
DOI: 10.4018/JDM.318451

Journal of Database Management
Volume 34 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Computation Offloading Method
for Large-Scale Factory Access in
Edge-Edge Collaboration Mode
Junfeng Man, Hunan First Normal University, China

Longqian Zhao, Nanjing University of Aeronautics and Astronautics, China

Bowen Xu, Virginia Polytechnic Institute and State University, USA*

Cheng Peng, Hunan University of Technology, China

Junjie Jiang, Hunan University of Technology, China

Yi Liu, Hunan University of Technology, China

ABSTRACT

Large-scale manufacturing enterprises have complex business processes in their production workshops,
and the edge-edge collaborative business model cannot adapt to the traditional computation offloading
methods, which leads to the problem of load imbalance. For this problem, a computation offloading
algorithm based on edge-edge collaboration mode for large-scale factory access is proposed, called the
edge and edge collaborative computation offloading (EECCO) algorithm. First, the method partitions
the directed acyclic graphs (DAGs) on edge server and terminal industrial equipment, then updates
the tasks using a synchronization policy based on set theory to improve the accuracy effectively, and
finally achieves load balancing through processor allocation. The experimental results show that the
method shortens the processing time by improving computational resource utilization and employs
a heterogeneous distributed system to achieve high computing performance when processing large-
scale task sets.

KEywORDS
Computing Offloading, DAG Segmentation, DAG Synchronization, Edge-Edge Collaboration, Processor
Allocation

INTRODUCTION

Industrial cloud-edge collaboration is the trending networking paradigm involving seamless
connectivity in heterogeneous industrial environments to aggregate distributed industrial devices
into a shared resource pool and mobilizes these industrial devices for local manufacturing. In the

Journal of Database Management
Volume 34 • Issue 1

2

edge-side cloud collaborative computing in industrial environments, information flows are a dynamic
exchange process that includes industrial device-to-network, industrial device-to-infrastructure, and
industrial device-to-device to enable collaborative data sensing and information analysis (Cai et al.,
2022; Mustafa et al., 2022; Xu & Zhu, 2022).

The purpose of computation offloading is to obtain the best system throughput and high-
performance computing. Traditional computation offloading algorithms have limitations in the
processing and analysis of high-dimensional and high-precision data. The minimum completion
time algorithm, for example, significantly improves the total task completion rate, but the resources
computed by the task scheduler and the maintenance cost of task information are high. The particle
swarm optimization algorithm can achieve better cloud computing results, but this algorithm’s main
disadvantage is that it does not consider the user budget. Market-driven computation offloading
algorithms feature low cost and short response times but lack scalability and long completion time.
Tasks in industrial scenarios have the characteristics of multiplicity, multimodality, and small batches.
For example, in the sheet metal industry, the factory focuses on the automatic cutting, punching,
forming, shearing, and nesting processes for sheet metal parts. Usually, there are 20 to 200 jobs
available for scheduling the sheet metal industry’s production queue. Therefore, it is necessary to
realize multi-site collaboration and multi-task parallel in the upstream and downstream of the work
chain to realize the factory floor’s intelligent integrated application. In the coming decade, more and
more factories adopting the industry 4.0 model will develop worldwide. At the same time, along
with the current situation of increasing task types and task sizes, there is an urgent need to give a
computation offloading method for large-scale factory access in the edge-edge collaboration mode,
to improve the efficiency of task execution effectively, scientifically reduce the procurement funds
of enterprises, and avoid the waste of limited resources, which is the focus of this research and the
problem to be solved in this paper (Materwala et al., 2022; Sheikh Sofla et al., 2022; Sun et al., 2022;
Zhang et al., 2022).

This paper presents a reliable solution for collaborative operation scenarios between edge-side
servers and cloud-side servers deployed in large factories. This paper proposes a task scheduling
method for large-scale factory access under cloud collaborative computing architecture by learning
the previous research results to solve the above problems. The main contributions of this paper are
as follows:

1. A task division method in the edge-edge collaboration mode is proposed to solve computation
offloading’s difficulties due to the variability in practical scenarios.

2. A computation offloading method for large-scale factory access in edge-edge collaboration mode
is proposed to solve high response delays caused by the increase of terminal industrial devices.

3. The simulation results verify the feasibility of the architecture in real industrial scenarios.

The rest of this article is organized as follows. The second part is related work. The third part is
the problem description. This part mainly introduces the typical edge-edge collaborative computing
architecture under the current industrial scenarios and leads to the edge-edge collaboration model
proposed in this paper. The fourth part mainly proposes a computation offloading algorithm for large-
scale factory access in edge-side collaborative mode. This algorithm can optimize the response latency
of industrial terminal devices, achieve load balancing and improve the resource utilization of the server
at the edge, so that it solves various problems arising from the computational offloading process and
improve the robustness of the system through. The fifth part provides a detailed description of the
EECCO algorithm and presents the algorithm performance by time complexity and space complexity.
The sixth part discusses experiments and results, mainly verifying the feasibility and effectiveness of
the EECCO algorithm and analyzing the simulation results. The last section concludes the whole paper.

Journal of Database Management
Volume 34 • Issue 1

3

RELATED wORK

The computation offloading problems in the actual manufacturing workshop are systematic, dynamic,
and random. The goal of such problems is to identify an approach that, at each decision stage,
specifies how to allocate available resources among competing task requests to optimize the system’s
performance. The computation offloading requirements in the actual manufacturing workshop are
closely related to the complex systems in the dynamic environment, making the traditional computation
offloading method unable to adapt to the business model under the cloud manufacturing scenarios,
leading to the problem of load imbalance (Li et al., 2022; Liu et al., 2022).

In recent years, artificial intelligence has been widely developed in manufacturing, transportation,
finance, medicine, and other fields. However, with machine learning and deep learning technologies
in key application fields such as cloud manufacturing and self-driving, researchers explore advanced
edge-edge collaboration methods to ensure real-time, precision, and high interaction efficiency.
Khan et al. (2020) designed an optimal computation offloading algorithm based on integer linear
optimization that allows each mobile device to dynamically select execution modes: local execution,
offloading execution, and deletion of tasks, thus achieving significant energy improvements. Yang et
al. (2020) designed a lightweight linear programming algorithm based on an integrated architecture
that can effectively reduce industrial equipment’s energy consumption and cloud computing cost by
transforming the offloading problem into an energy cost minimization problem to achieve full utilization
of resources in edge computing. Chen et al. (2022) proposed a composite integer nonlinear programming
algorithm, which aimed at the computational offloading problem in mobile edge computing systems,
using convex optimization to derive the closed-form of the resource allocation solution, transforming
it into an integer linear programming problem, Therefore, it has certain effectiveness and advantages
in reducing delay and energy consumption. The above solution is often only suitable for solving integer
linear programming problems, which require that all or part of the decision variables are assumed to be
non-negative integers. However, in the practical industry, the solution is too idealistic, and the integer
solution obtained by rounding is usually inaccurate. Because of the above algorithm’s limitations, Liao
et al. (2021) designed a distributed offloading strategy based on a binary coded genetic algorithm that
splits the multi-user multi-server problem into two phases, server selection and computational offloading,
for solving the problem to obtain an adaptive offloading decision. Hussein and Mousa (2020) proposed
a meta-heuristic computing offloading algorithm based on the ant colony algorithm and the particle
swarm algorithm. They considered the influence of load balancing on the offloading strategy, thus
significantly reducing the response time of Internet of Things applications and improving the service
quality. Topcuoglu et al. (2002) presented an algorithm named Critical-Path-on-a-Processor (CPOP)
for workflow scheduling over heterogeneous processors with the bounded number. Xu et al. (2022)
proposed a computing offloading strategy for the gene-ant colony fusion algorithm, which makes up
for the shortcomings of a single heuristic algorithm applied to computing offloading, improves the
efficiency of the algorithm, and realizes the efficient use of edge-side base station resources. Due to
the large number of parameters involved in the ant colony algorithm, the initial value is easy to be
selected improperly. The use of a single ant colony algorithm tends to fall into local optimum and has
low processing efficiency when dealing with large-scale combinatorial problems, followed by not
solving continuous problems well. Most of the relevant parameters, such as pheromones, are selected
by personal experience without sufficient theoretical basis. Due to its limitations, Cha et al. (2021)
designed a virtual edge formation algorithm by predicting the inter-vehicle link duration to efficiently
utilize the sporadic free computing resources around the smart vehicles. Laroui et al. (2021) proposed a
service offloading technique in virtual mobile edge computing, which utilizes the computation offloading
method of deep reinforcement learning to process the IoT network accessed by large-scale industrial
equipment to obtain effective offloading decisions. Zhu et al. (2018) proposed the local-based partial
reasonable task schedule construction (LoPRTC) to deal with a more complex multi-heterogeneous
MEC server scenario shared by multiple mobile devices to ensure time sensitivity. However, the above

