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ABSTRACT

Entity alignment aims to identify equivalent entity pairs from different knowledge graphs (KGs). 
Recently, aligning temporal knowledge graphs (TKGs) that contain time information has aroused 
increasingly more interest, as the time dimension is widely used in real-life applications. The 
matching between TKGs requires seed entity pairs, which are lacking in practice. Hence, it is of great 
significance to study TKG alignment under scarce supervision. In this work, the authors formally 
formulate the problem of TKG alignment with limited labeled data and propose to solve it under the 
active learning framework. As the core of active learning is to devise query strategies to select the 
most informative instances to label, the authors propose to make full use of time information and put 
forward novel time-aware strategies to meet the requirement of weakly supervised temporal entity 
alignment. Extensive experimental results on multiple real-world datasets show that it is important 
to study TKG alignment with scarce supervision, and the proposed time-aware strategy is effective.
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INTRodUCTIoN

Temporal knowledge graphs (TKGs) store entities, their relationships, and time information with a 
structured knowledge representation. They are widely used to facilitate downstream tasks in the field 
of artificial intelligence, such as recommender systems (Schall, 2015) and natural language 
understanding (Choudhury et al., 2022). A TKG stores knowledge in the form of e r e

s o
, , ,t( ) , where 

e
s

 is the subject entity, e
o

 is the object entity, r  denotes the relation between entities, and t  
represents a specific timestamp or a time interval with beginning time and ending time. Typical TKGs 
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include ICEWS14 (García-Durán et al., 2018), DELT (Trivedi et al., 2017), and Wikidata (Erxleben 
et al., 2014) which contain temporal facts; for example, the triple Biden esidentOf USA,Pr ,( )  is 
valid only from January 2021.

Since most TKGs are developed independently, existing TKGs are often incomplete but 
complementary to each other. Thus, several TKG fusion approaches are put forward and attempt to 
combine several TKGs into a single and comprehensive one. As an important stage of TKG fusion, 
temporal entity alignment (TEA) is the task of detecting the equivalent entities (i.e., the entities that 
refer to the same object) from different TKGs.

The task of TEA is inherently challenging from at least the following aspects:

• Usage of Time Information: In TKGs, most of the events have specific time stamps or time intervals, 
such as Beijing host Olympic Games, , , 2008( )  and London host Olympic Games, , , 2012( ) . If 
the observer neglecst the time information and only considers the relation host  and the object 
entity Olympic Games , they may mistakenly match Beijing  and London . Figure 1 provides a 
more specific example. Therefore, in TEA, it is critical to make good use of the time information.

• Heterogeneity: Since most different TKGs are constructed individually and obtain source data 
from various channels, the same entities in different graphs may have different relations and time 
information with other entities. Different TKGs may cover the different parts of factual events, 
which makes matching more difficult. For instance, in Figure 2, the two entities 
� cos_ . .Olympia FC  and Olympia F Ccos   refer to the same entity in the real world, but it is 
hard to match them since they are associated with different events.

To address these issues, several approaches have been put forward. Particularly, the time-aware 
entity alignment approach based on graph neural networks (TEA-GNN) (Xu et al., 2021) first designs 
a time-aware GNN to cope with TEA, which exploits a time-aware mechanism to introduce the time 
information into entity embeddings. The time-aware entity alignment using temporal relational 
attention (TREA) (Xu et al., 2022), on the other hand, incorporates temporal embeddings to enrich 
the entity embeddings and achieves state-of-the-art performance. Nevertheless, they cannot fully 
tackle the aforementioned challenges brought by TEA. Besides, they also overlook another notable 
challenge of TEA:

• Lack of Labeled Data: The performance of the aforementioned TEA models heavily depends 
on the amount of labeled data (i.e., aligned entity pairs). When the amount of labeled data 
decreases, the accuracy of alignment drops sharply. Hence, in existing TEA literature, one of 
the prerequisites is the availability of sufficient aligned entity pairs. Unfortunately, such labeled 
data are always lacking in the real world. In the meantime, it requires excessive effort to obtain 
the manual annotation of aligned entity pairs. Thus, it calls for the study of TEA with scarce 
supervision. Currently, there is no study targeted at the weakly-supervised TEA.

