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ABSTRACT

Large-scale manufacturing enterprises have complex business processes in their production workshops, 
and the edge-edge collaborative business model cannot adapt to the traditional computation offloading 
methods, which leads to the problem of load imbalance. For this problem, a computation offloading 
algorithm based on edge-edge collaboration mode for large-scale factory access is proposed, called the 
edge and edge collaborative computation offloading (EECCO) algorithm. First, the method partitions 
the directed acyclic graphs (DAGs) on edge server and terminal industrial equipment, then updates 
the tasks using a synchronization policy based on set theory to improve the accuracy effectively, and 
finally achieves load balancing through processor allocation. The experimental results show that the 
method shortens the processing time by improving computational resource utilization and employs 
a heterogeneous distributed system to achieve high computing performance when processing large-
scale task sets.

KEywORDS
Computing Offloading, DAG Segmentation, DAG Synchronization, Edge-Edge Collaboration, Processor 
Allocation

INTRODUCTION

Industrial cloud-edge collaboration is the trending networking paradigm involving seamless 
connectivity in heterogeneous industrial environments to aggregate distributed industrial devices 
into a shared resource pool and mobilizes these industrial devices for local manufacturing. In the 
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edge-side cloud collaborative computing in industrial environments, information flows are a dynamic 
exchange process that includes industrial device-to-network, industrial device-to-infrastructure, and 
industrial device-to-device to enable collaborative data sensing and information analysis (Cai et al., 
2022; Mustafa et al., 2022; Xu & Zhu, 2022).

The purpose of computation offloading is to obtain the best system throughput and high-
performance computing. Traditional computation offloading algorithms have limitations in the 
processing and analysis of high-dimensional and high-precision data. The minimum completion 
time algorithm, for example, significantly improves the total task completion rate, but the resources 
computed by the task scheduler and the maintenance cost of task information are high. The particle 
swarm optimization algorithm can achieve better cloud computing results, but this algorithm’s main 
disadvantage is that it does not consider the user budget. Market-driven computation offloading 
algorithms feature low cost and short response times but lack scalability and long completion time. 
Tasks in industrial scenarios have the characteristics of multiplicity, multimodality, and small batches. 
For example, in the sheet metal industry, the factory focuses on the automatic cutting, punching, 
forming, shearing, and nesting processes for sheet metal parts. Usually, there are 20 to 200 jobs 
available for scheduling the sheet metal industry’s production queue. Therefore, it is necessary to 
realize multi-site collaboration and multi-task parallel in the upstream and downstream of the work 
chain to realize the factory floor’s intelligent integrated application. In the coming decade, more and 
more factories adopting the industry 4.0 model will develop worldwide. At the same time, along 
with the current situation of increasing task types and task sizes, there is an urgent need to give a 
computation offloading method for large-scale factory access in the edge-edge collaboration mode, 
to improve the efficiency of task execution effectively, scientifically reduce the procurement funds 
of enterprises, and avoid the waste of limited resources, which is the focus of this research and the 
problem to be solved in this paper (Materwala et al., 2022; Sheikh Sofla et al., 2022; Sun et al., 2022; 
Zhang et al., 2022).

This paper presents a reliable solution for collaborative operation scenarios between edge-side 
servers and cloud-side servers deployed in large factories. This paper proposes a task scheduling 
method for large-scale factory access under cloud collaborative computing architecture by learning 
the previous research results to solve the above problems. The main contributions of this paper are 
as follows:

1.  A task division method in the edge-edge collaboration mode is proposed to solve computation 
offloading’s difficulties due to the variability in practical scenarios.

2.  A computation offloading method for large-scale factory access in edge-edge collaboration mode 
is proposed to solve high response delays caused by the increase of terminal industrial devices.

3.  The simulation results verify the feasibility of the architecture in real industrial scenarios.

The rest of this article is organized as follows. The second part is related work. The third part is 
the problem description. This part mainly introduces the typical edge-edge collaborative computing 
architecture under the current industrial scenarios and leads to the edge-edge collaboration model 
proposed in this paper. The fourth part mainly proposes a computation offloading algorithm for large-
scale factory access in edge-side collaborative mode. This algorithm can optimize the response latency 
of industrial terminal devices, achieve load balancing and improve the resource utilization of the server 
at the edge, so that it solves various problems arising from the computational offloading process and 
improve the robustness of the system through. The fifth part provides a detailed description of the 
EECCO algorithm and presents the algorithm performance by time complexity and space complexity. 
The sixth part discusses experiments and results, mainly verifying the feasibility and effectiveness of 
the EECCO algorithm and analyzing the simulation results. The last section concludes the whole paper.
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RELATED wORK

The computation offloading problems in the actual manufacturing workshop are systematic, dynamic, 
and random. The goal of such problems is to identify an approach that, at each decision stage, 
specifies how to allocate available resources among competing task requests to optimize the system’s 
performance. The computation offloading requirements in the actual manufacturing workshop are 
closely related to the complex systems in the dynamic environment, making the traditional computation 
offloading method unable to adapt to the business model under the cloud manufacturing scenarios, 
leading to the problem of load imbalance (Li et al., 2022; Liu et al., 2022).

