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ABSTRACT

Aiming at the speed of frequent itemset mining, a new frequent itemset mining algorithm based on 
a linear table is proposed. The linear table can store more shared information and reduce the number 
of scans to the original dataset. Furthermore, operations such as pruning and grouping are also used 
to optimize the algorithm. For different datasets, the algorithm shows different mining speeds. (1) 
In sparse datasets, the algorithm achieves an average 45% improvement in mining speed over the 
bit combination algorithm, and a 2-3 times improvement for the classic FP-growth algorithm. (2) 
In dense datasets, the average improvement over the classic FP-growth algorithm is 50-70%. For 
the bit combination algorithm, there are dozens of times of improvement. In fact, the algorithm that 
integrates bit combinations with bitwise AND operation can effectively avoid recursive operations 
and it is beneficial to the parallelization. Further analysis shows that the linear table is easy to split 
to facilitate the data batch mining processing.
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INTRODUCTION

Data mining (Witten & Frank, 2002) refers to the process of searching for hidden information from 
a large amount of data through algorithms. In recent years, data mining has attracted great attention 
in the information industry. The main reason is that there is a large amount of data, and it is urgent 
to transform this data into useful information and knowledge.

Frequent itemset mining is an important basis for research in data mining. It is the premise of feature 
selection, cluster analysis, and association rule mining (Fiori et al., 2014). By mining frequent itemsets, 
the combination of frequent items that usually appeared in the original dataset can be obtained. It can 
also provide some support for possible decision-making. Frequent itemset mining has a wide range of 
applications, such as shopping basket data analysis (Wang, 2014), cross-shopping (Nafie Ali & Mohamed 
Hamed, 2018), traffic accident analysis (Hidayanto et al., 2017), and network intrusion detection (Liao 
et al., 2012). At the same time, frequent itemset mining is also applied in the field of life science.

At present, there are several different mainstream methods for frequent itemset mining. The 
principle of the Apriori-like algorithm is that all nonempty subsets of frequent itemsets must also be 
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frequent. The FP-growth-like algorithm uses a novel tree structure. In the FP-growth-like algorithm, to 
share the data, a frequent pattern tree is constructed according to the transaction database. Subsequently, 
the frequent itemsets are mined from the frequent pattern tree. Only two scan times on the original 
dataset are needed. Compared with the Apriori-like algorithm, the FP-growth-like algorithm improves 
the calculation speed and reduces the running time. In addition, some researchers use bitmaps to 
represent transactions, and some frequent itemset mining methods based on bit operations have been 
proposed to further improve the operation speed and the efficiency of memory usage.

RELATED WORK

The Apriori-like algorithm is a kind of frequent itemset mining algorithm with a relatively simple 
structure, and the mining process adopts the method of breadth-first traversal. The IAA (Wu et al., 
2009) uses a count-based and record-generated method to improve the performance of the Apriori 
algorithm. Yuan et al. (2017) further use an overlapping strategy to compute support for achieving 
high efficiency. The FP-growth algorithm (Han et al., 2000) constructs an FP-tree structure and uses 
depth-first traversal for mining. A new DPT algorithm (Qu et al., 2020) is proposed, which only uses 
a dynamic prefix tree structure and can directly output a prefix tree representing all frequent itemsets, 
thus avoiding the high cost of building many prefix trees. The negFIN algorithm (Aryabarzan et al., 2018) 
adopts the bitwise operation to extract the NegNodesets structure of the itemset and uses a set enumeration 
tree to generate frequent itemsets, which is pruned by the promotion method. FDM is a new algorithm based 
on FP-tree and DIFFset (Gatuha & Jiang, 2017) data structures, which can mine long and short patterns 
from dense and sparse datasets. The SS-FIM algorithm (Djenouri et al., 2017) performs a single scan of 
the transactional database to extract frequent itemsets, and the algorithm is less sensitive to the changes in 
the minimum support threshold set by the user. The dFIN algorithm (Deng, 2016) represents the itemsets 
through the DiffNodeset structure. The algorithm uses a hybrid search strategy to find frequent itemsets on 
the set enumeration tree and directly enumerates frequent itemsets without generating candidate itemsets 
under certain conditions. The PrePost (Deng et al., 2012) and PrePost+ (Deng et al., 2015) use a vertical 
N-list structure to store the key information of frequent itemsets, which calculates the support through the 
intersection of N-lists. In particular, the PrePost+ algorithm adopts an effective pruning strategy called 
Children-Parent Equivalence pruning, which reduces the search space. The Nodeset (Deng & Lv, 2014) is 
a more efficient data structure, it only needs pre-order or post-order encoding of each node, which makes 
it save half the memory compared with the N-list.