Journal of Database Management
Volume 34 • Issue 1

4

scheme is usually only applicable to the mobile edge calculation scene. In the complex industrial scene,
industrial devices are more often fixedly installed in factories, and it needs to be discussed on a case-by-
case basis. Given the above algorithms’ limitations, Luo et al. (2021) proposed a new architecture that
automatically offloads user tasks in mobile edge computing scenarios, which utilizes drones to cache data
generated IoT devices dynamically and enables flexibility in computation offloading using blockchain
technology. Wang et al. (2021) proposed a joint UAV-based heuristic power and quality-of-experience
algorithm that jointly optimizes the UAV offload delay, transmit power, and UAV layout, thus ensuring
the quality of experience for different priorities endpoints. Guo et al. (2018) proposed a game-theoretic
greedy approximation offloading algorithm (GT-GAOA) to ensure better service quality and quality of
experience and other diverse requirements in multi-user ultra-dense edge server scenarios. Zhang et al.
(2022) proposed a dual auction-based common task offloading scheme and a Stackelberg game-based
mining task offloading scheme to cope with the high computational overhead of the blockchain mining
process, thereby achieving efficient resource allocation. However, the above scheme only considers how
mobile IoT devices’ tasks in industrial scenarios are offloaded to the edge-side servers, and there is no
reasonable classification of computation offloading strategies within the edge-side server clusters. For
the above algorithms’ limitations, Zhu et al. (2021) proposed a computational offloading algorithm
based on deep reinforcement learning to accelerate the learning process by adjusting the number of
candidate positions, which utilizes minimizing the offloading cost to achieve faster convergence and
dynamic adjustment during the learning process, thus significantly reducing the running time. Zhang
et al. (2021) proposed a distributed task-loading algorithm based on multiple intelligences and load
balancing, which aims to effectively reduce the response latency of all users and improve the robustness
and scalability of the system by introducing load balancing coefficients. Mekala et al. (2022) proposed
a two-step service offloading method based on deep reinforcement learning to reduce the cost of edge
servers through a DRL-influenced resource and ensemble analysis model, thereby achieving high resource
utilization and low energy consumption. However, as another important machine learning method, deep
reinforcement learning emphasizes how to take corresponding actions based on the environment to
maximize the expected benefits. In this mode, the input sample data feeds back to the model, but does
not directly give correct conclusions like other methods. The feedback of deep reinforcement learning
only detects the model, and the model will gradually make adjustments after receiving stimuli similar
to rewards or punishments. Due to inefficient data sampling, complicated reward function design,
difficulty reproducing operational results, and unavoidable local optima.

The EECCO algorithm used in this paper can effectively divide the DAG by calculating the task
priority, calculation offload tolerance and DAG critical path in the edge-edge cooperative mode.
This step can improve the processing of large-scale combination problems in complex industrial
scenarios. Efficiency makes up for the lack of theoretical basis for the selection of pheromone by
Liao, Hussein and others, and cannot solve the continuous problem well. It also solves the problem
that Wang et al. did not reasonably classify the computing offloading strategy in the edge server
cluster. Second, in the EECCO algorithm, this paper synchronizes multiple DAGs in the edge-edge
cooperative mode. This step uses CGSC and EGSC to construct, schedule and maintain the DAG,
thus realizing the task flow with the change of space. Dynamic execution makes up for the lack of
flexibility in the computing offloading process by Cha, Laroui and others, which greatly improves
the computing offloading efficiency in any complex industrial scenario. Reasonable allocation, the
proposed IHEFT algorithm process is mainly composed of three stages: weight allocation stage, task
priority allocation stage, and processor selection. Through the EECCO algorithm, the efficiency of
task execution is effectively improved, and the capital cost of the enterprise is greatly reduced.

PROMBLEM DESCRIPTION

With the rapid development of industrial intelligence technology and the explosive growth of IoT
terminal data, the analysis and processing of massive data increase industrial cloud platforms’

Journal of Database Management
Volume 34 • Issue 1

5

operational burden. The emergence of edge-cloud collaborative computing makes full use of all
computing resources on the entire link, bringing into play the advantages of different devices and
providing strong technical support for the popularization and development of intelligent manufacturing.

DAG Task Description
According to the industrial IoT environment requirements, the edge-cloud collaboration mainly consists
of the cloud component composed of the remote server cluster, the edge component composed of the
edge server cluster, and the terminal component composed of the terminal cluster. Figure 1 depicts the
working schematic under the edge-cloud collaboration computing architecture. In terms of specific
operations, the cloud component is responsible for processing non-real-time, long-period data and
completes the full lifecycle management of edge-side and end-side applications. The edge-side
components significantly reduce the data transmission delay and meet the real-time data requirements
of low-latency services. The terminal device is mainly responsible for data collection and real-time
control of industrial equipment. The “End-Edge-Cloud” collaborative computing provides greater
possibilities for precise decision-making and dynamic optimization of the industrial Internet.

It is assumed that there are n factories in which k k k
n1 2

, , ,¼ DAG tasks are run on the deployed
terminal devices and q q q

n1 2
, ,..., DAG tasks are run on the edge server, respectively, and they cooperate

with DAG tasks running on the cloud server to form the end-to-side cloud collaborative computing
architecture. When the i th factory collaborates with the cloud server, the number of tasks in the cloud
server cluster is a a a

1 2
, ,...,

p
 ; The number of tasks in the edge server cluster is b b b

1 2
i i

q
i, ,..., And the

number of tasks in the terminal device cluster is g g g
1 2
i i

k
i, , ,¼ , so the number of all tasks in the cloud

environment is
i

p

i i
p

=∑ =
1
a .The number of all tasks in the edge environment was

j

q

j
i

i
q

=∑ =
1
b ;The

number of all tasks in the terminal environment is
j

k

j
i

i
k

=∑ =
1
g . Using the edge-cloud collaborative

computing model, a task cannot be interrupted when it is not scheduled, and the task cannot be split
into several smaller tasks. Figure 2 depicts a multi-DAG task graph in a cloud-side collaborative
computing mode. There are p DAG task graphs in cloud components, and q q q

n1 2
, ,..., task graphs

in edge-end components, which run in n edge servers deployed in factories.
For simplicity, Figure 3 depicts three DAG task diagrams under the cloud-side collaborative

computing architecture. DAG1 under the cloud component includes three tasks, and DAG2 under the
edge component includes five tasks. DAG3 includes 2 tasks, and 3 DAG task graphs include a total of
10 tasks. The circle represents the task node, the background color of the node in the cloud component,

Figure 1.
Schematic diagram of the working process under the end-side cloud collaborative computing architecture

Journal of Database Management
Volume 34 • Issue 1

6

the edge part, and the terminal part are filled with green, white, and yellow respectively, the letter in
the circle represents the number of the task node, and the task node number in the cloud part and the
edge part is respectively used Uppercase and lowercase letters, node numbers are not case-sensitive,
for example, the letter a in the circle represents task node t t t

a a A
, = . The solid edge with an arrow

indicates the event edge, and the number on edge indicates the event calculation overhead between the
two tasks; The number on the side represents the communication delay between the two tasks. Each
DAG includes 1 entry task node and 1 exit task node. Considering the communication delay of different
tasks, for example, the communication delay of cloud computing is about 100ms. The communication
delay of small data centers is about 10~40ms, the communication delay of routers is about 5ms, and the
communication delay between terminal devices is about 5ms. It is about 1~2ms (Martinelli, 2018). We
use the time instruction to obtain the event calculation overhead between the two tasks.

Resources and Environment
Compute offloading can efficiently compute resources and speed up computation for resource-
constrained end devices or single edge-side servers running compute-intensive applications. The
offloading algorithm is to find a set of offloading schemes that allow the application’s processing
speed to be efficiently increased based on the task’s deadlines and resource requirements. Figure
4 shows the edge-side collaboration model’s organization diagram, which consists of a cloud
component, an edge-side component, and an endpoint component. The cloud component and the
edge component mainly consist of multiple performance heterogeneous physical machines, and
each physical machine is virtualized with multiple virtual machines. Assuming that there are
P P P

m1 2
, ,..., physical machine nodes, each physical machine is composed of p p p

k1 2
, ,..., virtual

machines with heterogeneous performance and the physical machines are interconnected through

Figure 2.
End-side cloud collaborative computing architecture

Journal of Database Management
Volume 34 • Issue 1

7

a network. On each physical machine, task execution and communication can be executed at the
same time, the communication overhead between tasks allocated to virtual machines is 0, and task
execution is non-preemptive.