In recent years, artificial intelligence has been widely developed in manufacturing, transportation, 
finance, medicine, and other fields. However, with machine learning and deep learning technologies 
in key application fields such as cloud manufacturing and self-driving, researchers explore advanced 
edge-edge collaboration methods to ensure real-time, precision, and high interaction efficiency. 
Khan et al. (2020) designed an optimal computation offloading algorithm based on integer linear 
optimization that allows each mobile device to dynamically select execution modes: local execution, 
offloading execution, and deletion of tasks, thus achieving significant energy improvements. Yang et 
al. (2020) designed a lightweight linear programming algorithm based on an integrated architecture 
that can effectively reduce industrial equipment’s energy consumption and cloud computing cost by 
transforming the offloading problem into an energy cost minimization problem to achieve full utilization 
of resources in edge computing. Chen et al. (2022) proposed a composite integer nonlinear programming 
algorithm, which aimed at the computational offloading problem in mobile edge computing systems, 
using convex optimization to derive the closed-form of the resource allocation solution, transforming 
it into an integer linear programming problem, Therefore, it has certain effectiveness and advantages 
in reducing delay and energy consumption. The above solution is often only suitable for solving integer 
linear programming problems, which require that all or part of the decision variables are assumed to be 
non-negative integers. However, in the practical industry, the solution is too idealistic, and the integer 
solution obtained by rounding is usually inaccurate. Because of the above algorithm’s limitations, Liao 
et al. (2021) designed a distributed offloading strategy based on a binary coded genetic algorithm that 
splits the multi-user multi-server problem into two phases, server selection and computational offloading, 
for solving the problem to obtain an adaptive offloading decision. Hussein and Mousa (2020) proposed 
a meta-heuristic computing offloading algorithm based on the ant colony algorithm and the particle 
swarm algorithm. They considered the influence of load balancing on the offloading strategy, thus 
significantly reducing the response time of Internet of Things applications and improving the service 
quality. Topcuoglu et al. (2002) presented an algorithm named Critical-Path-on-a-Processor (CPOP) 
for workflow scheduling over heterogeneous processors with the bounded number. Xu et al. (2022) 
proposed a computing offloading strategy for the gene-ant colony fusion algorithm, which makes up 
for the shortcomings of a single heuristic algorithm applied to computing offloading, improves the 
efficiency of the algorithm, and realizes the efficient use of edge-side base station resources. Due to 
the large number of parameters involved in the ant colony algorithm, the initial value is easy to be 
selected improperly. The use of a single ant colony algorithm tends to fall into local optimum and has 
low processing efficiency when dealing with large-scale combinatorial problems, followed by not 
solving continuous problems well. Most of the relevant parameters, such as pheromones, are selected 
by personal experience without sufficient theoretical basis. Due to its limitations, Cha et al. (2021) 
designed a virtual edge formation algorithm by predicting the inter-vehicle link duration to efficiently 
utilize the sporadic free computing resources around the smart vehicles. Laroui et al. (2021) proposed a 
service offloading technique in virtual mobile edge computing, which utilizes the computation offloading 
method of deep reinforcement learning to process the IoT network accessed by large-scale industrial 
equipment to obtain effective offloading decisions. Zhu et al. (2018) proposed the local-based partial 
reasonable task schedule construction (LoPRTC) to deal with a more complex multi-heterogeneous 
MEC server scenario shared by multiple mobile devices to ensure time sensitivity. However, the above 
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scheme is usually only applicable to the mobile edge calculation scene. In the complex industrial scene, 
industrial devices are more often fixedly installed in factories, and it needs to be discussed on a case-by-
case basis. Given the above algorithms’ limitations, Luo et al. (2021) proposed a new architecture that 
automatically offloads user tasks in mobile edge computing scenarios, which utilizes drones to cache data 
generated IoT devices dynamically and enables flexibility in computation offloading using blockchain 
technology. Wang et al. (2021) proposed a joint UAV-based heuristic power and quality-of-experience 
algorithm that jointly optimizes the UAV offload delay, transmit power, and UAV layout, thus ensuring 
the quality of experience for different priorities endpoints. Guo et al. (2018) proposed a game-theoretic 
greedy approximation offloading algorithm (GT-GAOA) to ensure better service quality and quality of 
experience and other diverse requirements in multi-user ultra-dense edge server scenarios. Zhang et al. 
(2022) proposed a dual auction-based common task offloading scheme and a Stackelberg game-based 
mining task offloading scheme to cope with the high computational overhead of the blockchain mining 
process, thereby achieving efficient resource allocation. However, the above scheme only considers how 
mobile IoT devices’ tasks in industrial scenarios are offloaded to the edge-side servers, and there is no 
reasonable classification of computation offloading strategies within the edge-side server clusters. For 
the above algorithms’ limitations, Zhu et al. (2021) proposed a computational offloading algorithm 
based on deep reinforcement learning to accelerate the learning process by adjusting the number of 
candidate positions, which utilizes minimizing the offloading cost to achieve faster convergence and 
dynamic adjustment during the learning process, thus significantly reducing the running time. Zhang 
et al. (2021) proposed a distributed task-loading algorithm based on multiple intelligences and load 
balancing, which aims to effectively reduce the response latency of all users and improve the robustness 
and scalability of the system by introducing load balancing coefficients. Mekala et al. (2022) proposed 
a two-step service offloading method based on deep reinforcement learning to reduce the cost of edge 
servers through a DRL-influenced resource and ensemble analysis model, thereby achieving high resource 
utilization and low energy consumption. However, as another important machine learning method, deep 
reinforcement learning emphasizes how to take corresponding actions based on the environment to 
maximize the expected benefits. In this mode, the input sample data feeds back to the model, but does 
not directly give correct conclusions like other methods. The feedback of deep reinforcement learning 
only detects the model, and the model will gradually make adjustments after receiving stimuli similar 
to rewards or punishments. Due to inefficient data sampling, complicated reward function design, 
difficulty reproducing operational results, and unavoidable local optima.

The EECCO algorithm used in this paper can effectively divide the DAG by calculating the task 
priority, calculation offload tolerance and DAG critical path in the edge-edge cooperative mode. 
This step can improve the processing of large-scale combination problems in complex industrial 
scenarios. Efficiency makes up for the lack of theoretical basis for the selection of pheromone by 
Liao, Hussein and others, and cannot solve the continuous problem well. It also solves the problem 
that Wang et al. did not reasonably classify the computing offloading strategy in the edge server 
cluster. Second, in the EECCO algorithm, this paper synchronizes multiple DAGs in the edge-edge 
cooperative mode. This step uses CGSC and EGSC to construct, schedule and maintain the DAG, 
thus realizing the task flow with the change of space. Dynamic execution makes up for the lack of 
flexibility in the computing offloading process by Cha, Laroui and others, which greatly improves 
the computing offloading efficiency in any complex industrial scenario. Reasonable allocation, the 
proposed IHEFT algorithm process is mainly composed of three stages: weight allocation stage, task 
priority allocation stage, and processor selection. Through the EECCO algorithm, the efficiency of 
task execution is effectively improved, and the capital cost of the enterprise is greatly reduced.

PROMBLEM DESCRIPTION

With the rapid development of industrial intelligence technology and the explosive growth of IoT 
terminal data, the analysis and processing of massive data increase industrial cloud platforms’ 
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operational burden. The emergence of edge-cloud collaborative computing makes full use of all 
computing resources on the entire link, bringing into play the advantages of different devices and 
providing strong technical support for the popularization and development of intelligent manufacturing.