The SHFIM is a spark-based three-stage algorithm for hybrid frequent itemset mining (Al-Bana 
et al., 2022), which utilizes horizontal and vertical layout difference sets to track differences among 
transaction IDs. Liu et al. (2022) adopted an indexed prefix closed itemset tree to compress all closed 
itemsets and proposed a new strategy to prune and update the search space of closed itemsets, so as 
to quickly mine closed itemsets. NEclatClosed (Aryabarzan & Minaei-Bidgoli, 2021) is a vertical 
algorithm for fast mining of frequent closed itemsets. The algorithm applies the concepts and 
techniques of vertical databases in the mining process. Vo et al. (2012) proposed a frequent closed 
itemset mining algorithm based on dynamic bit vector (DBV) and introduced a fast way to compute 
the intersection between two DBVs. Mining frequent weighted itemsets (Bui et al., 2021; Li et al., 
2021; Zahra et al., 2020) considers both the minimum support threshold and the weight coefficients 
of items, which makes extracting knowledge more meaningful. The FPMSIM algorithm (Xun et al., 
2021) is an incremental frequent itemset mining algorithm, which uses similarity estimation in the 
process of maintaining incremental updates, avoiding severe dataset rescanning and tree structure 
adjustment overhead. In addition, the AFARTICA algorithm (Paladhi et al., 2019) proposed a pruning 
technique based on artificial cell division (ACD) to solve the problem of multiple search spaces. 
Lessanibahri et al. (2020) proposed a pruning method named LengthSort, which prunes items and 
transactions before building a frequent pattern tree structure, thereby reducing the search space.
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The above algorithms evolve from the classic Apriori algorithm and FP-growth algorithm. The 
Apriori algorithm has obvious advantages: it is straightforward, easy to understand, and does not 
involve the use of complex data structures. However, when candidate sets are generated, it fails to 
exclude elements that should not participate in the combination in time, and it needs to scan the 
original database repeatedly when calculating support. As a result, the disk has too many I/O cycles, 
and the efficiency is relatively low.

The FP-growth algorithm overcomes some shortcomings of the Apriori algorithm. However, when 
the database is very large, the algorithm will generate a very complex and large tree. It is difficult to 
deal with batch data by organizing the data with the tree structure. Furthermore, the algorithm uses 
recursive operations so that it is not easy to parallelize.

In addition, there are some frequent itemset mining algorithms based on bit operations. Examples 
include the frequent closed itemset mining algorithm based on bit operations (Jia-Li et al., 2013), the 
SECRET algorithm (Dobra & Gehrke, 2002), and the frequent itemset mining algorithm based on bit 
combinations (Lu et al., 2019). Among them, the frequent closed itemset mining algorithm based on 
bit operations needs to transform the dataset into a Boolean matrix and scan the dataset only once. 
Support is calculated by bit operation, and auxiliary information is stored by the matrix and array to 
reduce time and space consumption. The pruning strategy is used to further reduce the mining time 
when the frequent closed itemsets are generated by depth-first search without checking the supersets or 
subsets. However, this algorithm takes into account the two types of information of attribute distance and 
relationship strength so that the time complexity of the clustering process reaches O(n2), which can be 
reduced to O(nlogn) after using the index. The efficiency of the algorithm needs to be further improved.

The SECRET algorithm proposes a new sequential pattern mining algorithm using a depth-first 
search strategy. This strategy combines a depth-first traversal search space with an effective pruning 
mechanism. It also combines the vertical bitmap representation of the database with the effective 
support count. Although the mining speed has been greatly improved, the algorithm is a nonprecise 
mining algorithm that cannot incorporate speed and accuracy at the same time, which is its drawback.

The frequent itemset mining algorithm based on bit combination adopts binary bits to represent 
the itemset. The binary digit representing the itemset is gradually added to 1 to judge, and then the 
frequent itemsets are found by bitwise AND calculation with each transaction in the dataset. However, the 
algorithm requires multiple scans of the original dataset, which affects the algorithm’s mining efficiency. 

Motivations and Contributions
Aiming at the shortcomings of the existing algorithms, a frequent itemset mining algorithm based on 
a linear table is proposed. This method is an accurate mining algorithm. This is unlike the Apriori 
algorithm, which generates too many candidate itemsets. It also avoids the recursive operation of the 
FP-growth algorithm in the mining process, making the algorithm more conducive to parallelism. 
At the same time, it makes full use of shared information such as the FP-growth algorithm, thereby 
improving computational efficiency. The linear table structure adopted by the new algorithm is 
conducive to data splitting, which facilitates big data mining.

The contribution of this paper mainly includes the following 3 parts:

(1) 	 A frequent itemset mining algorithm based on a linear table is proposed. The algorithm can avoid 
the memory consumption caused by recursive operations in the mining process and is convenient 
for parallel processing in the future.

(2) 	 Construct a linear table by combining binary data. The linear table is more conducive to data splitting 
than the tree structure, which is convenient for frequent itemset mining for large datasets in the future.

(3) 	 Pruning and grouping strategies are used to optimize the frequent itemset mining algorithm based 
on a linear table, which greatly improves the mining speed.
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METHOD

The frequent itemset mining algorithm based on a linear table stores the dataset in a linear table 
through grouping optimization. When mining frequent itemsets, there is no need to rescan the original 
database, and only the existing linear table is scanned. At the same time, in the process of frequent 
itemset mining, each transaction item information is converted into binary numbers, and with pruning 
and grouping strategies, it is judged whether it is a frequent itemset by the bitwise AND operation, 
which improves the efficiency of mining.