Computing Offloading Target
DAG computation offloading is to offload the tasks in a single edge server or offload the terminal
device calculations to the processor in the edge server for execution in the edge-side collaboration
mode. The goal of computation offloading includes the following aspects:

1. The execution time of the entire task set on the processor makespan as small as possible;
2. Design a flat uninstall strategy for the edge server, instead of unified management through the

cloud server;

3. The value AWT
ST AT

n
j

n

j j
=

−()
=∑ 1 of all tasks in the entire task set from the arrival time

AT
i
 to the start execution time ST

i
 should be as small as possible;

4. Slack is a measure of a computation offloading algorithm’s robustness, reflecting the degree of
uncertainty in the processing time of a task generated by a computation offloading algorithm (Yuan
et al., 2022). The definition of Slack is shown in Equation 1. Where M represents the span of the DAG
makespan, n represents the number of tasks, b

level
 represents the length of the longest path from task

t
i
 to the exit, and t

level
 represents the length of the longest path from the entry node to the task t

i
.

Slack
M b t t t

n

t T level i level i
i=

− ()− ()

∈∑
 (1)

Figure 3.
Three DAG task diagrams under the end-side cloud collaborative computing architecture

Journal of Database Management
Volume 34 • Issue 1

8

5. Unfairness (S) is an important indicator used to measure the unfairness of the multi-DAG
scheduling algorithm S (Mahdi et al., 2022). Unfairness(S) is defined as shown in Formula 2,
where A is the set of a given multi-DAG, AvgSlowdown is the average of all Slowdown, and
S l ow d ow n r e f l e c t s t h e d e g r e e o f hys t e r e s i s o f t h e DAG , d e f i n e d a s
Slowdown a M a M a

multi own() = () ()/ .

Unfairness S Slowdown a Avgslowdown
a A

() = ()−
∀ ∈
∑ (2)

EDGw-EDGE COLLABORATIVE COMPUTATION OFFLOADING MODEL

In practical industrial application scenarios, tasks mainly consist of the static class known tasks and
dynamic class unknown tasks. The priority of the static class of known tasks is determined at design
time. Its priority varies with the dynamic class of unknown tasks. The tasks in this class satisfy the
resource and latency requirements, i.e., the tasks can be successfully offloaded. The priority of the
dynamic class of unknown tasks is determined during the runtime and changes continuously. There
is some risk in the computational offloading strategy for this class of tasks. Both known tasks with
static classes and unknown tasks with dynamic classes need to design corresponding computing
offloading strategies to ensure efficient execution of tasks and full utilization of resources. Figure 5
shows the computing offload architecture in the edge-edge collaboration mode:

As can be seen from Figure 5, the edge-edge collaboration mode includes three central bodies:
cloud component, edge component, and terminal component. The cloud component is mainly
responsible for updating and synchronizing information states, such as computing offloading
and task execution. The edge end components mainly include internal computing offloading and
inter-computing offloading. The efficient utilization of resources can be achieved by coordinating

Figure 4.
The organizational chart of the edge-edge collaboration model

Journal of Database Management
Volume 34 • Issue 1

9

offloading strategies. Terminal components are classified according to industrial equipment’s position
state, including static calculation offloading of fixed position and dynamic calculation offloading of
variable position. The three central bodies assume different functions based on different geographical
spaces and roles of different devices and jointly promote the development of artificial intelligence.

DAG Segmentation in Edge-Edge Collaboration Mode
Currently, heterogeneous computing systems play an increasingly important role in dealing with
complex industrial production problems. Heterogeneous computer clusters support the execution of
parallel applications to achieve the goal of completing tasks quickly. The Improved Critical Path on a
Processor (ICPOP) algorithm proposed in this paper comprises three stages: computing task priority,
computing offload tolerance, and computing DAG critical path.

Task Priority
The computation offloading strategy in the edge-edge collaboration mode includes task offloading
in edge components and task offloading in terminal components. Assume that an edge component δ
is composed of m edge servers, and each edge server virtualizes k virtual machines. Each virtual
machine runs τ DAGEdge , and each DAGEdge is composed of φ edge tasks. The end task will interact
with ¢t and DAGTerminal in the terminal part, and the adjacency matrix M corresponding to the DAG
in the edge end part and the terminal part is shown in Formula 3:

M i j

if i j

weight i j if i j and i j
Edge

Terminal , , ,

 =

=

() ≠ () ∈
0 �

� � � EE

if i j and i j E¥ � � �≠ () ∉

 ,

 (3)

Figure 5.
Computing offload architecture in the edge-side collaboration mode

Journal of Database Management
Volume 34 • Issue 1

10

From the adjacency matrix M, the sum of the weight values of the incoming edges of each task
node v

i
 can be calculated and inserted into the set S, as shown in Formula 4:

S S M v
Edge

Terminal

Edge

Terminal

i

Edge

Terminal
i

= ∪ ()

∑

 (4)

In the industrial application scenario, due to the particularity of the industrial equipment itself,
taking the aircraft as an example, there are many gears, bearings, blades, and other key mechanical
components in the aircraft’s powertrain. The parameter rights are obtained by analyzing the collected
data through machine learning. Value W, so that each type of task’s importance can be determined in
advance (Wang & Leelapatra, 2022). Assume that each virtual machine may have operational failures
and thus cannot complete the task. Assuming that these failures occur independently with probability
p, Formula 5 indicates that the benefits of task processing are maximized:

maximizes t p

subject to h

i

Edge

Terminal

i
i

h

i

h

i

i�

� �

π
ϕ

= −()

≤

=

=

∑

∑
1

1

1

ϕϕ� �and h
i
≥ 0

 (5)

Combining Formula 3 and Formula 4, the priority P
i
 of each task node v

i
 of the DAG in the

edge end part and the terminal part is given, as shown in Formula 6:

P
w

W
S

i

Edge

Terminal
i i

=
∑
× ×p (6)

w represents the weight of each parameter. It can be seen from Formula 6 that when the value of
P
i
Edge Terminal/ is larger, the task node needs to be allocated more computing resources in time, thereby

increasing the speed of task processing.

Task Offload Tolerance
Before performing task uninstallation, it is necessary to evaluate the currently available resources
fully, the uninstall task’s size, and the energy consumed by executing local applications. Assuming
that the communication delay between edge components is q

1
; the communication delay between

edge servers in the edge component is q
2

; the communication delay between virtual machines in the
edge server is q

3
; the communication delays of the edge component and the terminal component is

q
4
. For the static known task set t

i
Edge Terminal/ , the task set running time in a virtual machine is time

i
Edge ,

and the static known task set t
i
Edge in the edge, component is separately stored in the same edge server

by means of task offloading. Run in other virtual machines, the time is time i
i
Edge' , , ,= …{ }1 j , and

run in the virtual machines in other edge servers, and the time is time i k
i
Edge'' , , ,= …{ }1 ; The task

set runs in a terminal for time
i
Terminal , and the static known task set t

i
Terminal in the terminal component

is run on the virtual machine in the edge server by task off loading, and its time is

Journal of Database Management
Volume 34 • Issue 1

11

time i k m
i
Terminal' , , ,= … × ×{ }′1 j . Then the internal task offload tolerance o of the known static

tasks in the edge end parts and the terminal parts are shown in Formula 7 and 8:

o

same server time time i k

oEdge

i j
Edge

=

{ }− < = …{ }� �Edge’,max , , ,q
3

1

tther server time time i k
i j

Edge� � �Edge’’, max , , ,{ }− < + = …{ }q q
2 3

1

0 ,, �others

 (7)

o
Edge server time timeTerminal i j

Terminal

= { }− <� �Terminal’,max q
44

1

0

, , ,

,

i k

others

= …{ }

 (8)

The same server refers to the edge task set t
i
Edge can only uninstall tasks on virtual machines in

the same edge server, and the other server refers to the edge task set t
i
Edge that can be other parts of

the same edge. Uninstall tasks in the edge server. Edge server refers to the terminal task set t
i
Terminal

that can uninstall tasks to the virtual machine in the edge component for execution, and 0 means that
the task set is recommended to be executed locally. For the dynamic unknown task t

i
' , where the size

of the input data of the task set is s, the average unit processing time of the data is c, and num is the
number of tasks in the task set, then the internal task offloading tolerance of the dynamic unknown
task is ¢o As shown in Formula 9 and 10:

o

same server
s c

num
time i k

other serEdge

j
Edge

′ =

×
− < = …{ }� �

�

, , , ,q
3

1

vver
s c

num
time i k

others

j
Edge, , , ,

,

� �

�

×
− < + = …{ }

 q q
2 3

1

0

 (9)

o
Edge server

s c

num
time i kTerminal j

Terminal
′ =

×
− < = …{ }� � �, , , ,q

4
1

00 ,others

 (10)

In smart manufacturing production scenarios, industrial equipment is required to have the ability
to self-organize and collaborate to meet flexible production. However, it also puts forward higher
requirements for the flexible mobility and differentiated business processing capabilities of industrial
equipment. Suppose that the residence time of a mobile device in a factory near the edge part is J ,
and its pre-stay time is J

0
, and m is the amount of data calculation. Then the inter-task offloading

tolerance ¢¢o of the mobile device is shown in Formula 11:

′′ =

−()
×

− ×
−()
×

>

−()
×

−
−()
×

o

M m

M T

M m

M T
M m

M T

M m

M T

1

1

1 1

2

2 2
0

1

1 1

2

2

0

,

,

J
J

22
0

0

>

 ,others

 (11)

Journal of Database Management
Volume 34 • Issue 1

12

Where M1 is the size of the remaining resources of the edge-end component, M2 is the size of the
remaining resources of the components adjacent to the edge-end component, T1 is the communication
delay between the mobile device and the edge-end component, and T2 is the mobile device and the
edge-end component. The communication delay of the adjacent components of the component, T1
and T2, will change with the mobile device’s location.