Note. TKG1 is extracted from YAGO, while TKG2 is extracted from Wikipedia. The left entity 
<Jon Otsemobor> and the right entity “Richie Partridge” have the same relations and object entities. 
When ignoring the time information of TKGs, these two entities can be matched. Nevertheless, they 
are inequivalent due to their different time information in each quadruple.

Note. TKG1 is extracted from YAGO, while TKG2 is extracted from Wikipedia. The left entity 
<Olympiacos_F.C.> and the right entity “Olympiacos F.C.” refer to the same entity in the real world. 
This entity is a football team that has had many football players over years. Since different TKGs 
were constructed in different methods, they may cover various parts of factual events, which may 
make aligning reasoning more difficult.
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In response to the aforementioned challenges, the authors first formally formulate the task of TEA 
under scarce supervision. Then, the authors propose to utilize active learning to mitigate the issue 
of limited labeled data. Active learning has been widely used in many weakly-supervised scenarios, 
such as disaster analysis (Said et al., 2021) and EA between general KGs (Zeng et al., 2021), which 
is an effective learning algorithm that can interactively query the oracle to label new data points 
with the desired outputs (Settles, 2009). Although traditional active EA solutions can be adapted 
to tackle the alignment between TKGs, time information has not been sufficiently utilized in these 
studies, which is the key element in TKGs. As thus, the authors develop new time-aware strategies 

Figure 1. 
An illustrative example of temporal entity alignment

Figure 2. 
An illustrative example of an aligned entity pair
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incorporating temporal information to achieve better alignment performance under weak supervision 
signals. The backbone of our proposed model is a simple GNN model that considers structural and 
temporal information only, where time information is treated as the properties of links between entities.

To verify the proposed approach under scarce supervision, the authors conduct extensive 
experiments on real-world datasets extracted from the Intergrated Conflict Early Warning System 
(ICEWS), YAGO3, and Wikidata. The experimental results validate that it is indeed crucial to study 
weakly-supervised TEA, and time information is beneficial to the design of query strategies for 
active temporal alignment.

The main contribution of this article can be summarized as follows:

1.  The authors are among the first attempts to formally formulate the weakly-supervised TEA 
problem.

2.  The authors adopt the active learning framework to cope with the scarce supervision issue and 
devise time-aware query strategies to select the most valuable entities for labeling, which can 
provide useful signals for the subsequent alignment stage.

3.  The authors conduct extensive experiments on real-world datasets, and the empirical results 
demonstrate the significance of studying weakly-supervised temporal alignment as well as the 
effectiveness of their proposed time-aware strategies.

The rest of this paper is organized as follows: The second section defines the task of weakly-
supervised TEA and reviews some related work, the third section describes the proposed approach, 
including two new time-aware strategies, the fourth section presents the evaluation results and analysis, 
and the fifth and last section introduces the conclusion and future work.

BACKGRoUNd

In this section, the authors first formally formulate the problem of weakly-supervised TEA. Then, 
they introduce some related works.

Problem Formulation

TKGs store real-world information in the form of quadruples e r e
s o
, , ,t( ) . A TKG could be defined 

as G E R T Q� � , , ,=( ) , where E R, , and T  represent the sets of entities, relations, and timestamps, 
respectively, and Q E R E T ⊂ × × ×  represents the set of factual quadruples. Although different 
TKGs are constructed from different sources, there are still many entity pairs referring to the same 
real-world object which may have many same timestamps. Formally, suppose G1 and G2 are two 
TKGs, denoted as G E R T Q

1 1 1 1 1
= ( ), , ,  and G E R T Q

2 2 2 2 2
= ( ), , , . Noteworthily, timestamps in most 

TKGs are presented in Arabic numerals and have similar formats. Hence, timestamps in different 
TKGs can be easily aligned by manually unifying their formats, and the uniform time set is denoted 
as T T T� �= ∪

1 2
. P e e e E e E

i i i i
� � , | ,= ( ) ∈ ∈{ }1 2 1 1 2 2

, which represents the set of prealigned seed pairs 
between two TKGs. The objective of TEA is to find new aligned temporal entity pairs based on these 
prealigned seeds.