DAG Task Description
According to the industrial IoT environment requirements, the edge-cloud collaboration mainly consists 
of the cloud component composed of the remote server cluster, the edge component composed of the 
edge server cluster, and the terminal component composed of the terminal cluster. Figure 1 depicts the 
working schematic under the edge-cloud collaboration computing architecture. In terms of specific 
operations, the cloud component is responsible for processing non-real-time, long-period data and 
completes the full lifecycle management of edge-side and end-side applications. The edge-side 
components significantly reduce the data transmission delay and meet the real-time data requirements 
of low-latency services. The terminal device is mainly responsible for data collection and real-time 
control of industrial equipment. The “End-Edge-Cloud” collaborative computing provides greater 
possibilities for precise decision-making and dynamic optimization of the industrial Internet.

It is assumed that there are n factories in which k k k
n1 2

, , ,¼  DAG tasks are run on the deployed 
terminal devices and q q q

n1 2
, ,...,  DAG tasks are run on the edge server, respectively, and they cooperate 

with DAG tasks running on the cloud server to form the end-to-side cloud collaborative computing 
architecture. When the i th factory collaborates with the cloud server, the number of tasks in the cloud 
server cluster is a a a

1 2
, ,...,

p
 ; The number of tasks in the edge server cluster is b b b

1 2
i i
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g .  Using the edge-cloud collaborative 

computing model, a task cannot be interrupted when it is not scheduled, and the task cannot be split 
into several smaller tasks. Figure 2 depicts a multi-DAG task graph in a cloud-side collaborative 
computing mode. There are p DAG task graphs in cloud components, and q q q

n1 2
, ,...,  task graphs 

in edge-end components, which run in n edge servers deployed in factories.
For simplicity, Figure 3 depicts three DAG task diagrams under the cloud-side collaborative 

computing architecture. DAG1 under the cloud component includes three tasks, and DAG2 under the 
edge component includes five tasks. DAG3 includes 2 tasks, and 3 DAG task graphs include a total of 
10 tasks. The circle represents the task node, the background color of the node in the cloud component, 

Figure 1. 
Schematic diagram of the working process under the end-side cloud collaborative computing architecture
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the edge part, and the terminal part are filled with green, white, and yellow respectively, the letter in 
the circle represents the number of the task node, and the task node number in the cloud part and the 
edge part is respectively used Uppercase and lowercase letters, node numbers are not case-sensitive, 
for example, the letter a in the circle represents task node t t t

a a A
, = . The solid edge with an arrow 

indicates the event edge, and the number on edge indicates the event calculation overhead between the 
two tasks; The number on the side represents the communication delay between the two tasks. Each 
DAG includes 1 entry task node and 1 exit task node. Considering the communication delay of different 
tasks, for example, the communication delay of cloud computing is about 100ms. The communication 
delay of small data centers is about 10~40ms, the communication delay of routers is about 5ms, and the 
communication delay between terminal devices is about 5ms. It is about 1~2ms (Martinelli, 2018). We 
use the time instruction to obtain the event calculation overhead between the two tasks.

Resources and Environment
Compute offloading can efficiently compute resources and speed up computation for resource-
constrained end devices or single edge-side servers running compute-intensive applications. The 
offloading algorithm is to find a set of offloading schemes that allow the application’s processing 
speed to be efficiently increased based on the task’s deadlines and resource requirements. Figure 
4 shows the edge-side collaboration model’s organization diagram, which consists of a cloud 
component, an edge-side component, and an endpoint component. The cloud component and the 
edge component mainly consist of multiple performance heterogeneous physical machines, and 
each physical machine is virtualized with multiple virtual machines. Assuming that there are 
P P P

m1 2
, ,...,  physical machine nodes, each physical machine is composed of p p p

k1 2
, ,...,  virtual 

machines with heterogeneous performance and the physical machines are interconnected through 

Figure 2. 
End-side cloud collaborative computing architecture
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a network. On each physical machine, task execution and communication can be executed at the 
same time, the communication overhead between tasks allocated to virtual machines is 0, and task 
execution is non-preemptive.

Computing Offloading Target
DAG computation offloading is to offload the tasks in a single edge server or offload the terminal 
device calculations to the processor in the edge server for execution in the edge-side collaboration 
mode. The goal of computation offloading includes the following aspects:

1.  The execution time of the entire task set on the processor makespan as small as possible;
2.  Design a flat uninstall strategy for the edge server, instead of unified management through the 

cloud server;

3.  The value AWT
ST AT

n
j

n

j j
=

−( )
=∑ 1  of all tasks in the entire task set from the arrival time 

AT
i
 to the start execution time ST

i
 should be as small as possible;

4.  Slack is a measure of a computation offloading algorithm’s robustness, reflecting the degree of 
uncertainty in the processing time of a task generated by a computation offloading algorithm (Yuan 
et al., 2022). The definition of Slack is shown in Equation 1. Where M represents the span of the DAG 
makespan, n represents the number of tasks, b

level
 represents the length of the longest path from task 

t
i
 to the exit, and t

level
 represents the length of the longest path from the entry node to the task t

i
.

Slack
M b t t t

n

t T level i level i
i=

− ( )− ( )





∈∑
 (1)

Figure 3. 
Three DAG task diagrams under the end-side cloud collaborative computing architecture
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5.  Unfairness (S) is an important indicator used to measure the unfairness of the multi-DAG 
scheduling algorithm S (Mahdi et al., 2022). Unfairness(S) is defined as shown in Formula 2, 
where A is the set of a given multi-DAG, AvgSlowdown is the average of all Slowdown, and 
S l ow d ow n  r e f l e c t s  t h e  d e g r e e  o f  hys t e r e s i s  o f  t h e  DAG ,  d e f i n e d  a s 
Slowdown a M a M a

multi own( ) = ( ) ( )/ .