DAG Critical Path

The earliest possible start time of a task j is represented by t j
ES () , and any task can only start after

all its predecessor tasks are completed. The earliest completion time of the task t
i
 is represented by

t j
EF () . It represents the completion time that the task can reach according to the earliest start time,

and its calculation Formula is:

t j

t j max t k t k

t j t j t j

ES

ES k ES

EF ES

() =
() = ()+ (){ }
() = ()+ ()

0

 (12)

The latest start time of a task j is represented by t j
LS () , which represents the latest time that

task j must start without affecting the completion of the entire task on schedule. The latest completion
time of task j is represented by t j

LF () , which represents the completion time that the task can start
at the latest time and its calculation formula is:

t j max t k t k

t j t j t j
LS k LS

LF LS

() = ()− (){ }
() = ()+ ()

 (13)

Formula 11 is a recursive process from the starting point to the endpoint; Formula 12 is a
systematic process from the endpoint to the starting point. This paper uses Formula 11 and Formula
12 to implement the critical path algorithm to find the critical path CP cp cp cp m N

m
= …{ } ∈

1 2
, , , ,

of the DAG merged graph. In this paper, the DAG separation graph is defined as the Critical Tasks
Set (CTS) and the Non-Critical Tasks Set (NCTS), where the task set types are divided into edge-side
collaborative tasks Edge-Side Tasks (EST), and the Terminal-Side Tasks (TST) is composed, and its
definition is shown in Formula 14:

DAG CTS NCTS

CTS CTS CTS

NCTS NCTS NCTS

CTS NCTS

EST TST

EST TST

= +
= +
= +

{ , }} = + ∈ ∈

 nEST mTST n N m N, ,

 (14)

The DAG task’s critical path is the longest path from entering the task to the exit node. Each
task on this path provides the lowest cost for all critical paths. According to Formula 11, the edge
end part and the DAG in the end part shown in Figure 3 are segmented in this paper. Figure 6 shows
the segmentation diagram of the DAG in the edge-side collaboration mode. The path formed by the
red arrow is the critical path of the DAG. The degree of each subgraph is {2,0,0,1}.

Journal of Database Management
Volume 34 • Issue 1

13

Multi-DAG Synchronization in Edge-To-Side Collaboration Mode
The edge-side collaboration mode adopted in this paper is responsible for the construction, scheduling,
and maintenance of DAG through Cloud Global State Controller (CGSC) and Edge Global State
Controller (EGSC). CGSC is responsible for cloud components and edge components; EGSC is
responsible for tasks in edge components and terminal components. Figure 7 shows the multi-DAG
synchronization method in the edge-side collaboration mode. Aiming at 5G+ industrial intelligence
integration to broaden the application scenarios, the data-driven optimized closed loop is used as
the key to real-time decision-making through EGSC; for the actual scenarios of high-speed mobile
industrial production lines, through CGSC regards decision-driven optimization closed loop as the
key to real-time data processing (Darwish, 2022).

Due to the high computational complexity of the algorithm, multiple task links, and extended
business processes are some of the most complex problems in the industrial field. The task running
status includes successful execution, execution blockage, and execution failure.

Since there is data interaction between the edge part and the terminal part that the EGSC is
responsible for, its task execution state StatusEdge is shown in Formula 15, where the set A

t
Edge represents

the DAG in the edge part at time t, which can be represented by A a b c
t
Edge = … …{ }, , , , , ,α β . a b c, , ,…{ }

represents the task in the edge end part, α β, ,…{ } represents the task that the terminal part is unloaded
to the edge end part. A

t
Edge
+1

 represents DAG ' in the edge end component at time t+1.

Figure 6.
DAG segmentation diagram in edge-side collaboration mode

Journal of Database Management
Volume 34 • Issue 1

14

Status

execution succeed A A A

executiEdge
t
Edge

t
Edge

t
Edge

=

= − +� ,
1

oon blocking A A

execution failed A A
t
Edge

t
Edge

t
Edge

t

�

�

,

,

⊃

= −
+

+

1

1
Æ EEdge

 (15)

According to Formula 14, the task synchronization strategy © of the EGSC in the lower edge
part at different times can be obtained, as shown in Formula 16:

Ω =

=

= ⊕ +

B execution succeed

B A A execution

Edge

Edge
t
Edge

t
Edge

Æ ,

,

�

1
��

�

blocking

B A execution failedEdge
t
Edge=

 ,

 (16)

Where BEdge represents the DAG after EGSC synchronization in the edge end component at time
t+1. Since there is data interaction between the edge components that CGSC is responsible for, its
task synchronization strategy is shown in Formula 17, where the set ¦

i
Cloud is expressed as the DAG

set in the i-th edge component, which can be used as ¦
i
Cloud

t
Edge

t n
Edge

t
EdgeA A B= … …{ }+, , , , .

A A
t
Edge

t n
Edge, ,…{ }+ represents the task execution sequence in the i-th edge end component, B

t
Edge{ }

represents the task of offloading other edge end components to the edge end component set.

C x xCloud
i t i

Cloud= { } ∈

¥ max , ¦ (17)

Where CCloud represents the union of the latest task completed in each edge component in CGSC.
DAG update is realized by data collaboration between tasks in CCloud and BEdge of the edge end
component so that the task flow can be dynamically executed as the space changes.

Figure 7.
Multi-DAG synchronization method in edge-side collaboration mode

Journal of Database Management
Volume 34 • Issue 1

15

Task Allocation in the Edge-Edge Collaboration Mode
The Improved Heterogeneous Earliest Finish Time (IHEFT) algorithm process proposed in this paper
comprises three stages: weight distribution stage, task priority distribution stage, and processor
selection stage. Assume that R is used to represent the collection of processor resources:
R CPUs GPUs FPGAs= { }, , . GPUs are the most widely used accelerators, and FPGAs can provide
better performance-to-power ratios. They are used in multiple applications, including high-performance
computing. They deliver superior performance for a wide range of applications, including high-
performance computing (Bobda et al., 2022; Mendes et al., 2022). Use undirected graph RG T C= (),
to describe the computing performance of tasks on different processors, where T represents the task
node, C c c c n N m N

nm
= { } ∈ ∈

11 12
, ,..., , ,* * represents the computing performance of tasks on

different processors, where n represents the number of tasks and m represents the number of processors.
Then the average computing performance of the task compute is shown in Formula 18:

compute
c

m
j n

j
i

m

ji
= = …=∑ 1 1 2, , , (18)

In the task priority assignment stage, its primary purpose is to solve the problem of establishing
task priority lists in multi-source heterogeneous scenarios. In actual industrial scenarios, both edge
tasks and terminal tasks have the characteristics of multiple task types, large scales, and strong
associations. Therefore, the original weights of the edges between tasks cannot accurately reflect the
priority of tasks in the edge-side collaboration mode. The task graph’s priority in the edge-side
collaboration mode needs to be determined according to the sum of the weights of the DAG merged
graph’s critical paths. According to the priority value, the DAG in the edge-side collaboration mode
is sorted in descending order to form a task graph list, which is convenient for calculation and
offloading in the later stage. The priority rank D

k() of the task graph D
k

 in the edge-side collaboration
mode is shown in Formula 19:

rank D cp k n
k i

m

i() = = …
=∑ 1

1 2, , , , (19)

The priority rank D
k() of the task graph D

k
 in the edge-edge collaboration mode is equal to

the sum of the weights of all event edges on the graph’s critical path. In the subsequent computation
offloading operation, the processor resources will be allocated first from the task graph with the
higher priority in the task graph list. The corresponding path list is constructed according to the task
graph list, and the priority rank p

k() of path p
k
 is shown in Formula 20:

rank p t e
k t p i i succ i

i k

() = +()∈ ()∑ ,
 (20)

Due to the high computational complexity of the algorithm, multiple task links, and extended
business processes are some of the most complex problems in the industrial field. The task running
status includes successful execution, execution blockage, and execution failure.