The focus of this work is to study TEA with scarce supervision, which can be divided into two 
stages, namely, selecting and alignment. The former is to select informative entities from a pool of 
unlabeled entities μ for an oracle to label until the labeling budget B exhausts, which can provide 
more useful signals for the latter, which aims to exploit the labeled data to align the test entities.
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Related Work
Knowledge Graph Representation
KG embedding (KGE) aims to embed entities and relations into a low-dimensional vector space and 
preserve the original knowledge (Zhao et al., 2020). A representative KGE model is TransE, which 
projects both entities and relations into the same vector space, assuming that h r t    + ≈  for a triple 
h r t, ,( ) . In addition to traditional KGE models such as TransE and its variants (Nayyeri et al., 2021Lin 

et al., 2015), there are also some temporal KGE (TKGE) models (Lacroix et al., 2020; Sadeghian et 
al., 2021; Wu et al., 2020) which show that the combination of traditional embeddings and the time 
information is beneficial for the representation of TKGs. In the last few years, GNNs have become 
increasingly popular in many areas due to their ability to model non-Euclidean space. The graph 
convolutional network (GCN) is one of the most popular extensions of GNN, which can represent 
the embedding of entities by incorporating structural information of their neighborhoods via 
convolutional layers. The GCN and its variants have been widely utilized in EA. Some methods (Zeng 
et al., 2022) improve their capability of dealing with large-scale KG pairs. Some methods (Jin et al., 
2020; Li et al., 2021; Zhang et al., 2022) consider the multigranularity information via the addition 
between internal regularity and external influence.

Temporal Entity Alignment
In the last few years, the task of EA has been widely studied. Most KG alignment methods aim to find 
equivalent entities across multiple KGs by measuring the similarities between entity embeddings, 
where the KGs are embedded into a unified vector space. Most existing EA models (Mao et al., 2020; 
Wu et al., 2019) are devoted to getting a better representation of the entities through KG embedding 
methods such as TransE and GCN. Recently, by incorporating time information into KGs, the temporal 
KG draws more attention, which adds to each fact the time validity interval of a specific event. 
TEA-GNN (Xu et al., 2021) first proposes to use time information to enhance the representation of 
entities in the task of TEA and successfully improve the accuracy of alignment. TREA (Xu et al., 
2022) models the relation and time information of entities to enrich the embeddings of entities, which 
indeed improves the performance.

Active Learning
Active learning (also called “query learning” or “optimal experimental design” in the statistics) is 
a part of machine learning. The core of active learning is that, if the learning algorithm can learn 
to choose the most informational and effective entities, the model will get better performance with 
scarce training. Since data labeling costs much human labor, active learning draws more interest than 
ever before. Recently, some active learning approaches have been proposed and applied to EA, and, 
indeed, they have verified the effectiveness of active learning in the task of EA. Some works have 
exploited different active strategies to select informative instances (Berrendorf et al., 2021; Liu et 
al., 2021), and some (Zeng et al., 2021) have tried to use reinforced learning to obtain the best result 
from several strategies. Nevertheless, these methods cannot be directly used to tackle TEA, as the 
authors will verify in the following section.

MAIN FoCUS oF THe ARTICLe

To cope with TEA with scarce supervision, the authors adopt active learning to tackle the labeled 
data selection problem. The authors first introduce different active learning strategies, including novel 
time-aware query strategies, which are used to improve the alignment performance under scarce 
supervision. Then, the authors briefly introduce the backbone representation learning model used to 
generate the embeddings, which is not the focus of this work.
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Active Learning for Temporal entity Alignment
Active learning can tackle weakly supervised TEA by selecting the entities it wants to learn from. 
By designing effective query strategies, the entities with the highest informativeness for labeling 
can be selected, and the annotated temporal entity pairs are added to the labeled data for subsequent 
training. These strategies enable active learning techniques to perform significantly better with fewer 
training data.