Unfairness S Slowdown a Avgslowdown
a A

( ) = ( )−
∀ ∈
∑  (2)

EDGw-EDGE COLLABORATIVE COMPUTATION OFFLOADING MODEL

In practical industrial application scenarios, tasks mainly consist of the static class known tasks and 
dynamic class unknown tasks. The priority of the static class of known tasks is determined at design 
time. Its priority varies with the dynamic class of unknown tasks. The tasks in this class satisfy the 
resource and latency requirements, i.e., the tasks can be successfully offloaded. The priority of the 
dynamic class of unknown tasks is determined during the runtime and changes continuously. There 
is some risk in the computational offloading strategy for this class of tasks. Both known tasks with 
static classes and unknown tasks with dynamic classes need to design corresponding computing 
offloading strategies to ensure efficient execution of tasks and full utilization of resources. Figure 5 
shows the computing offload architecture in the edge-edge collaboration mode:

As can be seen from Figure 5, the edge-edge collaboration mode includes three central bodies: 
cloud component, edge component, and terminal component. The cloud component is mainly 
responsible for updating and synchronizing information states, such as computing offloading 
and task execution. The edge end components mainly include internal computing offloading and 
inter-computing offloading. The efficient utilization of resources can be achieved by coordinating 

Figure 4. 
The organizational chart of the edge-edge collaboration model
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offloading strategies. Terminal components are classified according to industrial equipment’s position 
state, including static calculation offloading of fixed position and dynamic calculation offloading of 
variable position. The three central bodies assume different functions based on different geographical 
spaces and roles of different devices and jointly promote the development of artificial intelligence.

DAG Segmentation in Edge-Edge Collaboration Mode
Currently, heterogeneous computing systems play an increasingly important role in dealing with 
complex industrial production problems. Heterogeneous computer clusters support the execution of 
parallel applications to achieve the goal of completing tasks quickly. The Improved Critical Path on a 
Processor (ICPOP) algorithm proposed in this paper comprises three stages: computing task priority, 
computing offload tolerance, and computing DAG critical path.

Task Priority
The computation offloading strategy in the edge-edge collaboration mode includes task offloading 
in edge components and task offloading in terminal components. Assume that an edge component δ 
is composed of m edge servers, and each edge server virtualizes k virtual machines. Each virtual 
machine runs τ DAGEdge , and each DAGEdge  is composed of φ edge tasks. The end task will interact 
with ¢t  and DAGTerminal  in the terminal part, and the adjacency matrix M corresponding to the DAG 
in the edge end part and the terminal part is shown in Formula 3:

M i j

if i j

weight i j if i j and i j
Edge

Terminal , , ,


 =

=

( ) ≠ ( ) ∈
0 �

� � � EE

if i j and i j E¥ � � �≠ ( ) ∉








 ,

 (3)

Figure 5. 
Computing offload architecture in the edge-side collaboration mode
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From the adjacency matrix M, the sum of the weight values of the incoming edges of each task 
node v

i
 can be calculated and inserted into the set S, as shown in Formula 4:

S S M v
Edge

Terminal

Edge

Terminal

i

Edge

Terminal
i

= ∪ ( )








∑


 (4)

In the industrial application scenario, due to the particularity of the industrial equipment itself, 
taking the aircraft as an example, there are many gears, bearings, blades, and other key mechanical 
components in the aircraft’s powertrain. The parameter rights are obtained by analyzing the collected 
data through machine learning. Value W, so that each type of task’s importance can be determined in 
advance (Wang & Leelapatra, 2022). Assume that each virtual machine may have operational failures 
and thus cannot complete the task. Assuming that these failures occur independently with probability 
p, Formula 5 indicates that the benefits of task processing are maximized:

maximizes t p

subject to h

i

Edge

Terminal

i
i

h

i

h

i

i�

� �

π
ϕ

= −( )

≤

=

=

∑

∑
1

1

1

ϕϕ� �and h
i
≥ 0

 (5)

Combining Formula 3 and Formula 4, the priority P
i
 of each task node v

i
 of the DAG in the 

edge end part and the terminal part is given, as shown in Formula 6:

P
w

W
S

i

Edge

Terminal
i i

=
∑
× ×p  (6)

w represents the weight of each parameter. It can be seen from Formula 6 that when the value of 
P
i
Edge Terminal/  is larger, the task node needs to be allocated more computing resources in time, thereby 

increasing the speed of task processing.

Task Offload Tolerance
Before performing task uninstallation, it is necessary to evaluate the currently available resources 
fully, the uninstall task’s size, and the energy consumed by executing local applications. Assuming 
that the communication delay between edge components is q

1
; the communication delay between 

edge servers in the edge component is q
2

; the communication delay between virtual machines in the 
edge server is q

3
; the communication delays of the edge component and the terminal component is 

q
4
. For the static known task set t

i
Edge Terminal/ , the task set running time in a virtual machine is time

i
Edge , 

and the static known task set t
i
Edge  in the edge, component is separately stored in the same edge server 

by means of task offloading. Run in other virtual machines, the time is time i
i
Edge' , , ,= …{ }1 j , and 

run in the virtual machines in other edge servers, and the time is time i k
i
Edge'' , , ,= …{ }1 ; The task 

set runs in a terminal for time
i
Terminal , and the static known task set t

i
Terminal  in the terminal component 

is run on the virtual machine in the edge server by task off loading, and its time is 
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time i k m
i
Terminal' , , ,= … × ×{ }′1 j . Then the internal task offload tolerance o of the known static 

tasks in the edge end parts and the terminal parts are shown in Formula 7 and 8:

o

same server time time i k

oEdge

i j
Edge

=

{ }− < = …{ }� �Edge’,max , , ,q
3

1

tther server time time i k
i j

Edge� � �Edge’’, max , , ,{ }− < + = …{ }q q
2 3

1

0 ,, �others











 (7)

o
Edge server time timeTerminal i j

Terminal

= { }− <� �Terminal’,max q
44

1

0

, , ,

,

i k

others

= …{ }






 (8)

The same server refers to the edge task set t
i
Edge  can only uninstall tasks on virtual machines in 

the same edge server, and the other server refers to the edge task set t
i
Edge  that can be other parts of 

the same edge. Uninstall tasks in the edge server. Edge server refers to the terminal task set t
i
Terminal  

that can uninstall tasks to the virtual machine in the edge component for execution, and 0 means that 
the task set is recommended to be executed locally. For the dynamic unknown task t

i
' , where the size 

of the input data of the task set is s, the average unit processing time of the data is c, and num is the 
number of tasks in the task set, then the internal task offloading tolerance of the dynamic unknown 
task is ¢o  As shown in Formula 9 and 10:

o

same server
s c

num
time i k

other serEdge

j
Edge

′ =

×
− < = …{ }� �

�

, , , ,q
3

1

vver
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time i k

others

j
Edge, , , ,

,
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�

×
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2 3
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time i kTerminal j
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×
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 (10)

In smart manufacturing production scenarios, industrial equipment is required to have the ability 
to self-organize and collaborate to meet flexible production. However, it also puts forward higher 
requirements for the flexible mobility and differentiated business processing capabilities of industrial 
equipment. Suppose that the residence time of a mobile device in a factory near the edge part is J , 
and its pre-stay time is J

0
, and m is the amount of data calculation. Then the inter-task offloading 

tolerance ¢¢o  of the mobile device is shown in Formula 11:

′′ =
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×
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Where M1 is the size of the remaining resources of the edge-end component, M2 is the size of the 
remaining resources of the components adjacent to the edge-end component, T1 is the communication 
delay between the mobile device and the edge-end component, and T2 is the mobile device and the 
edge-end component. The communication delay of the adjacent components of the component, T1 
and T2, will change with the mobile device’s location.

