS which is the ANFIS, was also described. 
It is based on neuro-adaptive learning driven by data that can be collected in simulations, physical 
experiments, or production processes. This method allows automatically estimating the FIS parameters 
according a given error criterion so as to tailor the trained FIS to the input/output data. 

Nonetheless, although the good performance offered by the FIS in the energy management field, 
nothing guarantees that the “optimized” or “estimated” parameters of the FIS are still appropriate for 
different scenarios of the studied system, namely:

•	 Rough changes in weather conditions (e.g. successive cloudy sky or very low wind speed) leading 
to a drastically difference between the harvested power and that used during the FIS design 
process, especially for the GA-optimization process.

•	 Modifying the initial filling state, FS0, of the water storage tank (similarly to the state of 
charge, the SOC, of the battery storage into electrical vehicles) that is different from that 
used as an operating condition during the GA-optimization process of the FIS design. Indeed, 
varying the operating conditions to which the GA-optimization process was performed will 
affect the FIS performance.

•	 Potential measurement errors in the collected data which is used for estimating the ANFIS parameters.

In order to overcome FIS design limitations, survey-based fuzzy inference systems can be an 
alternative for fuzzy systems design by combining the knowledge from different experts. However, 
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because experts do not all agree, they will determine different FISs with different membership 
functions and different fuzzy rules. Type-2 fuzzy inference systems enable to combine the knowledge 
from different experts and to handle this uncertainty (e.g. about the meaning of the words, the rule 
consequence, the measurements, etc.). 

Another solution of great interest is the W-EMS based on adaptive fuzzy system, where several 
GAFISs that are obtained for different operating conditions (i.e. different FS0 of the water storage 
tank or different power profiles), are invoked in real-time to be applied in the W-EMS according to 
the corresponding operating conditions. This solution is under study and one can say that it may offer 
better results and deal with the GA-optimization drawback.
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