Model Overview
Active learning is a general approach that aims at getting as much performance gain as possible by 
labeling as few data as possible. Therefore, the design of active strategies is crucial to the performance 
of active learning methods. In this work, the authors mainly rely on pool-based active learning methods 
where the selected entities are drawn from a large pool of unlabeled data. At first, given the labeling 
budget B , an initial training set (i.e., also called the seeds) and a large pool of unlabeled data m . 
This framework consists of multiple iterations. In each iteration, the authors first exploit specific 
active strategies to measure the informativeness of each entity in the pool m , and hand top b b B( )  
entities to the oracle for labeling. Next, they add these newly labeled entity pairs to the training set 
and forwarded to the TEA model. In the specific model, with the help of these labeled entities, the 
authors could project different TKGs into a unified low-dimension embedding space, where the same 
entities become closer than the others and the misaligned entities get further and further away. Finally, 
the authors utilize the distance function and learned representation to conduct the final inference and 
get the result of alignment. When the budget B  is exhausted, they stop the next iteration. Figure 3 
shows the overview of this active learning framework.

Next, the authors provide a detailed description of several traditional query strategies, which they 
exploit in this work, and introduce their proposed strategies that consider the influence of temporal 
information.

Random
Random sampling is one of the most common sampling methods. Random sampling neglects the 
specific characteristics of the KGs and can fully explore the diversity of KGs. Assigning the same 
weight to the entities in the graphs, random sampling selects entities without any prior knowledge.

Figure 3. 
The outline of active learning for weakly-supervised temporal entity alignment
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Degree Centrality
Since the entities in TKGs are not all discrete and also have a close connection with other entities, 
the authors consider the node with more connection with the others will play a more essential role in 
the graph and provides more useful information for the model training. Thus, the authors use degree 
centrality to characterize the centrality of entities, which is also the simplest centrality measure to 
compute. Formally, the degree centrality orders entities by the number of their directly connected 
edges. Obviously, the nodes with a higher degree are selected first.

PageRank Centrality
PageRank has been widely used in evaluating the importance of a Web page (Page et al., 1999), 
which is also adapted to measure the centrality of entities in a graph by considering their degrees 
as well as the influence of their neighbors. The authors leverage the PageRank centrality to get the 
most popular nodes in the graph.

Closeness Centrality
Closeness centrality indicates how close a node is to all other nodes in the graph, which is calculated 
as the average of the shortest path length from the node to every other node in the graph (Perez & 
Germon, 2016). Concretely, the closeness centrality of a node u  is the reciprocal of the average 
shortest path distance to u overall n-1 reachable nodes (Freeman, 1978):

C u
n

d v u
v

n( ) = −

( )
=

−

∑
1

1

1
,

 (1)

where d v u,( )  is the shortest-path distance between v  and u , and n -1  is the number of nodes 
reachable from u .

Betweenness Centrality
Betweenness centrality is a widely used measure which can capture the role of a node in allowing 
information to pass from one part of the network to the other. It is calculated with the number of the 
shortest path (between any couple of nodes in the graphs) that passes through the target node (Perez 
& Germon, 2016). Betweenness centrality of a node v  is the sum of the fraction of all-pairs shortest 
paths that pass through v .

c v
s t v

s tB
s t V

( ) =
( )∈

∑
,

( , | )

,

s

s
 (2)

where V  is the set of nodes, s s t,( )  is the number of shortest s t,( )  –pairs, and s( , | )s t v  is the 
number of those paths passing through some node v  over than s t If s t s t, . , , = ( ) =s 1 , and 
if v s t s t v ∈ =, , ( , | )s 0  (Brandes, 2008).

Time-Aware Centrality
Compared to the traditional KGs, TKGs have extra time information, such as timestamps and time 
intervals. As a time message is a supplement to the triplet information, the authors treat the time 
message as the attributes of the entities. Hence, time-aware centrality is influenced by the degree 
of centrality. Time information has different granularities, such as year, month, and day. These 
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multigranularities will have a different influence on different graphs. For instance, in the DICEWS 
dataset, the time information is accurate to the day, which leads to a large number of time ids. To 
reflect the difference caused by different timestamps, the authors assign the weight by their degrees. 
The score function is defined as follows:

Score e F e W t
i

e N
t j

j ei t T

( ) = ∑ ( ) ( )+( )
∈ ∈,

g  (3)

where N
ei

 is the set of neighbors of e
i
, T  is the set of time id, W t( )  means the specified weight 

of time, F e
t j( )  denotes the number of facts that is related to time t , and g  is a hypermeter that 

represents the role of the traditional degree. Then, the top b  entities from the unlabeled entities in 
the training set are selected for oracle to label.