DAG Critical Path

The earliest possible start time of a task j is represented by t j
ES ( ) , and any task can only start after 

all its predecessor tasks are completed. The earliest completion time of the task t
i
 is represented by 

t j
EF ( ) . It represents the completion time that the task can reach according to the earliest start time, 

and its calculation Formula is:

t j

t j max t k t k

t j t j t j

ES

ES k ES

EF ES

( ) =
( ) = ( )+ ( ){ }
( ) = ( )+ ( )









0



 (12)

The latest start time of a task j is represented by t j
LS ( ) , which represents the latest time that 

task j must start without affecting the completion of the entire task on schedule. The latest completion 
time of task j is represented by t j

LF ( ) , which represents the completion time that the task can start 
at the latest time and its calculation formula is:

t j max t k t k

t j t j t j
LS k LS

LF LS

( ) = ( )− ( ){ }
( ) = ( )+ ( )








 (13)

Formula 11 is a recursive process from the starting point to the endpoint; Formula 12 is a 
systematic process from the endpoint to the starting point. This paper uses Formula 11 and Formula 
12 to implement the critical path algorithm to find the critical path CP cp cp cp m N

m
= …{ } ∈

1 2
, , , ,  

of the DAG merged graph. In this paper, the DAG separation graph is defined as the Critical Tasks 
Set (CTS) and the Non-Critical Tasks Set (NCTS), where the task set types are divided into edge-side 
collaborative tasks Edge-Side Tasks (EST), and the Terminal-Side Tasks (TST) is composed, and its 
definition is shown in Formula 14:

DAG CTS NCTS

CTS CTS CTS

NCTS NCTS NCTS

CTS NCTS

EST TST

EST TST

= +
= +
= +

{ , }} = + ∈ ∈









 nEST mTST n N m N, ,

 (14)

The DAG task’s critical path is the longest path from entering the task to the exit node. Each 
task on this path provides the lowest cost for all critical paths. According to Formula 11, the edge 
end part and the DAG in the end part shown in Figure 3 are segmented in this paper. Figure 6 shows 
the segmentation diagram of the DAG in the edge-side collaboration mode. The path formed by the 
red arrow is the critical path of the DAG. The degree of each subgraph is {2,0,0,1}.
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Multi-DAG Synchronization in Edge-To-Side Collaboration Mode
The edge-side collaboration mode adopted in this paper is responsible for the construction, scheduling, 
and maintenance of DAG through Cloud Global State Controller (CGSC) and Edge Global State 
Controller (EGSC). CGSC is responsible for cloud components and edge components; EGSC is 
responsible for tasks in edge components and terminal components. Figure 7 shows the multi-DAG 
synchronization method in the edge-side collaboration mode. Aiming at 5G+ industrial intelligence 
integration to broaden the application scenarios, the data-driven optimized closed loop is used as 
the key to real-time decision-making through EGSC; for the actual scenarios of high-speed mobile 
industrial production lines, through CGSC regards decision-driven optimization closed loop as the 
key to real-time data processing (Darwish, 2022).

Due to the high computational complexity of the algorithm, multiple task links, and extended 
business processes are some of the most complex problems in the industrial field. The task running 
status includes successful execution, execution blockage, and execution failure.

Since there is data interaction between the edge part and the terminal part that the EGSC is 
responsible for, its task execution state StatusEdge  is shown in Formula 15, where the set A

t
Edge  represents 

the DAG in the edge part at time t, which can be represented by A a b c
t
Edge = … …{ }, , , , , ,α β . a b c, , ,…{ }  

represents the task in the edge end part, α β, ,…{ }  represents the task that the terminal part is unloaded 
to the edge end part. A

t
Edge
+1

 represents DAG '  in the edge end component at time t+1.

Figure 6. 
DAG segmentation diagram in edge-side collaboration mode
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According to Formula 14, the task synchronization strategy ©  of the EGSC in the lower edge 
part at different times can be obtained, as shown in Formula 16:

Ω =

=

= ⊕ +

B execution succeed

B A A execution

Edge

Edge
t
Edge

t
Edge

Æ ,

,

�

1
��

�

blocking

B A execution failedEdge
t
Edge=








 ,

 (16)

Where BEdge  represents the DAG after EGSC synchronization in the edge end component at time 
t+1. Since there is data interaction between the edge components that CGSC is responsible for, its 
task synchronization strategy is shown in Formula 17, where the set ¦

i
Cloud  is expressed as the DAG 

set in the i-th edge component, which can be used as ¦
i
Cloud

t
Edge

t n
Edge

t
EdgeA A B= … …{ }+, , , , . 

A A
t
Edge

t n
Edge, ,…{ }+  represents the task execution sequence in the i-th edge end component, B

t
Edge{ }  

represents the task of offloading other edge end components to the edge end component set.

C x xCloud
i t i

Cloud= { } ∈

¥ max , ¦  (17)

Where CCloud  represents the union of the latest task completed in each edge component in CGSC. 
DAG update is realized by data collaboration between tasks in CCloud  and BEdge  of the edge end 
component so that the task flow can be dynamically executed as the space changes.