For the convenience of description, the structure is used to represent each node in the linear 
table. The related information is represented in the form d d d d d d d

0 1 2 3 4 5 6
, , , , , ,( ) . d0  represents the 

name of the item. d
1

 represents the index of the child node of the current item d
0
 in the linear table. 

d
2
 represents the index of the sibling node of the current item d

0
 in the linear table. That is, d

2
 and 

d
0
 have the same parent node. d

3
 represents the index of the parent node of the current item node 

d
0
 in the linear table. d

4
 represents the index of the last occurrence of the current item d

0
 in the 

linear table. d
4
 acts as a pointer, which can quickly find the position of the last occurrence of the 

item and speed up mining. For example, an item named x can be represented in a linear table as 
x d d d d d d, , , , , ,

1 2 3 4 5 6( ) . Among them, d
4
 indicates that the position of the previous occurrence of 

Item x is in position d
4
 of the linear table. The function of d

5
 is to count. It mainly records the 

specific support of transactions. d
6
 represents the binary number representation of the substring 

ending with the data Item x in the current transaction. Binary 0 indicates that the item does not exist 
in this location, and binary 1 indicates that the item exists in this location.

The overall design of the algorithm in this paper is mainly composed of three parts, and the 
framework of the algorithm is shown in Figure 1.

Figure 1. Overall design framework of the algorithm
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The first step is the preprocessing of the original transaction dataset.
First, the original dataset is scanned once to obtain the support count of the one-itemset. Then, 

according to the preset minimum support, the items less than the minimum support in the one-itemset 
are filtered out. For the convenience of subsequent processing, items that are greater than or equal to 
the minimum support are sorted in descending order according to global support.

The second step is to construct a linear table and a head table.
According to the preprocessed dataset obtained in the first step, the original linear table is constructed. 

The subscript of the linear table represents the serial number value of each item and serves as the node 
number of the parent node or sibling node of one node. To improve the efficiency of linear table construction 
and algorithm mining, a header table will be generated synchronously in the process of constructing a 
linear table. The items in the header table are sorted in descending order by frequency. Through this header 
table, the target item can be quickly found when inserting items or frequent itemset mining.

The third step is to mine frequent itemsets.
After constructing the linear table and the header table, the next step is to mine frequent itemsets. The 

mining process adopts the binary bit combination method. The binary combination number Data will add 
1 from all 0 to all 1. Every time 1 is added, a binary data BIT_ARRAY corresponding to a new combination 
item is obtained, and then the bitwise AND operation of the BIT_ARRAY and d

6
 of the corresponding 

node in the linear table is performed. If the result is the same as the BIT_ARRAY, the support is summed. 
Next, find the next node that needs to be judged according to d

4
. The above operation is repeated until 

d
4
 is equal to 0. Then, the final support of the combination item is obtained. By comparison with the 

preset support, it can be judged whether the combination item is frequent. In the mining process, with 
multiple optimization strategies, the speed of frequent itemset mining can be accelerated. 

Algorithm Description
Preprocessing
The frequent itemset mining algorithm based on a linear table is proposed in this paper. To facilitate 
understanding, a small-scale example of the original dataset is adopted. Table 1 shows the six raw 
data to be mined. The minimum support is set to 3.

After the first scan, the support count of the one-itemset can be obtained. Then, according to the 
preset minimum support, the items less than the minimum support in the one-itemset are filtered out. 
The filtered result is shown with Items in the transaction in Table 2. The items are sorted according 
to global support. The order of the filtered data items is z, x, y, t, s, and r. The result is shown in the 
last column in Table 2.

Table 1. The original dataset

TID Items in the transaction

001 r,z,h,j,p

002 z,y,x,w,u,v,t,s

003 z

004 r,x,n,o,s

005 y,r,x,z,q,t,p

006 y,z,x,e,q,s,t,m
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Building Linear Table
A complete linear table will be constructed from the information in Table 2.

1. 	 T001 is z and r, so z and r need to be inserted into the linear table.

After inserting z, it can be determined that the child node index of z is 0, the sibling node index 
is 0, the parent node index is 0, and the index of the previous item is the same as the current item is 
0, and the frequency is 1. At this time, d

1
,d
2
,d
3
,d
4
 of the first term z are all 0. d

5
 is 1. According 

to the sorting of items after filtering, the binary data corresponding to Item z in T001 is 100000. That 
is, d

6
 is 100000.

After inserting r, the child index of r is 0, the sibling node index is 0, the parent node index is 1, 
the index of the previous item is the same as the current item is 0, and the frequency is 1. After 
inserting r, the child node index of z needs to change synchronously. That is, d

1
 of z is changed to 

2. Similarly, according to the order of filtered items, d
6
 of Item r is represented as the binary number form 

10001 of the current transaction substring zr. The linear table after inserting T001 is shown in Table 3.

2. 	 T002 is z, x, y, t, s, so these items need to be inserted into the linear table.

Since the term z has already appeared in T001, the first term z in T002 can share a node with 
the existing z term. That is, the d

5
 frequency in the number 1 item (z,2,0,0,0,1,100000) in the linear 

table needs to be increased by one, and item information becomes (z,2,0,0,0,2,100000).
Insert the second term x of T002. It determines that the second term r 1 x is in the linear table, 

and the sibling node of r is 0, so a new Item x needs to be inserted into the linear table. That is, 
(x,0,0,1,0,1,110000), the d

1
 child node is still uncertain at this time, so the default is 0. The d

2
 sibling 

node is also unknown at this time. It is also 0 by default. d
3
 is the parent node, the parent node of 

Item x is z, and the index value of Item z is 1, so the parent node d
3
 of Item x is 1. d

4
 is the previous 

Table 2. Dataset after the first scan

TID Items in the transaction Filtered and sorted transactions

001 r,z,h,j,p z,r

002 z,y,x,w,u,v,t,s z,x,y,t,s

003 z z

004 r,x,n,o,s x,s,r

005 y,r,x,z,q,t,p z,x,y,t,r

006 y,z,x,e,q,s,t,m z,x,y,t,s

Table 3. Linear table after inserting T001

0 Φ(name, child, sibling, parent, point, frequency, binary number)