Katz Centrality
Katz centrality (Katz, 1953) computes the relative influence of a node within a network by measuring 
the number of the immediate neighbors and also other nodes in the network that connect to the node 
under consideration through these immediate neighbors. The centrality of a node is based on the 
centrality of its neighbors, which is a generalization of the eigenvector centrality. The Katz centrality 
for node i  is computed as follows:

x A x
i

j
ij j

= +∑α β  (4)

where A  is the adjacency matrix of the graph with eigenvalues l , the parameter b  controls the 
initial centrality and α

λ
<

1

max

.

Time Enhanced Centrality
Considering the nodes in the graph have a close connection with their neighbors, the centrality of their 
neighbors may have an essential impact on them. After further analysis of the YAGO-WIKI50K dataset, 
the authors found that more than 98% of triples are soccer teams and soccer players, which seemed like 
a domain KG in football. Since soccer teams have more connections than any soccer players, if only 
the nodes of the soccer team have been chosen will provide insufficient signals for models to learn. 
Hence, to tackle this domain question, the authors exploit the temporal centrality of neighbors, inspired 
by the Katz centrality, to enhance the time-aware centrality. The temporal centrality for node e

i
:

τ α βe TA e
i

e N
ij j

j ei

( ) = +
∈
∑  (5)

where TA  is the temporal adjacency matrix of KG that, if the fact quadruples of ei and ej has time 
information TAij = 1 , else TAij = 0 .

The final score function is as follows:

Score e F e W t e
i

e N
t j i

j ei t T

( ) = ∑ ( ) ( )+ ( )
∈ ∈

� ·
,

µ τ  (6)
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where the former is initial time-aware centrality and the last denotes the temporal centrality of 
neighbors. m  is a hyper-parameter to balance the weight.

Representation Learning
The authors apply their active TEA strategy to a traditional representation learning model, which is 
a representative widely spread of neural EA models, mainly considering structured information and 
attribute information in the graph.

In this section, the authors introduce the backbone model that generates the embeddings for 
alignment. The active learning strategies are exploited over the representation learning models. This 
framework utilizes a traditional EA model, which is a representative widely spread of neural EA 
models, mainly considered structured information and attribute information in the graph.

Specifically, the authors adopt the widely used GCN-Align (Wang et al., 2018) model, which 
can encode information of the neighborhood of a node as a real-valued vector. Given two KGs G

1
 

and G
2
 in different KGs or different languages, a set of aligned entity pairs between them, the proposed 

active learning approach selects informational entities from the training set based on GCN-based 
entity embeddings. GCN-Align could embed entities from different KGs into a unified vector space, 
where equivalent entities are expected to be close than the others. Also, the alignment result is mainly 
dependent on a predefined distance function through entity embedding. 

The inputs to a GCN are feature vectors of nodes and the adjacency matrix of the KG. The goal is 
to learn a function of features over the input graph and produces a node-level output. In the task of TEA, 
there are two main assumptions: (1) Equivalent entities in different temporal graphs tend to have similar 
timestamps or intervals; (2) equivalent entities also play the same important role in the different temporal 
graphs and have more common neighbors. GCNs can project entities into the unified vector space and 
let the same entities be close to each other by combining the structure information and time information,

In this work, the authors exploit GCNs to encode both structure information and temporal 
information and embed the entities into the unified vector space. Let H

s
, H

t
 denotes the structure 

and temporal feature vector matrices of all entities; the convolutional computation is as follows:

H H H W H WD AD
s

l

t

l

s

l

s

l

t

l

t

l+( ) +( ) − − ( ) ( ) ( ) ( )




= 





1 1
1

2

1

2; ;s 










 (7)

where W
s

l( )  and W
t

l( )  denote the weight matrices for structure features and temporal features in the 
l -th layer, respectively, ;


  is the concatenation of two matrices, and s  represents the activation 

function, which is chosen as Re max , .LU ⋅( ) = ⋅( )0

eXPeRIMeNT

In this section, the authors first introduce several existing popular temporal datasets, then they illustrate 
the proposed new temporal dataset, and finally they experiment settings. Subsequently, the authors 
empirically conduct experiments to evaluate different active strategies for weakly-supervised TEA 
on three temporal datasets.