In the DAG segmentation graph in the edge-side collaboration mode, there are edge terminal
graphs x , with a degree value of ο ξ= { }o o o

1 2
, ,..., ; there are terminal subgraphs ζ, with a degree

Journal of Database Management
Volume 34 • Issue 1

16

value of ο ζ= { }o o o
1 2
, ,..., . From this, the number of processors v

i
 required for the task graph

DAG
i
 to calculate the offload execution is shown in Equation 21:

w

o

o ETS

o other

w w EST
j

j

j

j

i
j j j

j

=
=
∈

=
∈

=

=

∑
1 0

1 1

1

,

,

,

,
,

ϖ

ξ

ζ

∑∑ ∈

w w TST
i j
,

 (21)

After the segmentation operation and the resource collection type determination, the processor
allocation stage starts to allocate resources to the task based on the resource collection type identified
by each segmentation (Azhar et al., 2022; Yang & Deyu, 2017). The task set after DAG segmentation
and synchronization selects and schedules processors according to the computation offloading strategy
in the IHEFT algorithm.

EDGE-EDGE COLLABORATIVE COMPUTATION OFFLOADING ALGORITHM

The EECCO algorithm proposed in this paper is to make full use of the edge and terminal resources
to achieve efficient task calculation by dividing the edge DAG task set and the terminal DAG task set
through DAG; DAG synchronization; The processor allocates three steps to achieve. Among them,
DAG synchronization reduces the time overhead caused by processing redundant tasks.

DAG Segmentation Algorithm
Assuming that the k-th factory under the edge-side collaboration mode is adopted, where the deployed
edge server and terminal components perform N and M tasks, respectively, then the DAG segmentation
algorithm is shown in Algorithm 1:

The second line of the algorithm traverses the DAG in the edge part and the terminal part of
obtaining the number of task nodes. The fourth line obtains the priority of each task node in the edge
part and the terminal part. Lines 5-16 perform DAG in the segmentation process, tasks belonging to the
critical path are placed in the critical task set, and tasks not belonging to the critical path are placed in
the non-critical task set. The time complexity of running the algorithm in each factory is O(n), and the
space complexity of the algorithm is O(1). As tasks increase, their advantages become more apparent.

DAG Synchronization Algorithm
We use set theory to synchronize the state information of the DAG segmentation graph obtained above.
The tasks after synchronization are divided into two categories: critical task set and non-critical task
set. The synchronization principle is shown in Algorithm 2:

The second line of the algorithm traverses each DAG segmentation graph’s task nodes and
calculates each task’s average computing performance on the processor. Lines 3-5 calculate the
execution status of each DAG in the edge part, and the fourth line is based on each. Each task’s
execution status is synchronized with the corresponding strategy, and the 8th line performs a merge
update operation for the DAG in the cloud component. The algorithm’s time complexity is O(n), and the
space complexity of the algorithm is O(1). As tasks increase, their advantages become more obvious.

Processor Allocation Algorithm
We use the IHEFT algorithm to perform processor allocation operations on the DAG segmentation-
synchronization graph obtained above and sort the DAG task graph according to the critical path
weight rank D

k() , to obtain the priority list of different tasks in the edge-side collaboration mode;

Journal of Database Management
Volume 34 • Issue 1

17

Algorithm 1.
DAG segmentation algorithm

Input: DAG DAG
k
Edge

k
Terminal,

Output: CTS NCTS CTS NCTS
k
Edge

k
Edge

k
Terminal

k
Terminal, , ,

1: function Partitioning (DAG DAG
k
Edge

k
Terminal,):

2: N, M¬ order tasks based on level
3: while N, M is not empty, do

4: P
w

W
S

i
Edge Terminal

i i
/ =

∑
× ×p

5: if it is an edge task
6: if it is a static class known task

7: o

sameserver time time i k

oEdge

i j
Edge

=

{ }− < = …{ }� ,max ,� , ,Edge’ q
3

1

tther server time time i k
i j

Edge� ,�max ,� , ,Edge’’{ }− < + = …{ }q q
2 3

1

0 ,,�others

8: else

9: o

sameserver
s c

num
time i k

other serEdge

j
Edge

′ =

×
− < = …{ }� , ,� , ,

�

q
3

1

vver
s c

num
time i k

others

j
Edge,� ,� , ,

,�

×
− < + = …{ }

 q q
2 3

1

0

10: else
11: if it is industrial equipment in a mobile scenario

12: ′′ =

−()
×

− ×
−()
×

>

−()
×

−
−()
×

o

M m

M T

M m

M T
M m

M T

M m

M T

1

1

1 1

2

2 2
0

1

1 1

2

2

0

,

,

J
J

22
0

0

>

 ,others
13: else if it is a dynamic unknown task

14: ���
� ,max �

o
Edgeserver time timeTerminal i j

Termina

= { }−Terminal’ ll i k

others

< = …{ }

q
4

1

0

,� , ,

,
15: else

16: o
Edgeserver

s c

num
time i kTerminal j

Terminal
′ =

×
− < = …{ }� , � ,� , ,q

4
1

00 ,others

17: if t CP DAG
i

Edge Terminal∈ ()()/

18: add task t
i

 in CTSEdge Terminal/

19: remove task t
i

 from N or M
20: else
21: add task t

i
 in NCTSEdge Terminal/

22: remove task t
i

 from N or M
23: end else
24: end if
25: end while
26: return CTS NCTS CTS NCTS

k
Edge

k
Edge

k
Terminal

k
Terminal, , ,

27: end function

Journal of Database Management
Volume 34 • Issue 1

18

The tasks in each edge part are sorted by rank p
k() and the tasks are distributed to v processors.

The processor allocation algorithm is shown in Algorithm 3:
The algorithm starts the function from the first line, the second line traverses each DAG split-

synchronization graph’s task nodes and calculates each task’s average computing performance on
the processor. The third line calculates the sum of the weights of the edges of the critical path of the
DAG merged graph. Lines 4-8 calculate the priority of the DAG segmentation-synchronization graph
path. Line 9 is sorted in descending order according to the priority of the task graph. The 10th line
is sorted according to the descending order of the path priority. The 11th line assigns the task to the
best on the processor. Line 12 returns related information such as the mapping task’s processor set,
and line 13 ends the function. The algorithm’s time complexity is O(1), and the space complexity of
the algorithm is O(1). With the increase of tasks, its advantages become more evident.

SIMULATION EXPERIMENT AND RESULT ANALySIS

Purpose
In order to verify the EECCO algorithm proposed in this paper, the performance of the proposed
EECCO algorithm was compared with similar offloading algorithms Local-Based Partial Reasonable

Algorithm 2.
DAG synchronization algorithm

Input: CTS NCTS
k
Edge

k
Edge,

Output: CTS NCTS CEdge Edge Cloud' ', ,

1: function Partitioning(CTS NCTS
k
Edge

k
Edge,):

2: N¬ order tasks based on level
3: while N is not empty, do

3: A
t
Edge

CTS NCTS
k
Edge

k
Edge, based on level

4: ¦
i k
Cloud

i k k
Edge

k
EdgeCTS NCTS

, ,
,= { }∞

4: if it is EGSC

5: Status

executionsucceed A A A

executiEdge
t
Edge

t
Edge

t
Edge

=

= − +� ,
1

oonblocking A A

execution failed A A
t
Edge

t
Edge

t
Edge

t

� ,

� ,

⊃

∅ = −
+

+

1

1
EEdge

6: © =
= ∅

= ⊕ +

B executionsucceed

B A A execution

Edge

Edge
t
Edge

t
Edge

,

,
1

��

, �

blocking

B A execution failedEdge
t
Edge=

7: else

8: C x xCloud
i k t i k

Cloud= { } ∈∞

, ,
max , ¦

9: end if
10: end else
11: end while

12: return C CTS NCTSCloud
k
Edge

k
Edge, ,' '

13: end function

Journal of Database Management
Volume 34 • Issue 1

19

Task Schedule Construction (LoPRTC) and Game-theoretic Greedy Approximation Offloading
Algorithm (GT-GAOA) under the same experimental conditions (Hussain et al., 2020; Xu et al.,
2019), mainly comparing task span Makespan, task average waiting for time AWT and average
Slack value.

Simulated Environment
Based on the simulator toolkit provided by SimGrid, a simulation environment for heterogeneous
multi-core processors is built (Cornebize & Legrand, 2022). The computer used in the experiment
is configured as Intel Core i5-7200U CPU @ 2.5GHz 2.7GHZ Dual-core processor, 8GB of RAM.