1 (z,2,0,0,0,1,100000)

2 (r,0,0,1,0,1,100001)
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index whose name is the same as the current item name. At this time, Item x has not appeared before 
in the linear table, so d

4
 is also 0. d

5
 is the frequency of the current item, and the current frequency 

is 1, so d
5
 is 1. Because the parent node of Item x is z and d

6
 represents the binary number of the 

substring zx, the binary number of Item x is 110000. After the values of d
1

 to d
6
 are determined, it 

is indicated that the term x is inserted, and the index value of Item x in the linear table is 3, which is 
the sibling node of the Item r. Therefore, the value of d

2
 (sibling node) in (r, 0,0,1,0,1,100001) should 

be changed to 3 (index of Item x in linear table), and the rest information should remain unchanged, 
that is, (r,0,3,1,0,1,100001).

Insert Item y, the initial insertion information is (y,0,0,3,0,1,111000). Since Item y is a child of 
x, the d

1
 (child node information) of term x is changed to 4, and the information in the third item in 

the linear table becomes (x, 4,0,1,0,1,110000).
Insert Item t, the initial insertion information is (t,0,0,4,0,1,111100). Since Item t is a child node 

of y, the d
1

 (child node information) of Item y should be changed to 5, and the information in the 
fourth item in the linear table should be changed to (y, 5,0,3,0,1,111000).

For Item s, the initial insertion information is (s,0,0,5,0,1,111110). Since Item s is a child node 
of t, the d

1
 (child node information) of Item t should be changed to 6 at this time, and the information 

in the fifth item in the linear table should be changed to (t,6,0,4,0,1,111100). Since there is no child 
node under Item s, the sixth item information in the linear table is unchanged and is still 
(s,0,0,5,0,1,111110). The linear table after inserting T002 is shown in Table 4.

3. 	 Next, the insertion process of T003 (z), T004 (x, s, r), T005 (z, x, y, t, r), and T006 (z, x, y, t, s) is similar 
to the previous description process. The linear table after the final insertion is shown in Table 5.

The logical structure of a linear table is actually equivalent to a binary tree, which is also different 
from the FP-growth algorithm. The FP-tree is actually a multi-branch tree.

It is worth mentioning that in the process of building a linear table, a real-time updated header 
table must be generated. Based on the header table, the position of the target item in the linear table 
can be quickly found when the transaction data are inserted. The data item insertion process can be 
effectively accelerated. In this example, the generated header table is shown in Table 6. 

The 0th item in the header table indicates the data item name. The first item stored in the header 
table is the index of each item that appears as the parent node for the first time. The purpose of this 
item is to quickly find the first item without having to traverse every item from the top of the linear 
table. The second item of information stored in the header table is the index of the position where 
the item currently appears. The purpose of this item is to store d

4
 which indicates node information 

Table 4. Linear table after inserting T002

0 Φ(name, child, sibling, parent, point, frequency, binary number)

1 (z,2,0,0,0,2,100000)

2 (r,0,3,1,0,1,100001)

3 (x,4,0,1,0,1,110000)

4 (y,5,0,3,0,1,111000)

5 (t,6,0,4,0,1,111100)

6 (s,0,0,5,0,1,111110)
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of the current item, which will be continuously updated as the inserted item changes. After adding 
the header table, the logical structure of the linear table is shown in Figure 2.

Notably, the method used to update the second item of information in the header table is relatively 
clever. For example, for Item r, the first occurrence of r in the linear table is at position 2. In 
(r,0,3,1,0,1,100001), the information of index 2 is first stored in the second position of Item r in the 
header table. With the insertion of each transaction to the linear table, Item r appears again. The 
second occurrence of r in the linear table is at position 9, and d

4
 of (r,0,0,8,2,1,010011) indicates 

that the node will extract the previously stored index 2 from the header table. The second position 
of Item r in the header table needs to be updated, that is, 2 is overwritten with 9. In addition, 9 is overwritten 
with 10. In the process of continuously inserting transactions, the header table is constantly updated.

Frequent Itemset Mining
After the linear table and header table are constructed, frequent itemsets can be mined for all transaction 
information stored in the linear table. This algorithm adopts the minimum support 3 specified by the 
user, and after preprocessing and other optimization strategies, the dataset listed in Table 2 is obtained. 
Then, the items obtained after the processing are combined in a binary bit manner. It starts with binary 
1 and adds 1 successively until the binary bits are all 1. The operation process is shown in Table 7.

The position of 1 in Table 7 indicates that the item exists, and the presence of multiple 1 means that 
it is an itemset. For example, the binary digit is 001101, representing a combination of Items y, t, and r.