datasets and Settings
The authors utilize three different temporal datasets, namely, DICEWS, YAGO-WIKI-50K, and 
YAGO-WIKI-20K, which were extracted from ICEWS (Birch & Muchlinski, 2017), YAGO (Suchanek 



International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

10

et al., 2007), and Wikidata (Erxleben et al., 2014), to explore the influence of time information on 
alignment accuracy. The detailed statics of these temporal datasets are listed in Table 1.

ICEWS05-15 is originally extracted from ICEWS and contains events occurring between 2005 
and 2015. It is noteworthy that time information in ICEWS consists in timestamps and specific to a 
certain day, such as (Barack Obama, Make statement, China, 2014-04-26). DICEWS is built from 
ICEWS05-15 in a similar way to the construction of DFB datasets (Zhu et al., 2017). The two KGs 
of DICEWS are all extracted from ICEWS05-15, and their overlap ratio of them is up to 50%.

YAGO-WIKI50K and YAGOWIKI20K are all extracted from Wikidata and YAGO, which 
contain time information as a time interval with beginning time and ending time, such as (Derek 
Showers, playsFor, A.F.C. Bournemouth, 1977, 1979) that denotes the fact that Derek Showers plays 
for a football team called A.F.C. Bournemouth from 1977 to 1979. YAGO-WIKI50K contains about 
50,000 entity pairs and both facts in the dataset own time information. Meanwhile, YAGO-WIKI20K 
is a hybrid dataset with 20,000 entity pairs and contains both temporal and nontemporal facts, where 
17.5% of YAGO facts and 36.6% of Wikidata facts are nontemporal.

New Dataset
Through careful observation and analysis, the authors find that each entity in DICEWS has an average 
degree of more than 32, and the degree of some entities can be up to 400. Since the situation is too 
clustered and definitely different from the real world, the authors discrete the temporal datasets by 
decreasing the number of triples and degrees, in the meanwhile, keeping the distribution as much 
as possible.

Table 1 lists statistics of all datasets. Ent, Rels, Time, Qua, and Aligns represent the number of 
entities, relations, timestamps, fact quadruples, and aligned entity pairs, respectively, in the datasets. 
In each KG pair, 70%, 10%, and 20% of the gold pairs are used for testing, validation, and training, 
respectively. Since the authors study TEA with the limit of aligned pairs, they keep 200 seed entity 
pars as the initial training set for DICEWS and YAGO-WIKI20K, and 1000 seed entity pairs for 
YAGO-WIKI50K. Then, with the help of different active strategies, the authors select the entities 
from the rest of the training set for annotation and add them to the initial training set to generate a 
new one until the budget runs out.

Implementation Environments
The authors implement their method using GCN-Align, and maintain the initial hyper-parameters on 
all datasets. The default configuration is as follows: Embedding dimension k = 100 , learning rate 
lr = 20 , margin g = 3 , and the dropout rate is 0. The authors conduct all experiments on a single 
GeForce GTX 3090 GPU with 24GB RAM.

Evaluation Metrics
For each entity in the test set, GCN will compute the following distance measure between it and all 
target entities:

Table 1. 
Statistics of temporal entity alignment datasets

Dataset Ent1 Ent2 Rels1 Rels2 Time Qua1 Qua2 Aligns

DICEWS 9,517 9,537 247 246 4,017 307,552 307,553 8,556

DICEWS-S 9372 9424 214 212 4010 67,194 67,194 8310

YAGO-WIKI50K 49,629 49,222 11 30 245 221,050 317,814 49,172

YAGO-WIKI20K 19,493 19,929 32 130 405 83,583 142,568 19,462
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D e v
f h e h v

d

f h e h v

di j

s i s j

s

t i t j

t

,
, ,

( ) =
( ) ( )( )

+ −( )
( ) ( )( )

b b1  (8)

where f x y x y, | |( ) = −
1
, h �s ·( ) and ht ·( )  denote the structure embedding and temporal embedding 

of an entity, respectively; ds and dt are dimensionalities of structure embeddings and temporal 
embeddings; b  is a hyper-parameter that balances the importance of two kinds of embeddings. For 
each entity, the authors rank the target entities ascendingly by their distance and adopt Hits@1 as the 
primary evaluation metric.