Figure 7. 
Multi-DAG synchronization method in edge-side collaboration mode
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Task Allocation in the Edge-Edge Collaboration Mode
The Improved Heterogeneous Earliest Finish Time (IHEFT) algorithm process proposed in this paper 
comprises three stages: weight distribution stage, task priority distribution stage, and processor 
selection stage. Assume that R is used to represent the collection of processor resources: 
R CPUs GPUs FPGAs= { }, , . GPUs are the most widely used accelerators, and FPGAs can provide 
better performance-to-power ratios. They are used in multiple applications, including high-performance 
computing. They deliver superior performance for a wide range of applications, including high-
performance computing (Bobda et al., 2022; Mendes et al., 2022). Use undirected graph RG T C= ( ),  
to describe the computing performance of tasks on different processors, where T represents the task 
node, C c c c n N m N

nm
= { } ∈ ∈

11 12
, ,..., , ,* *  represents the computing performance of tasks on 

different processors, where n represents the number of tasks and m represents the number of processors. 
Then the average computing performance of the task compute  is shown in Formula 18:

compute
c

m
j n

j
i

m

ji
= = …=∑ 1 1 2, , ,  (18)

In the task priority assignment stage, its primary purpose is to solve the problem of establishing 
task priority lists in multi-source heterogeneous scenarios. In actual industrial scenarios, both edge 
tasks and terminal tasks have the characteristics of multiple task types, large scales, and strong 
associations. Therefore, the original weights of the edges between tasks cannot accurately reflect the 
priority of tasks in the edge-side collaboration mode. The task graph’s priority in the edge-side 
collaboration mode needs to be determined according to the sum of the weights of the DAG merged 
graph’s critical paths. According to the priority value, the DAG in the edge-side collaboration mode 
is sorted in descending order to form a task graph list, which is convenient for calculation and 
offloading in the later stage. The priority rank D

k( ) of the task graph D
k

 in the edge-side collaboration 
mode is shown in Formula 19:

rank D cp k n
k i

m

i( ) = = …
=∑ 1

1 2, , , ,  (19)

The priority rank D
k( )  of the task graph D

k
 in the edge-edge collaboration mode is equal to 

the sum of the weights of all event edges on the graph’s critical path. In the subsequent computation 
offloading operation, the processor resources will be allocated first from the task graph with the 
higher priority in the task graph list. The corresponding path list is constructed according to the task 
graph list, and the priority rank p

k( )  of path p
k
 is shown in Formula 20:

rank p t e
k t p i i succ i

i k

( ) = +( )∈ ( )∑ ,
 (20)

Due to the high computational complexity of the algorithm, multiple task links, and extended 
business processes are some of the most complex problems in the industrial field. The task running 
status includes successful execution, execution blockage, and execution failure.

In the DAG segmentation graph in the edge-side collaboration mode, there are edge terminal 
graphs x , with a degree value of ο ξ= { }o o o

1 2
, ,..., ; there are terminal subgraphs ζ, with a degree 
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value of ο ζ= { }o o o
1 2
, ,..., . From this, the number of processors v

i
 required for the task graph 

DAG
i
 to calculate the offload execution is shown in Equation 21:
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i j
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 (21)

After the segmentation operation and the resource collection type determination, the processor 
allocation stage starts to allocate resources to the task based on the resource collection type identified 
by each segmentation (Azhar et al., 2022; Yang & Deyu, 2017). The task set after DAG segmentation 
and synchronization selects and schedules processors according to the computation offloading strategy 
in the IHEFT algorithm.

EDGE-EDGE COLLABORATIVE COMPUTATION OFFLOADING ALGORITHM

The EECCO algorithm proposed in this paper is to make full use of the edge and terminal resources 
to achieve efficient task calculation by dividing the edge DAG task set and the terminal DAG task set 
through DAG; DAG synchronization; The processor allocates three steps to achieve. Among them, 
DAG synchronization reduces the time overhead caused by processing redundant tasks.

DAG Segmentation Algorithm
Assuming that the k-th factory under the edge-side collaboration mode is adopted, where the deployed 
edge server and terminal components perform N and M tasks, respectively, then the DAG segmentation 
algorithm is shown in Algorithm 1:

The second line of the algorithm traverses the DAG in the edge part and the terminal part of 
obtaining the number of task nodes. The fourth line obtains the priority of each task node in the edge 
part and the terminal part. Lines 5-16 perform DAG in the segmentation process, tasks belonging to the 
critical path are placed in the critical task set, and tasks not belonging to the critical path are placed in 
the non-critical task set. The time complexity of running the algorithm in each factory is O(n), and the 
space complexity of the algorithm is O(1). As tasks increase, their advantages become more apparent.

DAG Synchronization Algorithm
We use set theory to synchronize the state information of the DAG segmentation graph obtained above. 
The tasks after synchronization are divided into two categories: critical task set and non-critical task 
set. The synchronization principle is shown in Algorithm 2:

The second line of the algorithm traverses each DAG segmentation graph’s task nodes and 
calculates each task’s average computing performance on the processor. Lines 3-5 calculate the 
execution status of each DAG in the edge part, and the fourth line is based on each. Each task’s 
execution status is synchronized with the corresponding strategy, and the 8th line performs a merge 
update operation for the DAG in the cloud component. The algorithm’s time complexity is O(n), and the 
space complexity of the algorithm is O(1). As tasks increase, their advantages become more obvious.

Processor Allocation Algorithm
We use the IHEFT algorithm to perform processor allocation operations on the DAG segmentation-
synchronization graph obtained above and sort the DAG task graph according to the critical path 
weight rank D

k( ) , to obtain the priority list of different tasks in the edge-side collaboration mode; 
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Algorithm 1. 
DAG segmentation algorithm

Input: DAG DAG
k
Edge

k
Terminal,

Output: CTS NCTS CTS NCTS
k
Edge

k
Edge

k
Terminal

k
Terminal, , ,

1: function Partitioning (DAG DAG
k
Edge

k
Terminal, ):

2: N, M¬ order tasks based on level
3: while N, M is not empty, do

4: P
w

W
S

i
Edge Terminal

i i
/ =

∑
× ×p

5: if it is an edge task 
6: if it is a static class known task 

7: o

sameserver time time i k

oEdge

i j
Edge

=
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10: else 
11: if it is industrial equipment in a mobile scenario 
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13: else if it is a dynamic unknown task 
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� ,max �
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Edgeserver time timeTerminal i j
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17: if t CP DAG
i

Edge Terminal∈ ( )( )/

18: add task t
i

 in CTSEdge Terminal/

19: remove task t
i

 from N or M
20: else 
21: add task t

i
 in NCTSEdge Terminal/

22: remove task t
i

 from N or M
23: end else 
24: end if 
25: end while 
26: return CTS NCTS CTS NCTS

k
Edge

k
Edge

k
Terminal

k
Terminal, , ,

27: end function
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The tasks in each edge part are sorted by rank p
k( )  and the tasks are distributed to v  processors. 