Table 5. Final linear table

0 Φ(name, child, sibling, parent, point, frequency, binary number)

1 (z,2,7,0,0,5,100000)

2 (r,0,3,1,0,1,100001)

3 (x,4,0,1,0,3,110000)

4 (y,5,0,3,0,3,111000)

5 (t,6,0,4,0,3,111100)

6 (s,0,10,5,0,2,111110)

7 (x,8,0,0,3,1,010000)

8 (s,9,0,7,6,1,010010)

9 (r,0,0,8,2,1,010011)

10 (r,0,0,5,9,1,111101)

Table 6. Header table

Data item Parent index Indicator index

z 1 0

x 7 3®7

y 0 4

t 0 5

s 0 6®8

r 0 2®9®10
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When frequent itemset mining is performed. The number of binary item combinations in Table 
7 will increase from all 0 to all 1. After adding 1 each time, a new item combination can be obtained. 
For example, the above combination of terms y, t, r has a binary combination digit of 001101. To 
determine whether this combination is a frequent itemset, the previously constructed linear table will 
be used. First, find the index of the last occurrence of Item r according to the header table, which is 
10. Then, the d

6
 binary digit with index 10 is 111101. Let 001101 and 111101 perform the bitwise 

AND operation, and the result is 001101. This proves that the item combination y, t, r exists in this 
transaction. Therefore, the d

5
 frequency 1 with index 10 is added to the support of the combination. 

The next step is to find the position where the previous r appears according to the d
4
 with index 10. 

By querying, d
4
 indicates that the node is 9 at this time and the d

6
 binary digit with index 9 is 010011. 

Do a bitwise AND operation between 001101 and 010011. The result is 000001, which is not equal 
to 001101. Then, it proves that the item combination y, t, r does not exist in this transaction, so the 
support of the combination will not increase. Continue to find the position where the previous r 

Figure 2. Logical structure of adding header table

Table 7. Combinations of binary items

Data z x y t s r Corresponding items and their combinations

1 0 0 0 0 0 1 r

2 0 0 0 0 1 0 s

3 0 0 0 0 1 1 s,r

4 0 0 0 1 0 0 t

…… …… …… …… …… …… …… ……

63 1 1 1 1 1 1 z,x,y,t,s,r
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appears according to the d
4
 with index 9. It can be known by querying that d

4
 indicates that the node 

is 2. The binary digit d
6
 with index 2 is 100001, and a bitwise AND operation performs between 

001101 and 100001. The result is 000001, and it is not equal to 001101. Then, it proves that the item 
combination y, t, r does not exist in this transaction, so the support of the item combination will not 
increase. Finally, the support of the item combination y, t, r is 1, which is lower than the minimum 
support specified by the user. Therefore, itemset y, t, r is infrequent. The logical structure of the 
frequent itemset mining process is shown in Figure 3.

Figure 3 shows that in the mining process, there is no need for child, parent, or sibling information. 
Therefore, for the convenience of viewing and analyzing, Figure 3 can be arranged in the form of Figure 4.

In Figure 4, based only on the head table and related nodes, the frequent itemsets ending with 
that element can be found. Finally, all the frequent itemsets will be found. 

Figure 3. Logical structure of frequent itemset mining process

Figure 4. Mining logical structure
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Complexity Analysis
After the dataset is preprocessed, let the number of rows be N, the average number of columns be 
L, and the number of frequent one-itemset be M. Then, the space complexity of constructing the 
linear table in this algorithm is O(N * L). The mining process is carried out on the linear table, and 
no additional space is allocated. That is, the complexity of this process is O(1), so the total space 
complexity is O(N*L). At the same time, the algorithm scans the dataset a finite number of times 
to construct a linear table, so the time complexity of this process is O(N). However, in the mining 
process, the binary number will add 1 from 0 to 2M – 1, and the corresponding binary bits are judged 
in turn. Theoretically, the time complexity of this process is O(2M). However, the algorithm adopts a 
pruning optimization strategy, for which the time complexity of this process will be much lower than 
O(2M). The relevant experiments set up later in this paper have effectively evaluated the above analysis.

Algorithm Optimization Strategy
In practical applications, the dataset may consist of many items. As a result, the number of item 
combinations is large, and the corresponding calculation amount is also large. For example, in the 
final experiment of this paper, the transaction in the soybean promoter dataset is composed of 469 
items. The corresponding number of item combinations is 2469 - 1, which is very large. Therefore, 
two strategies are used to optimize the algorithm in this paper.

Pruning Optimization Strategy
The algorithm proposed in this paper will use the addition of 1 operation in the process of mining 
frequent itemsets. However, if all items increase step by step from all 0 to all 1, it will lead to a large 
amount of calculation, so a pruning operation is needed. The pruning operation can reduce computing 
greatly. (Nie & Zhang, 2018).

In the frequent itemset mining problem, there is a basic property, that is, all nonempty subsets 
of frequent itemsets must also be frequent, which is adopted by the pruning optimization algorithm. 
After traversing the transaction data of a certain item combination, if it is judged that the occurrence 
frequency of this item combination is lower than the preset support, then it is infrequent. According 
to the above properties, any superset containing this combination is infrequent, so it can be pruned.

For example, given a binary combination A of an itemset: 1110 1100 1100 0000. After the 
bitwise AND operation, if the itemset corresponding to the binary combination is infrequent, the next 
pruning operation will be executed. Utilizing the Formula A=A+A&(-A), the pruning operation from 
1110 1100 1100 0000 to 1110 1101 0000 0000 is achieved. That is, after calculating that the itemset 
corresponding to the current binary combination 1110 1100 1100 0000 is infrequent, the next step 
is to directly judge 1110 1101 0000 0000. With the pruning strategy, many infrequent itemsets will 
not need to be calculated, which saves the execution time of the algorithm.