Analysis of Calculation and Offloading Process
The edge-edge collaboration mode is adopted. Assuming the tasks running in the edge server and
terminal industrial equipment are shown in Figure 8, the following will analyze the segmentation,
synchronization, and resource scheduling process of the multi-DAG task graph realized by the EECCO
algorithm under the distributed and heterogeneous computing environment.

Figure 8 shows the DAG task diagram in the edge-edge collaboration mode. The edge server
performs 10 tasks; Terminal industrial equipment performs 1 task. Table 1 and Table 2 respectively
show the calculation events of tasks in DAG1 on terminal industrial equipment and DAG2 on edge
parts on different processors, in which the unit of communication cost and execution time is s.

According to the division principle, the DAG task division diagram can be obtained according
to Algorithm 1, as shown in Figure 9; the processor allocation principle can be obtained according
to algorithm 3 to obtain the processor set of the mapping task, as shown in Table 4:

Algorithm 3.
Processor allocation algorithm

Input: CTS NCTS CTS NCTS
k
Edge

k
Edge

k
Terminal

k
Terminal' ', , ,

Output: rank D
k j

() , rank p
k j
() , v

j

1: function IHEFT(CTS NCTS CTS NCTS
k
Edge

k
Edge

k
Terminal

k
Terminal' ', , ,):

2: compute
c

mj
i

m

ji
= =∑ 1 , i ∈ +{ }1 2, ,..., ξ ζ

3: rank D cp
k j i

m

i
() =

=∑ 1
, i ∈ +{ }1 2, ,..., ξ ζ

4: if the task t
i

 is the last task, then

5: the rank value of t
i

 = its average execution time
6: else:

7: rank p t e
k j t p i i succ i

i k

()
,

= +()∈ ()∑
8: end if

9: Sort the DAG in a scheduling list by descending order of rank D
k j

() values

10: Sort the tasks in a scheduling list by descending order of rank p
k j
() values

11: Assign task t
i

 to the best processor base on v
j

 list

12: return Set of processors with the mapping tasks, rank D
k j

() , rank p
k j
()

13: end function

Journal of Database Management
Volume 34 • Issue 1

20

Figure 8.
Dag task diagram using edge-side collaboration mode

Table 1.
The scheduling time of the DAG1 task set on the processor set

Task PTerminal
1

l 8

m 6

Table 2.
The calculation time of DAG2 task set on processor set

Task PES
1

1 PES
2
1 PES

3
1 PES

1
2 PES

2
2 PES

3
2

a 9 11 4 6 8 1

b 8 14 13 2 11 10

c 6 8 14 3 6 11

d 8 3 12 6 1 9

e 7 8 5 4 5 2

f 8 11 4 6 8 1

g 2 10 6 1 7 3

h 1 6 9 3 3 6

i 13 7 15 10 4 12

j 16 2 11 13 2 9

l 4 2 3 1 1 2

m 2 2 3 1 1 1

Journal of Database Management
Volume 34 • Issue 1

21

Analysis of Results
The time complexity of the EECCO algorithm is O(n), and the actual data collected on the site of a
blower is taken as the analysis target. Compared with the traditional centralized traversal method, the
EECCO algorithm has a good advantage. Figure 10 shows the impact of an increase in the number
of edge servers on the computation time overhead.

According to Equation 13, the DAG task segmentation graph’s subgraph has a degree of {5,3,1}.
In the edge-edge collaboration mode, edge tasks are allocated to 5 processors and terminal tasks to
1 processor. After the task set is unloaded by the EECCO algorithm, the corresponding relationship
between the task and the processor is shown in Figure 12. Figure 11(b) shows that the same task set
uses a naive CPOP algorithm as a computational offload strategy. Figure 12(a) and 12(b) respectively
represent the offloading of tasks by LoPRTC and GT-GAOA algorithms for the same task set. As
shown in Figure 11, the average task execution time of the EECCO algorithm is 42s, and that of the
simple CPP algorithm is 57s. At the same time, it can be seen that the EECCO algorithm can reduce
the number of processors when the task execution time is reduced. In Figure 11(a), the number of
processors used at the edge is 6. In Figure 11(b), the number of edge processors used is 3.As can be
seen from Figure 12, the average task execution time of the LoPRTC algorithm is 53s, and that of the
GT-GAOA algorithm is 48s.In Figure 12(a), the number of edge end processors used is 6; In Figure
12(b), the number of edge processors used is 4.

Figure 9.
DAG segmentation diagram using edge-edge collaboration mode

Journal of Database Management
Volume 34 • Issue 1

22

System processor utilization is an essential indicator of real-time system performance, representing
the system’s time characteristics and task status (Wu et al., 2022). Table 3 shows the average utilization
rate of processor resources of the three algorithms. It can be seen from the figure that the EECCO
algorithm has the highest average utilization rate of processors, which can give full play to the internal
resources of the processor.

The three algorithms were used to schedule 10 DAG task graphs, respectively. Table 4 shows
the comparison of three algorithms’ Slack values in the case of 3-core processors. Three algorithms
were adopted to schedule DAG tasks, and scheduling was carried out for the different number of
DAG task models. The span Makespan values, average waiting time AWT and average Slack values
of all tasks were obtained, as shown in Figure 13(a),13(b), and 13(c).

Figure 10.
The impact of the increase in the number of edge servers on computing time overhead

Figure 11.
The impact of different network environments on the CECTS algorithm

Journal of Database Management
Volume 34 • Issue 1

23

According to the experimental data, both will increase correspondingly with the DAG number
increase in terms of the span of task offloading and average Slack. In general, the EECCO algorithm’s
performance is the best, followed by the LoPRTC and GT-GAOA algorithm, and the CPOP algorithm’s
performance is the worst. The EECCO algorithm reduces task offloading span by 26.6% on average
compared with the CPOP algorithm from the experimental data. EECCO algorithm is 21.4% lower
than the LoPRTC algorithm on average. Compared with GT-GAOA, the EECCO algorithm reduces
by 10.91% on average. In terms of average Slack, the EECCO algorithm is 23.5% lower than the

Figure 12.
Computational offload diagram of LoPTRC and GT-GAOA Algorithms

Table 3.
The average utilization of processor resources of the three algorithms

Algorithms Average processor utilization at the edge (%)

EECCO 67.3

CPOP 35.7

LoPRTC 36.5

GT-GAOA 36.3

Figure 13.
Comparison of average waiting time, Makespan, and average Slack value of the four algorithms

Journal of Database Management
Volume 34 • Issue 1

24

CPOP algorithm. EECCO algorithm is 11.13% lower than the LOPRTC algorithm on average. The
EECCO algorithm reduces by 10.90% on average compared with the GT-GAOA algorithm. The
average waiting time of the EECCO algorithm is reduced by 58.9% compared with that of the CPOP
algorithm. EECCO algorithm is 57.1% lower than the LoPRTC algorithm on average. EECCO
algorithm is 65.7% lower than the GT-GAOA algorithm on average.

The offloading algorithm’s fairness indicates the reliability of multiple DAG task offloading
algorithms and is an important indicator that reflects whether the algorithm can reasonably handle
tasks with different priority levels. Figure 14 shows the degree of fairness of the EECCO, CPOP,
LoPRTC, and GT-GAOA algorithms.

The EECCO algorithm is superior to CPOP and GT-GAOA algorithm in terms of average task
waiting time and average Slack value through the above experimental analysis. Simultaneously, in
terms of algorithm fairness, the EECCO algorithm has high fairness and maintains an excellent
steady-state with the increase of DAG number.

DISCUSSION

With the continuous development of network information technology, the new industrial model led
by smart manufacturing has started to be widely used. The existing computing offloading methods
tend to lead to congestion caused by heavy load on an edge server. Meanwhile, the existing studies
assume that each task is independent of each other, without considering the possible dependency
between tasks. As a result, a large amount of idle computing time is not fully utilized on the computing
nodes, which wastes the computing resources of the nodes and increases the task execution delay. In
this paper, a computation offloading method for large-scale factory access in edge-edge collaboration
mode is given for cloud manufacturing scenarios. The computation offloading problem in complex
scenarios is solved by three steps, task graph partitioning, synchronization, and processor scheduling.
Simulation results show that the EECCO algorithm proposed in this paper can reduce the time
overhead of processing complex tasks compared to other offloading algorithms and enable an edge-
edge collaborative approach to offload tasks to the appropriate processor in an overall increase
in the speed of task processing. Associated tasks can be processed more efficiently in the case of
resource-constrained large-scale edge-side servers. It solves the problem of difficult unloading due
to the difference of actual scenarios and the high response delay caused by the increase of terminal
industrial equipment.