The processor allocation algorithm is shown in Algorithm 3:
The algorithm starts the function from the first line, the second line traverses each DAG split-

synchronization graph’s task nodes and calculates each task’s average computing performance on 
the processor. The third line calculates the sum of the weights of the edges of the critical path of the 
DAG merged graph. Lines 4-8 calculate the priority of the DAG segmentation-synchronization graph 
path. Line 9 is sorted in descending order according to the priority of the task graph. The 10th line 
is sorted according to the descending order of the path priority. The 11th line assigns the task to the 
best on the processor. Line 12 returns related information such as the mapping task’s processor set, 
and line 13 ends the function. The algorithm’s time complexity is O(1), and the space complexity of 
the algorithm is O(1). With the increase of tasks, its advantages become more evident.

SIMULATION EXPERIMENT AND RESULT ANALySIS

Purpose
In order to verify the EECCO algorithm proposed in this paper, the performance of the proposed 
EECCO algorithm was compared with similar offloading algorithms Local-Based Partial Reasonable 

Algorithm 2. 
DAG synchronization algorithm

Input: CTS NCTS
k
Edge

k
Edge,

Output: CTS NCTS CEdge Edge Cloud' ', ,

1: function Partitioning(CTS NCTS
k
Edge

k
Edge, ):

2: N¬ order tasks based on level
3: while N is not empty, do 

3: A
t
Edge

CTS NCTS
k
Edge

k
Edge,  based on level

4: ¦
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i k k
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k
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7: else 
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9: end if 
10: end else 
11: end while 

12: return C CTS NCTSCloud
k
Edge

k
Edge, ,' '

13: end function
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Task Schedule Construction (LoPRTC) and Game-theoretic Greedy Approximation Offloading 
Algorithm (GT-GAOA) under the same experimental conditions (Hussain et al., 2020; Xu et al., 
2019), mainly comparing task span Makespan, task average waiting for time AWT and average 
Slack value.

Simulated Environment
Based on the simulator toolkit provided by SimGrid, a simulation environment for heterogeneous 
multi-core processors is built (Cornebize & Legrand, 2022). The computer used in the experiment 
is configured as Intel Core i5-7200U CPU @ 2.5GHz 2.7GHZ Dual-core processor, 8GB of RAM.

Analysis of Calculation and Offloading Process
The edge-edge collaboration mode is adopted. Assuming the tasks running in the edge server and 
terminal industrial equipment are shown in Figure 8, the following will analyze the segmentation, 
synchronization, and resource scheduling process of the multi-DAG task graph realized by the EECCO 
algorithm under the distributed and heterogeneous computing environment.

Figure 8 shows the DAG task diagram in the edge-edge collaboration mode. The edge server 
performs 10 tasks; Terminal industrial equipment performs 1 task. Table 1 and Table 2 respectively 
show the calculation events of tasks in DAG1 on terminal industrial equipment and DAG2 on edge 
parts on different processors, in which the unit of communication cost and execution time is s.

According to the division principle, the DAG task division diagram can be obtained according 
to Algorithm 1, as shown in Figure 9; the processor allocation principle can be obtained according 
to algorithm 3 to obtain the processor set of the mapping task, as shown in Table 4:

Algorithm 3. 
Processor allocation algorithm

Input: CTS NCTS CTS NCTS
k
Edge

k
Edge

k
Terminal

k
Terminal' ', , ,

Output: rank D
k j

( ) , rank p
k j
( ) , v

j

1: function IHEFT(CTS NCTS CTS NCTS
k
Edge

k
Edge

k
Terminal

k
Terminal' ', , , ):

2: compute
c

mj
i

m

ji
= =∑ 1 , i ∈ +{ }1 2, ,..., ξ ζ

3: rank D cp
k j i

m

i
( ) =

=∑ 1
, i ∈ +{ }1 2, ,..., ξ ζ

4: if the task t
i

 is the last task, then

5: the rank value of t
i

 = its average execution time
6: else: 

7: rank p t e
k j t p i i succ i

i k

( )
,

= +( )∈ ( )∑
8: end if 

9: Sort the DAG in a scheduling list by descending order of rank D
k j

( )  values

10: Sort the tasks in a scheduling list by descending order of rank p
k j
( )  values

11: Assign task t
i

 to the best processor base on v
j

 list

12: return Set of processors with the mapping tasks, rank D
k j

( ) , rank p
k j
( )

13: end function
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Figure 8. 
Dag task diagram using edge-side collaboration mode

Table 1. 
The scheduling time of the DAG1 task set on the processor set

Task PTerminal
1

l 8

m 6

Table 2. 
The calculation time of DAG2 task set on processor set

Task PES
1

1 PES
2
1 PES

3
1 PES

1
2 PES

2
2 PES

3
2

a 9 11 4 6 8 1

b 8 14 13 2 11 10

c 6 8 14 3 6 11

d 8 3 12 6 1 9

e 7 8 5 4 5 2

f 8 11 4 6 8 1

g 2 10 6 1 7 3

h 1 6 9 3 3 6

i 13 7 15 10 4 12

j 16 2 11 13 2 9

l 4 2 3 1 1 2

m 2 2 3 1 1 1
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Analysis of Results
The time complexity of the EECCO algorithm is O(n), and the actual data collected on the site of a 
blower is taken as the analysis target. Compared with the traditional centralized traversal method, the 
EECCO algorithm has a good advantage. Figure 10 shows the impact of an increase in the number 
of edge servers on the computation time overhead.

According to Equation 13, the DAG task segmentation graph’s subgraph has a degree of {5,3,1}. 
In the edge-edge collaboration mode, edge tasks are allocated to 5 processors and terminal tasks to 
1 processor. After the task set is unloaded by the EECCO algorithm, the corresponding relationship 
between the task and the processor is shown in Figure 12. Figure 11(b) shows that the same task set 
uses a naive CPOP algorithm as a computational offload strategy. Figure 12(a) and 12(b) respectively 
represent the offloading of tasks by LoPRTC and GT-GAOA algorithms for the same task set. As 
shown in Figure 11, the average task execution time of the EECCO algorithm is 42s, and that of the 
simple CPP algorithm is 57s. At the same time, it can be seen that the EECCO algorithm can reduce 
the number of processors when the task execution time is reduced. In Figure 11(a), the number of 
processors used at the edge is 6. In Figure 11(b), the number of edge processors used is 3.As can be 
seen from Figure 12, the average task execution time of the LoPRTC algorithm is 53s, and that of the 
GT-GAOA algorithm is 48s.In Figure 12(a), the number of edge end processors used is 6; In Figure 
12(b), the number of edge processors used is 4.