Results and Analysis
To verify whether time information is beneficial for TEA, the authors conduct experiments with or 
without time information in temporal datasets (Table 2). SE  and TE  denote the structural embedding 
and temporal embedding. It can be observed that time information definitely enhances the 
representation of entities and leads to an improvement in aligned accuracy. Table 2 shows that, 
compared to initial embedding built only from structural embedding, the temporal embedding obtains 
an improvement of 14.05% and 10.03% regarding Hits@1 on two TKG datasets, respectively.

Active Learning Study
Since the temporal datasets have different entity pairs, the authors provide different settings of the budget 
that up to 10% of the whole entity pairs for them. Table 3 compares the TEA results of different active 
strategies on DICEWS-S datasets with different budgets. The limit of the number of entities in DICEWS 
results in the instability of the structure or KGs. From the results, most of the strategies perform 
significantly better than random sampling, only the Katz is worse than it. The proposed time aware  
strategy is one of the best-performing active strategies. Hence, those centralities which can catch the 
structure better can achieve better performance within a certain range; for example, closeness centrality 
can achieve the optimal results when the budget is 400, but, when the budget grows, it becomes backward.

Table 4 shows the results of YAGO-WIKI50K. Noteworthy is that random sampling is better 
than some traditional centralities such as Degree  and PageRank . The authors find that YAGO-
WIKI50K is more like a domain KG where the relationship is single and most quadruples are soccer 
players and soccer teams. When the budget is small, random sampling can avoid selecting some nodes 
in a single type and fully explore the diversity of KGs. To cope with the fact that some types of nodes 
will own more connections than the others (e.g., soccer teams), the authors incorporate the temporal 
centrality of the neighbors to enhance the time-aware centrality, and the proposed time enhanced  
outperforms the others.

Sensitivity Analysis
Considering not all facts in the temporal knowledge have time information, the authors conduct a 
sensitivity analysis on YAGO-WIKI20K, where 17.5% of YAGO facts and 36.6% of Wikidata facts 

Table 2. 
Comparison of with/without temporal embedding

Dataset SE SE TE+

DICEWS-1K 29.01 43.06

YAGO-WIKI50K-5K 51.95 61.98
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are nontemporal. Table 5 shows the TEA results of different active strategies on YAGO-WIKI20K. 
Since the relation becomes complex and some exclusive nodes appear, random sampling cannot grasp 
the effective nodes in the graph, and the accuracy is much lower than other strategies. It can seem 
that the proposed time aware  and time enhanced  always achieve the best performance.

On the whole, the authors conclude that the proposed strategies that incorporate time information 
achieve the optimal or suboptimal performance in TEA between temporal datasets, and traditional 
node centrality such as Betweenness  still effective for active learning in weakly-supervised TEA.

Further experiment
In this subsection, the authors aim to demonstrate that the proposed active learning framework can 
be applied to the state-of-the-art temporal graph embedding model to improve their performance 
under scarce labeled data.

Concretely, the authors apply the active strategies on TEA-GNN (Xu et al., 2021), a state-of-
the-art temporal embedding model for TEA. Table 6 shows the TEA results on YAGO-WIKI20K. It 
can seem that the proposed time aware  and time enhanced  always achieve the best performance.

Case Study
In order to study the effect of the proposed strategies on other strategies, the authors illustrate some 
cases that GCN-Align predicts from the test sets of YAGO-WIKI50K (B=3000) and DICEWS-S 
(B=800) with different strategies. In Table 6, the authors provide an example to show that the proposed 