Grouping Optimization Strategy
In the process of linear table construction and frequent itemset mining, a grouping optimization strategy 
is introduced. The specific operation of this optimization strategy is to sort the items according to 
the support and then insert transaction items to build a linear table. The first item is the item with the 
highest support. After all the transactions including item with the highest support are inserted into the 
linear table, the second item with the second highest support is handled. That is, all the transactions 
including item with the second highest support are inserted into the linear table. Finally, the remaining 
transaction items are inserted. The resulting linear table will be relatively compact, and it will also 
be mined according to this grouping order during mining, which will improve the speed of mining 
frequent itemsets. The smaller the support is, the more obvious the effect of grouping optimization. 
After adding the grouping, the mining logic structure in Figure 4 will be updated as shown in Figure 5.
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After adding two optimization strategies, the pseudocode of the whole algorithm is shown in 
Algorithm 1.
Algorithm 1: pseudocode of the frequent itemset mining process  
Input: complete linear table 
Output: Frequent itemset combinations that match the support 
Begin: 
1)	WHILE d[judgeI]£maxValue DO 
2)	 FOR j1¬0 TO judgeI 
3)	  FOR temp_1¬0 TO Data_Length 
4)	   IF (d[j1]&Array_Pow[temp_1]) THEN 
5)	    F[j]=usefulValue[i]; 
6)	   END IF 
7)	  END FOR 
8)	 END FOR 
9)	 IF (The current itemset F is in a group) THEN 
10)	   update the value of last_position according to the header 
table; 
11)	   WHILE last_position10 DO
12)	    IF (not equal TO itself after bitwise AND operation) THEN 
13)	     break 
14)	    END IF 
15)	    IF (j1<0) THEN 
16)	     update fre value; 
17)	    END IF 
18)	    update the value of last_position according to the Array_
point; 
19)	   END WHILE 
20)	  END IF 
21)	  IF (fre3SUPPORT) THEN
22)	   obtain frequent itemset; 
23)	  ELSE THEN 
24)	   pruning strategy; 
25)	  END IF 
26)	 END WHILE 
27)	 RETURN frequent itemset

Figure 5. Group mining logical structure
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Note: maxValue is the maximum value of recording in this highest node. F is an array that stores 
the filtered and sorted transaction data. fre is the frequency of the item combination. Data_Length 
is the length of each node, and its value is 32 bits. judgeI is the largest node index of each data, and 
judgeI= (frequent 1-item number)/32.

EXPERIMENT

Experimental Data
The test input data used in this experiment are soybean promoter data (Zhiyong et al., 2015), which 
is a sparse dataset. Frequent itemsets are mined from these promoter data. Promoter analysis (Shao et 
al., 2019) plays an important role in the construction of gene engineering vectors and the expression 
of target proteins (Jing et al., 2014). Some potential connections among different regulatory elements 
can be identified, which can reveal secrets in genetic data. In addition, three different public datasets 
(URL: http://fimi.ua.ac.be) are used to validate the experiments. It lists the parameter characteristics 
of these datasets in Table 8, where Num_trans is the number of transactions, Distinct_items is the 
number of items, and Avg.length represents the average length of the transaction. Soybean is the 
sparse dataset, and the others are dense datasets.

Mining the frequent set involves finding combinations of items that meet the minimum support 
number min_sup (such as min_sup = 5000) and recording the support number (actual occurrence 
times) of relevant item combinations. For instance, in the soybean promoter dataset, it needs to select 
all combined elements that have occurred that are not less than min_sup in the soybean promoter 
dataset and actual times of occurrence. The output model is similar to 340 144 (9840).

Experimental Results and Analysis
The programs in this section run on the Linux operating system, and the gcc compiler is adopted. 
The chip model used in the experiments of this paper is an Intel(R) Xeon(R) CPU E5-2670 v2, and 
its frequency is 2.50GHz.

The frequent itemset mining algorithm based on a linear table is an accurate mining algorithm. 
That is, the mining accuracy is 100%. The selected comparison algorithms, the bit combination 
algorithm and the FP-growth algorithm, are also accurate mining algorithms. Therefore, this paper 
evaluates the algorithm only in terms of its running time and memory usage.

Runtime Evaluation
The running time of the algorithm in this paper is the time of constructing the linear table and mining 
frequent itemsets. To evaluate the time efficiency of constructing the linear table and mining, the 
experimental results performed on the test dataset (soybean promoter) are listed in Table 9.

Table 8. Datasets parameters

Dataset Num_trans Distinct_items Size Avg.length Characteristic Type

soybean 54174 469 (0-468) 6943 KB 34 sparse Real

accidents 56698 468 (1-468) 5779 KB 33 dense Real

chess 3196 75 (1-75) 335 KB 37 dense UCI

mushroom 8124 119 (1-119) 558 KB 23 dense UCI

http://fimi.ua.ac.be
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It can be seen from Table 9 that as the support reduces, the time to construct a linear table is much 
less than the time to mine frequent itemsets. In practical applications, to better study the relationship 
characteristics among items in the dataset, the support is generally lower, so the time of constructing 
the linear table has little effect on the total time. Therefore, for simplicity, this paper no longer sets up 
experiments to evaluate the efficiency of constructing a linear table and mining separately. Instead, 
the total time of constructing and mining is adopted to evaluate the algorithm.

The frequent itemset mining algorithm based on the linear table proposed in this paper is 
optimized by pruning and grouping strategies, and the efficiency is significantly improved. To verify 
the effectiveness of the pruning strategy and the grouping strategy, the following experiments were 
carried out on the soybean promoter dataset. Table 10 lists the experimental comparison results before 
and after the pruning and grouping optimization.