Table 4.
Slack value of CECTS, CPOP, LoPRTC, GT-GAOA algorithm

DAG EECCO CPOP LoPRTC GT-GAOA

1 1.42 1.92 1.62 1.67

2 2.69 3.45 2.98 3.11

3 3.77 6.03 4.99 5.49

4 5.23 7.23 6.22 6.20

5 6.60 9.65 8.03 8.34

6 8.41 11.80 9.67 10.24

7 10.09 13.88 11.51 12.01

8 11.19 15.27 12.79 13.50

9 12.29 17.19 14.79 15.38

10 14.27 18.76 15.95 16.33

Journal of Database Management
Volume 34 • Issue 1

25

CONCLUSION

China has now become an industrial power. Most of the methods used in manufacturing workshops
are to provide dedicated production lines or rigid assembly lines. This solidified production method
can cope with a certain amount of production, but in the face of large-scale production. For the
production demand of the manufacturing workshop, the traditional production method is far from
enough. Therefore, the method of computing offloading of large-scale factory access in the edge-
edge collaborative mode in this paper is based on the fact that the demand of the manufacturing
factory is greater than the actual production volume. For the manufacturing industry of large-scale
manufacturing production mode, the problem of resource layout and allocation is indispensable. In
order to solve the problem of collaborative operation between edge servers deployed in large-scale
manufacturing workshops, a side-by-side collaborative computing architecture is proposed. The task
scheduling method of large-scale factory access realizes the effective allocation of resources. In fact,
the machine tools and equipment seen in ordinary workshops work in a discrete form, but in order to
combine the needs of the task, this simple configuration cannot be realized. The EECCO algorithm
divides the equipment and equipment into more levels. It has realized multi-level resource allocation,
and changed the discrete working state into a multi-dynamic process working state. At present, many
large-scale manufacturing workshops have an increasing demand for production flexibility, which
is basically through the production process. Various methods to increase the flexibility of mass
manufacturing production, such as the cluster layout of traditional manufacturing workshops, etc.
Considering the existence of specific requirements, unexpected events during equipment operation,
and the impact of unknown users on the system, the next step will be to improve and refine the

Figure 14.
The degree of fairness of EECCO, CPOP, LoPRTC, and GT-GAOA algorithms

Journal of Database Management
Volume 34 • Issue 1

26

requirements analysis model, evaluate the effectiveness of the scheme in this paper after obtaining
actual data, and further improve the performance of the algorithm. In the future, the task offloading
scheme for multi-intelligence collaborative operation will be studied in depth to complement the work
in this paper. At the same time, the next stage can start to carry out the technical landing, to realize
the computing unloading platform. At present, due to the limitations of hardware and software and
other factors, it is difficult to achieve the implementation of technology.

ACKNOwLEDGMENT

This work was supported in part by the National Key Research and Development Program of China,
under Grant 2019YFB2102002; in part by the National Natural Science Foundation of China, under
Grant 62176122, 61871432, 62001217; in part by A3 Foresight Program of NSFC, under Grant No.
62061146002; the Natural Science Foundation of Hunan Province, grant numbers 2020JJ4275 and
2021JJ50049.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

Journal of Database Management
Volume 34 • Issue 1

27

REFERENCES

Azhar, M. W., Pericas, M., & Stenström, P. (2022). Task-RM: A resource manager for energy reduction in task-
parallel applications under quality of service constraints. [TACO]. ACM Transactions on Architecture and Code
Optimization, 19(1), 1–26. doi:10.1145/3494537

Bobda, C., Mbongue, J. M., Chow, P., Ewais, M., Tarafdar, N., Vega, J. C., Eguro, K., Koch, D., Handagala, S.,
Leeser, M., Herbordt, M., Shahzad, H., Hofste, P., Ringlein, B., Szefer, J., Sanaullah, A., & Tessier, R. (2022).
The future of FPGA acceleration in datacenters and the cloud. [TRETS]. ACM Transactions on Reconfigurable
Technology and Systems, 15(3), 1–42. doi:10.1145/3506713

Cai, J., Fu, H., & Liu, Y. (2022). Deep reinforcement learning‐based multitask hybrid computing offloading
for multiaccess edge computing. International Journal of Intelligent Systems, 24(11), 6222–6243. doi:10.1002/
int.22841

Cha, N., Wu, C., Yoshinaga, T., Ji, Y., & Yau, K.-L. A. (2021). Virtual edge: Exploring computation offloading in
collaborative vehicular edge computing. IEEE Access: Practical Innovations, Open Solutions, 9, 37739–37751.
doi:10.1109/ACCESS.2021.3063246

Chen, H., Deng, S., Zhu, H., Zhao, H., Jiang, R., Dustdar, S., & Zomaya, A. Y. (2022). Mobility-Aware Offloading
and Resource Allocation for Distributed Services Collaboration. IEEE Transactions on Parallel and Distributed
Systems, 33(10), 2428–2443. doi:10.1109/TPDS.2022.3142314

Cornebize, T., & Legrand, A. (2022). Simulation-based optimization and sensibility analysis of MPI applications:
Variability matters. Journal of Parallel and Distributed Computing, 166, 111–125. doi:10.1016/j.jpdc.2022.04.002

Darwish, R. (2022). A congestion-aware decision-driven architecture for information-centric Internet-of-Things
applications. International Journal of Computers and Applications, 44(4), 324–337. doi:10.1080/120621
2X.2020.1738088

Guo, H., Liu, J., Zhang, J., Sun, W., & Kato, N. (2018). Mobile-edge computation offloading for ultradense IoT
networks. IEEE Internet of Things Journal, 5(6), 4977–4988. doi:10.1109/JIOT.2018.2838584

Hussain, A., Manikanthan, S., Padmapriya, T., & Nagalingam, M. (2020). Genetic algorithm based adaptive
offloading for improving IoT device communication efficiency. Wireless Networks, 26(4), 2329–2338.
doi:10.1007/s11276-019-02121-4

Hussein, M. K., & Mousa, M. H. (2020). Efficient task offloading for IoT-based applications in fog computing
using ant colony optimization. IEEE Access: Practical Innovations, Open Solutions, 8, 37191–37201. doi:10.1109/
ACCESS.2020.2975741

Khan, P. W., Abbas, K., Shaiba, H., Muthanna, A., Abuarqoub, A., & Khayyat, M. (2020). Energy efficient
computation offloading mechanism in multi-server mobile edge computing—An integer linear optimization
approach. Electronics (Basel), 9(6), 1010. doi:10.3390/electronics9061010

Laroui, M., Ibn‐Khedher, H., Ali Cherif, M., Moungla, H., Afifi, H., & Kamel, A. E. (2021). SO‐VMEC: Service
offloading in virtual mobile edge computing using deep reinforcement learning. Transactions on Emerging
Telecommunications Technologies, 4211.

Li, X., Huang, L., Wang, H., Bi, S., & Zhang, Y.-J. A. (2022). An Integrated Optimization-Learning Framework
for Online Combinatorial Computation Offloading in MEC Networks. IEEE Wireless Communications, 29(1),
170–177. doi:10.1109/MWC.201.2100155

Liao, Z., Peng, J., Xiong, B., & Huang, J. (2021). Adaptive offloading in mobile-edge computing for ultra-dense
cellular networks based on genetic algorithm. Journal of Cloud Computing, 10(1), 1–16.

Liu, Y., Liu, C., Liu, J., Hu, Y., Li, K., & Li, K. (2022). Mobility-Aware and Code-Oriented Partitioning
Computation Offloading in Multi-Access Edge Computing. Journal of Grid Computing, 20(2), 1–15. doi:10.1007/
s10723-022-09599-x

Luo, S., Li, H., Wen, Z., Qian, B., Morgan, G., Longo, A., Rana, O., & Ranjan, R. (2021). Deep Learning
and Blockchain with Edge Computing for 5G-Enabled Drone Identification and Flight Mode Detection. IEEE
Network, 35(1), 124–129. doi:10.1109/MNET.011.2000222

http://dx.doi.org/10.1145/3494537
http://dx.doi.org/10.1145/3506713
http://dx.doi.org/10.1002/int.22841
http://dx.doi.org/10.1002/int.22841
http://dx.doi.org/10.1109/ACCESS.2021.3063246
http://dx.doi.org/10.1109/TPDS.2022.3142314
http://dx.doi.org/10.1016/j.jpdc.2022.04.002
http://dx.doi.org/10.1080/1206212X.2020.1738088
http://dx.doi.org/10.1080/1206212X.2020.1738088
http://dx.doi.org/10.1109/JIOT.2018.2838584
http://dx.doi.org/10.1007/s11276-019-02121-4
http://dx.doi.org/10.1109/ACCESS.2020.2975741
http://dx.doi.org/10.1109/ACCESS.2020.2975741
http://dx.doi.org/10.3390/electronics9061010
http://dx.doi.org/10.1109/MWC.201.2100155
http://dx.doi.org/10.1007/s10723-022-09599-x
http://dx.doi.org/10.1007/s10723-022-09599-x
http://dx.doi.org/10.1109/MNET.011.2000222