Table 4. 
Hits@1 results of GCN on YAGO-WIKI50K with different budgets

Strategy 2000 3000 4000 5000

GCN(Random) 53.22 60.94 66.03 70.23

+Degree 51.34 61.67 67.42 71.40

+PageRank 48.85 57.22 66.34 71.19

+Katz 53.67 62.06 66.98 70.02

+Closeness 54.35 60.09 64.09 66.73

+Betweenness 54.32 63.35 68.19 71.55

+Time-aware 51.75 61.78 67.94 71.68

+Time enhanced 55.87 64.09 69.10 72.08

Table 3. 
Hits@1 results of GCN under different budgets on DICEWS-S

Strategy 400 600 800

GCN(Random) 18.46 23.33 26.63

+Degree 21.32 26.80 30.70

+PageRank 21.49 26.97 30.39

+Closeness 22.35 26.78 29.48

+Betweenness 21.01 25.87 29.48

+Katz 19.37 22.67 25.31

+Time-aware 21.94 27.02 31.32
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time aware  strategy gives different predictions with consideration of training data, introducing 
more signals in temporal information. In YAGO-WIKI50K (B=3000) dataset, for the entity 
Jamie waite , with the help of the training data which the author queried by other strategies, the first 

Table 5. 
Hits@1 results of GCN on YAGO-WIKI20K with different budgets

Strategy 400 800 1200 1600

GCN(Random) 12.95 20.83 26.97 30.43

+Degree 17.93 32.03 37.12 40.60

+PageRank 17.29 26.31 34.41 38.96

+Katz 17.07 28.28 32.95 36.58

+Closeness 19.95 29.00 33.89 37.22

+Betweenness 17.05 27.79 34.02 38.46

+Time-aware 18.50 32.45 37.88 41.10

+Time enhanced 21.20 32.54 37.50 40.88

Table 6. 
Hits@1 results of TEA-GNN (and the active learning-enhanced variants) on YAGO-WIKI20K with different budgets

Strategy 400 800 1200 1600

TEA-GNN (Random) 52.01 54.22 56.19 58.06

+Degree 54.01 57.07 58.62 59.82

+PageRank 51.25 54.70 57.33 58.94

+Katz 54.06 57.08 58.09 59.48

+Closeness 52.86 55.48 58.91 59.53

+Betweenness 52.19 56.33 58.24 59.64

+Time-aware 54.79 57.29 58.82 60.52

+Time enhanced 54.44 57.61 59.74 60.89

Table 7. 
An example of different alignment predictions between Time Aware  and other strategies

Entities to be aligned <Jamie_Waite> (in E1 of YAGO-WIKI50K (B=3000)

Predictions Query by time aware : Jamie Waite; Query by other centrality: Alex Revell

Similar quadruples of 
aligned entities in Q1 
and Q2

(Jamie_Waite, playsfor, Cambridge_United_F.C., [2005, 2006], 
(Jamie_Waite, playsfor, Rotherham_United_F.C., [2003,2004], 
(Jamie_Waite, playsfor, Braintree_Town_F.C., [2004, 2004], 
(Jamie_Waite, playsfor, Kettering_Town_F.C., [2004, 2005], 
… (in Q1) 
(Alex Revell, member of sports team, Cambridge United F.C., [2000, 2004]), 
(Alex Revell, member of sports team, Braintree Town F.C.,[2004, 2006]), 
(Alex Revell, member of sports team, Kettering Town F.C, [2003, 2003]), 
(Alex Revell, member of sports team, Rotherham United F.C., [2011, 2015]), 
… (in Q2)
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retrieved entity in E2 is Alex vell Re . Since the two soccer players have played for four same teams, 
the model wrongly aligns two different entities, while they have played in the four same teams in 
different periods of time. Besides, with the training data queried by timeaware , the model can give 
the right alignment, which also considers more time information.

CoNCLUSIoN

Since labeling data costs too much human labor, the authors first utilize active learning and propose 
time-aware strategies to incorporate temporal information to tackle TEA with scarce supervision. In 
each iteration, active learning first selects the top b  valuable entities by different active strategies to 
be labeled. Then, with the help of these newly labeled entity pairs, the model can learn to generate 
more accurate entity representation and achieve better performance. Experimental results on several 
TKG datasets indicate the effectiveness of time information and the proposed time-aware strategies. 
Besides, the authors also demonstrate the proposed active learning framework and active strategies 
can be applied to state-of-the-art TEA models to tackle TEA with scarce supervision.

For future work, the authors will try to integrate other types of information, such as relation 
information, into the overall framework to further enhance the performance.
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