Table 10 shows that the smaller the support is, the more obvious the superiority of the pruning 
optimization strategy. This is because the smaller the support is, the more frequent 1 itemsets that can 
be obtained by preprocessing, and the corresponding length of the binary combination bits will be 
longer. Without the pruning strategy, the binary bits will add 1 from all 0 to all 1, which will result in 
a very large number of mining calculations and waste considerable time. Further analysis shows that 
under the premise of not using pruning optimization, the smaller the support setting is, the higher the 
efficiency of using grouping optimization; however, the efficiency of grouping optimization is not 
reflected after pruning optimization is used. This is because the current support setting is relatively 
large, the length of the linear table constructed is relatively short, and the advantages of using group 
optimization cannot be reflected. For this reason, this article slowly lowered the support and continued 
the following experiments. The experimental results are shown in Table 11.

It can be seen from Table 11 that in the case of pruning optimization, continuing to use the grouping 
optimization strategy can further improve the algorithm mining speed because the smaller the support 
setting is, the more compact the linear table built by grouping, so during the mining process, the cost of 
scanning the linear table is reduced. Through the above experiments, it can be proven that adding pruning 

Table 9. Time evaluation for constructing linear table and mining

Support Constructing linear table (s) Mining (s) Total time (s)

25000 0.195 0.000 0.195

24000 0.218 0.003 0.221

23000 0.213 0.038 0.269

22000 0.259 9.893 10.152

21000 0.274 22.761 23.035

20000 0.304 523.085 523.389

Table 10. Experimental comparison before and after pruning and grouping optimization

Support No pruning and grouping (s) Grouping (s) Pruning (s) Pruning and grouping (s)

25000 0.195 0.199 0.195 0.197

22500 0.380 0.344 0.233 0.235

20000 523.389 355.928 0.339 0.339
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and grouping optimization strategies can indeed improve the efficiency of the algorithm, especially after 
adding the pruning optimization strategy, and the efficiency of the algorithm has been greatly improved.

The idea proposed in the frequent itemset mining algorithm based on a linear table can avoid the 
recursive process in the mining process. However, it actually does what the recursion does. Compared 
with other mining methods, this method can perform effective parallelism, which can improve its 
mining speed. This mining idea also has its disadvantages. When a new candidate item is generated, 
the original dataset needs to be scanned once. Although optimization strategies such as “pruning” 
will be used during the mining process, due to too many scans, the mining speed will eventually be 
adversely affected. The algorithm proposed in this paper makes more use of shared information and 
does not need to scan the original dataset frequently during the mining process.

In the FP-growth algorithm, there is a recursive operation during the mining process. When a large 
dataset is processed, a large-scale tree will be generated, which will increase the calculation amount 
and reduce the efficiency of mining frequent itemsets. The key is that when the data are very large 
and the memory cannot be processed at one time, FP-growth cannot be used for batch processing. 
The algorithm proposed in this paper avoids the recursive operation of the FP-growth algorithm in 
the mining process, which is conducive to batch data processing for large datasets.

This paper compares the running time of the proposed algorithm with the bit-combination 
algorithm and the FP-growth algorithm on the four datasets in Table 8. Among them, the comparison of 
the running time of soybean promoters (sparse datasets) on the real dataset is shown in Figure 6, where 
the horizontal axis represents the support degree and the vertical axis represents the running time.

Figure 6 shows that the mining algorithm based on the linear table proposed in this paper is 
faster than the bit combination mining algorithm and the FP-growth algorithm. Especially when the 
support setting is relatively low, the mining speed can reach a more satisfactory level.

Table 11. Experimental comparison before and after grouping optimization

Support Pruning (s) Pruning and grouping (s)

10000 1.336 1.115

7500 2.564 2.351

5000 5.998 5.723

2500 36.305 33.336

Figure 6. Comparison of running time on soybean
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Next, the experiment is carried out on the dense dataset. Figure 7 shows the comparison of 
running time on the real dataset accidents.

Figure 7 shows that the frequent itemset mining algorithm based on the linear table proposed 
in this paper has an average improvement of 70% compared with the FP-growth algorithm and 
an improvement of nearly dozens of times for the bit-combination algorithm. It clearly shows the 
superiority of this algorithm.

Figure 8 shows the running time comparison on the chess dataset (Figure 8a) and mushroom 
dataset (Figure 8b). They all belong to the UCI datasets.

Figure 8 shows that the running efficiency of the frequent itemset mining algorithm based 
on a linear table is no less than that of the FP-growth algorithm, and it has an order of magnitude 
improvement over the bit combination algorithm, especially when the support is low.

Memory Evaluation
This paper further uses the dataset in Table 8 to evaluate the memory usage of each algorithm, and 
the experimental results are shown in Figures 9–12.