Journal of Database Management
Volume 34 • Issue 1

28

Mahdi, H. F., Alwan, M. H., Al-bander, B., & Sameen, A. Z. (2022). A Comparision of Node Detection
Algorithms Over Wireless Sensor Network. International Journal of Interactive Mobile Technologies, 16(7),
38–53. doi:10.3991/ijim.v16i07.24609

Martinelli, N. (2018). Getting to know StarlingX: The high-performance edge cloud software stack. SuperUser.
https://superuser.openstack.org/articles/starlingx-overview/

Materwala, H., Ismail, L., Shubair, R. M., & Buyya, R. (2022). Energy-SLA-aware genetic algorithm for edge–
cloud integrated computation offloading in vehicular networks. Future Generation Computer Systems, 135,
205–222. doi:10.1016/j.future.2022.04.009

Mekala, M., Dhiman, G., Srivastava, G., Nain, Z., Zhang, H., Viriyasitavat, W., & Varma, G. (2022). A DRL-
Based Service Offloading Approach Using DAG for Edge Computational Orchestration. IEEE Transactions on
Computational Social Systems, 1–9. doi:10.1109/TCSS.2022.3161627

Mendes, F., Tomás, P., & Roma, N. (2022). Decoupling GPGPU voltage-frequency scaling for deep-learning
applications. Journal of Parallel and Distributed Computing, 165, 32–51. doi:10.1016/j.jpdc.2022.03.004

Mustafa, E., Shuja, J., Jehangiri, A. I., Din, S., Rehman, F., Mustafa, S., Maqsood, T., & Khan, A. N. (2022).
Joint wireless power transfer and task offloading in mobile edge computing: A survey. Cluster Computing, 25(4),
2429–2448. doi:10.1007/s10586-021-03376-3

Sheikh Sofla, M., Haghi Kashani, M., Mahdipour, E., & Faghih Mirzaee, R. (2022). Towards effective offloading
mechanisms in fog computing. Multimedia Tools and Applications, 81(2), 1997–2042. doi:10.1007/s11042-
021-11423-9 PMID:34690529

Sun, Y., Wang, H., & Zhang, C. (2022). Balanced Computing Offloading for Selfish IoT Devices in Fog Computing.
IEEE Access: Practical Innovations, Open Solutions, 10, 30890–30898. doi:10.1109/ACCESS.2022.3160198

Topcuoglu, H., Hariri, S., & Wu, M.-Y. (2002). Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3), 260–274.
doi:10.1109/71.993206

Wang, M., & Leelapatra, W. (2022). A Review of Object Detection Based on Convolutional Neural Networks
and Deep Learning. [ISJET]. International Scientific Journal Of Engineering And Technology, 6(1), 1–7.

Wang, Q., Gao, A., & Hu, Y. (2021). Joint power and QoE optimization scheme for multi-UAV assisted offloading
in mobile computing. IEEE Access: Practical Innovations, Open Solutions, 9, 21206–21217. doi:10.1109/
ACCESS.2021.3055335

Wu, M., Chen, Q., & Wang, J. (2022). Toward low CPU usage and efficient DPDK communication in a cluster.
The Journal of Supercomputing, 78(2), 1852–1884. doi:10.1007/s11227-021-03942-x

Xu, D., & Zhu, H. (2022). Legitimate Surveillance of Suspicious Computation Offloading in Mobile
Edge Computing Networks. IEEE Transactions on Communications, 70(4), 2648–2662. doi:10.1109/
TCOMM.2022.3151767

Xu, F., Qin, Z., Ning, L., & Zhang, Z. (2022). Research on computing offloading strategy based on Genetic
Ant Colony fusion algorithm. Simulation Modelling Practice and Theory, 118, 102523. doi:10.1016/j.
simpat.2022.102523

Xu, J., Li, X., Liu, X., Zhang, C., Fan, L., Gong, L., & Li, J. (2019). Mobility-aware workflow offloading and
scheduling strategy for mobile edge computing. International Conference on Algorithms and Architectures for
Parallel Processing, Yang, L., Zhong, C., Yang, Q., Zou, W., & Fathalla, A. (2020). Task offloading for directed
acyclic graph applications based on edge computing in Industrial Internet. Information Sciences, 540, 51–68.

Yang, S., & Deyu, Q. (2017). Study on static task scheduling based on heterogeneous multi-core processor. 2017
International Conference on Computer Network, Electronic and Automation (ICCNEA). IEEE.

Yuan, Y., Yi, C., Chen, B., Shi, Y., & Cai, J. (2022). A Computation Offloading Game for Jointly Managing
Local Pre-Processing Time-Length and Priority Selection in Edge Computing. IEEE Transactions on Vehicular
Technology. IEEE.

http://dx.doi.org/10.3991/ijim.v16i07.24609
https://superuser.openstack.org/articles/starlingx-overview/
http://dx.doi.org/10.1016/j.future.2022.04.009
http://dx.doi.org/10.1109/TCSS.2022.3161627
http://dx.doi.org/10.1016/j.jpdc.2022.03.004
http://dx.doi.org/10.1007/s10586-021-03376-3
http://dx.doi.org/10.1007/s11042-021-11423-9
http://dx.doi.org/10.1007/s11042-021-11423-9
http://www.ncbi.nlm.nih.gov/pubmed/34690529
http://dx.doi.org/10.1109/ACCESS.2022.3160198
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/ACCESS.2021.3055335
http://dx.doi.org/10.1109/ACCESS.2021.3055335
http://dx.doi.org/10.1007/s11227-021-03942-x
http://dx.doi.org/10.1109/TCOMM.2022.3151767
http://dx.doi.org/10.1109/TCOMM.2022.3151767
http://dx.doi.org/10.1016/j.simpat.2022.102523
http://dx.doi.org/10.1016/j.simpat.2022.102523

Journal of Database Management
Volume 34 • Issue 1

29

Zhang, D., Cao, L., Zhu, H., Zhang, T., Du, J., & Jiang, K. (2022). Task offloading method of edge computing in
internet of vehicles based on deep reinforcement learning. Cluster Computing, 25(2), 1175–1187. doi:10.1007/
s10586-021-03532-9

Zhang, K., Gui, X., Ren, D., Du, T., & He, X. (2022). Optimal pricing-based computation offloading and
resource allocation for blockchain-enabled beyond 5G networks. Computer Networks, 203, 108674. doi:10.1016/j.
comnet.2021.108674

Zhang, Z., Li, C., Peng, S., & Pei, X. (2021). A new task offloading algorithm in edge computing. EURASIP
Journal on Wireless Communications and Networking, 2021(1), 1–21. doi:10.1186/s13638-021-01895-6

Zhu, D., Liu, H., Li, T., Sun, J., Liang, J., Zhang, H., Geng, L., & Liu, Y. (2021). Deep reinforcement learning-
based task offloading in satellite-terrestrial edge computing networks. 2021 IEEE Wireless Communications
and Networking Conference (WCNC), Zhu, T., Shi, T., Li, J., Cai, Z., & Zhou, X. (2018). Task scheduling in
deadline-aware mobile edge computing systems. IEEE Internet of Things Journal, 6(3), 4854–4866. doi:10.1109/
JIOT.2018.2874954

Junfeng Man, works in the School of Computer Science, Hunan First Normal University, Executive member of
CCF Computer Application Special Committee, executive director of Hunan Computer Society, evaluation expert
of national key R&D projects, vice president of Zhuzhou Big Data and Artificial Intelligence Industry Association,
and young backbone teacher in Hunan Province. The main research directions are industrial big data, industrial
Internet, and industrial software.

Longqian Zhao, PhD student at Nanjing University of Aeronautics and Astronautics, research direction is device-
edge-cloud collaborative computing.

Bowen Xu, Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University,
current research interests include networking, swarm UAV networks, IoT networks with applications.

Cheng Peng, Associate professor. He received the M.E.and the Ph.D. degree in the School of Information Science
and Engineering, Central South University, Chang Sha, China. he is a post-doctor in the automation and control
major of Central South University. His current research interests include big data analysis, industrial equipment
health analysis, and software engineering.

Junjie Jiang is an undergraduate student at Hunan University of Technology, his research direction is device-edge-
cloud collaborative computing.

Yi Liu is at the Hunan University of Technology, Research interests include digital manufacturing and industrial
big data.

http://dx.doi.org/10.1007/s10586-021-03532-9
http://dx.doi.org/10.1007/s10586-021-03532-9
http://dx.doi.org/10.1016/j.comnet.2021.108674
http://dx.doi.org/10.1016/j.comnet.2021.108674
http://dx.doi.org/10.1186/s13638-021-01895-6
http://dx.doi.org/10.1109/JIOT.2018.2874954
http://dx.doi.org/10.1109/JIOT.2018.2874954