It can be seen from Figure 9 to Figure 12 that the memory usage of the bit combination mining 
algorithm is the least, the linear table mining algorithm proposed in this paper is second, and the 

Figure 7. Comparison of running time on accidents

Figure 8. Comparison of running time on chess and mushroom
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Figure 9. Memory test on soybean promoter

Figure 10. Memory test on chess

Figure 11. Memory test on accidents

Figure 12. Memory test on mushroom
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FP-growth algorithm is the most used. Although the FP-growth algorithm only scans the dataset 
twice, the recursive tree needs to be built continuously during the mining process. This leads to 
considerable memory consumption, which is why the algorithm in this paper is better than the FP-
growth algorithm. On various datasets, the linear table mining algorithm uses slightly more memory 
than the bit combination algorithm of the previously proposed method. The linear table algorithm has 
improved performance on the chess dataset in Figure 10. The linear table method directly converts 
the original dataset into effective information in the preprocessing stage and projects it into the linear 
table, which reduces the number of scans in the original dataset and is beneficial for improving the 
mining efficiency. In contrast, bit combination algorithm requires repeated scanning of the dataset, 
which wastes considerable time. In a word, the bit combination mining algorithm utilizes less memory 
space than the linear table mining algorithm. However, further analysis from Figure 6 to Figure 8 
shows that the running speed of the linear table mining algorithm has been improved by an order of 
magnitude at the expense of a small amount of space. In the technologically advanced world, it is 
significant to swiftly extract useful knowledge from massive data.

DISCUSSION

Based on the bit combination algorithm, the frequent itemset mining algorithm based on a linear table 
is proposed in this paper. The algorithm constructs a linear table by scanning the original dataset 
twice and groups it, representing the original transaction in binary form. Then cooperate with pruning 
technology and perform mining operations in specific groups. The linear table method eliminates the 
drawback of repeatedly scanning the original dataset in the bit combination algorithm and improves 
the performance of the algorithm.

In the process of constructing the linear table for the algorithm proposed in this paper, each 
newly generated item needs to store d d d d d d d

0 1 2 3 4 5 6
, , , , , ,( )  a total of seven pieces of information. 

However, when mining frequent itemsets, delete the d
1

 child node information, d
2
 brother node 

information, and d
3
 parent node information in d d d d d d d

0 1 2 3 4 5 6
, , , , , ,( ) . Because d

1
, d

2
 and d

3
 make 

the linear table generation speed of the transaction data insertion process faster, and the mining 
process is bottom-up, deleting the node information of d

1
, d

2
 and d

3
 will not affect the mining 

process. In contrast, it can reduce the space occupied by the linear table.
When dealing with large datasets, because the idea proposed by this algorithm is based on a linear 

table, if the original dataset is too large and the memory is insufficient, the linear table can be split. 
Put a part on the disk, and put only a part of the data to be processed in memory for batch processing. 
It can solve the problem of relatively insufficient memory for large-scale datasets.

The experimental results on the accidents, chess, and mushroom datasets confirm that the frequent 
itemset mining algorithm based on a linear table is the best among the three algorithms in terms of 
running time efficiency. Compared with the classic FP-growth algorithm, the mining efficiency of 
this algorithm is increased by more than 50% on average, and it is dozens of times faster than the bit 
combination algorithm. In terms of memory consumption, it can be seen that the frequent itemset 
mining algorithm based on a linear table is better than the FP-growth algorithm, but there are still 
some gaps with the bit combination algorithm. However, considering the runtime performance, the 
algorithm sacrifices some memory spaces, then gains an order of magnitude improvement in running 
speed, so the exchange is worthwhile.

The algorithm is effectively applied to the soybean promoter dataset in this paper, the database is 
a series of gene expression sequences. The application can better extract and analyze genetic data so 
that more valuable biological information can be obtained. This will have a good effect on increasing 
the yield of soybean crops and improving the quality of the species.
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Through the above analysis, it can be seen that the frequent itemset mining algorithm based on a linear 
table is of great theoretical and practical significance for quickly discovering valuable knowledge from 
massive data. And the algorithm can be further extended to mining frequent closed itemsets, maximum 
frequent itemsets, and fault-tolerant frequent itemsets. In addition, the algorithm proposed in this paper 
solves the disadvantage that the recursive operation of the FP-growth algorithm in the process of mining 
cannot be well parallelized. It is conducive to subsequent algorithm parallelization. Adding a parallel 
operation can further improve the mining speed of the algorithm. It is one of the focuses of our later work.

CONCLUSION

This paper mainly studies the problem of frequent itemset mining, and a frequent itemset mining 
algorithm based on a linear table is proposed. The algorithm first performs preprocessing operations, 
constructs a linear table based on the processed dataset, and stores the information of the dataset in 
the linear table, which can make full use of shared information. In the subsequent frequent itemset 
mining, multiple scanning of the original dataset is avoided, and the cost of scanning the dataset is 
saved. At the same time, the linear table structure is easier to split than the tree structure, which is 
convenient for batch mining big data. Subsequently, this paper uses pruning and grouping strategies 
to optimize the construction of a linear table and frequent itemset mining based on a linear table to 
improve the efficiency of the algorithm, and the effectiveness of the pruning and grouping strategies 
is verified through experiments. Finally, further experiments show that the algorithm has different 
performances for different datasets. (1) Compared with the bit combination algorithm, the mining 
speed of this algorithm improves by 45% on average in sparse datasets and dozens of times in dense 
datasets. (2) Compared with the classic FP-growth algorithm, the mining speed of this algorithm is 
2-3 times higher in sparse datasets and 50%-70% higher in dense datasets. Even in the worst case, the 
mining speed of this algorithm can be the same as that of the FP-growth algorithm. This algorithm 
also avoids recursive operations in the mining process. It is more conducive to the parallelization of 
the algorithm. All of these highlights the advantages of the algorithm in this paper.
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