Figure 9. 
DAG segmentation diagram using edge-edge collaboration mode
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System processor utilization is an essential indicator of real-time system performance, representing 
the system’s time characteristics and task status (Wu et al., 2022). Table 3 shows the average utilization 
rate of processor resources of the three algorithms. It can be seen from the figure that the EECCO 
algorithm has the highest average utilization rate of processors, which can give full play to the internal 
resources of the processor.

The three algorithms were used to schedule 10 DAG task graphs, respectively. Table 4 shows 
the comparison of three algorithms’ Slack values in the case of 3-core processors. Three algorithms 
were adopted to schedule DAG tasks, and scheduling was carried out for the different number of 
DAG task models. The span Makespan values, average waiting time AWT and average Slack values 
of all tasks were obtained, as shown in Figure 13(a),13(b), and 13(c).

Figure 10. 
The impact of the increase in the number of edge servers on computing time overhead

Figure 11. 
The impact of different network environments on the CECTS algorithm
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According to the experimental data, both will increase correspondingly with the DAG number 
increase in terms of the span of task offloading and average Slack. In general, the EECCO algorithm’s 
performance is the best, followed by the LoPRTC and GT-GAOA algorithm, and the CPOP algorithm’s 
performance is the worst. The EECCO algorithm reduces task offloading span by 26.6% on average 
compared with the CPOP algorithm from the experimental data. EECCO algorithm is 21.4% lower 
than the LoPRTC algorithm on average. Compared with GT-GAOA, the EECCO algorithm reduces 
by 10.91% on average. In terms of average Slack, the EECCO algorithm is 23.5% lower than the 

Figure 12. 
Computational offload diagram of LoPTRC and GT-GAOA Algorithms

Table 3. 
The average utilization of processor resources of the three algorithms

Algorithms Average processor utilization at the edge (%)

EECCO 67.3

CPOP 35.7

LoPRTC 36.5

GT-GAOA 36.3

Figure 13. 
Comparison of average waiting time, Makespan, and average Slack value of the four algorithms
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CPOP algorithm. EECCO algorithm is 11.13% lower than the LOPRTC algorithm on average. The 
EECCO algorithm reduces by 10.90% on average compared with the GT-GAOA algorithm. The 
average waiting time of the EECCO algorithm is reduced by 58.9% compared with that of the CPOP 
algorithm. EECCO algorithm is 57.1% lower than the LoPRTC algorithm on average. EECCO 
algorithm is 65.7% lower than the GT-GAOA algorithm on average.

The offloading algorithm’s fairness indicates the reliability of multiple DAG task offloading 
algorithms and is an important indicator that reflects whether the algorithm can reasonably handle 
tasks with different priority levels. Figure 14 shows the degree of fairness of the EECCO, CPOP, 
LoPRTC, and GT-GAOA algorithms.

The EECCO algorithm is superior to CPOP and GT-GAOA algorithm in terms of average task 
waiting time and average Slack value through the above experimental analysis. Simultaneously, in 
terms of algorithm fairness, the EECCO algorithm has high fairness and maintains an excellent 
steady-state with the increase of DAG number.

DISCUSSION

With the continuous development of network information technology, the new industrial model led 
by smart manufacturing has started to be widely used. The existing computing offloading methods 
tend to lead to congestion caused by heavy load on an edge server. Meanwhile, the existing studies 
assume that each task is independent of each other, without considering the possible dependency 
between tasks. As a result, a large amount of idle computing time is not fully utilized on the computing 
nodes, which wastes the computing resources of the nodes and increases the task execution delay. In 
this paper, a computation offloading method for large-scale factory access in edge-edge collaboration 
mode is given for cloud manufacturing scenarios. The computation offloading problem in complex 
scenarios is solved by three steps, task graph partitioning, synchronization, and processor scheduling. 
Simulation results show that the EECCO algorithm proposed in this paper can reduce the time 
overhead of processing complex tasks compared to other offloading algorithms and enable an edge-
edge collaborative approach to offload tasks to the appropriate processor in an overall increase 
in the speed of task processing. Associated tasks can be processed more efficiently in the case of 
resource-constrained large-scale edge-side servers. It solves the problem of difficult unloading due 
to the difference of actual scenarios and the high response delay caused by the increase of terminal 
industrial equipment.

Table 4. 
Slack value of CECTS, CPOP, LoPRTC, GT-GAOA algorithm

DAG EECCO CPOP LoPRTC GT-GAOA

1 1.42 1.92 1.62 1.67

2 2.69 3.45 2.98 3.11

3 3.77 6.03 4.99 5.49

4 5.23 7.23 6.22 6.20

5 6.60 9.65 8.03 8.34

6 8.41 11.80 9.67 10.24

7 10.09 13.88 11.51 12.01

8 11.19 15.27 12.79 13.50

9 12.29 17.19 14.79 15.38

10 14.27 18.76 15.95 16.33
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CONCLUSION

China has now become an industrial power. Most of the methods used in manufacturing workshops 
are to provide dedicated production lines or rigid assembly lines. This solidified production method 
can cope with a certain amount of production, but in the face of large-scale production. For the 
production demand of the manufacturing workshop, the traditional production method is far from 
enough. Therefore, the method of computing offloading of large-scale factory access in the edge-
edge collaborative mode in this paper is based on the fact that the demand of the manufacturing 
factory is greater than the actual production volume. For the manufacturing industry of large-scale 
manufacturing production mode, the problem of resource layout and allocation is indispensable. In 
order to solve the problem of collaborative operation between edge servers deployed in large-scale 
manufacturing workshops, a side-by-side collaborative computing architecture is proposed. The task 
scheduling method of large-scale factory access realizes the effective allocation of resources. In fact, 
the machine tools and equipment seen in ordinary workshops work in a discrete form, but in order to 
combine the needs of the task, this simple configuration cannot be realized. The EECCO algorithm 
divides the equipment and equipment into more levels. It has realized multi-level resource allocation, 
and changed the discrete working state into a multi-dynamic process working state. At present, many 
large-scale manufacturing workshops have an increasing demand for production flexibility, which 
is basically through the production process. Various methods to increase the flexibility of mass 
manufacturing production, such as the cluster layout of traditional manufacturing workshops, etc. 
Considering the existence of specific requirements, unexpected events during equipment operation, 
and the impact of unknown users on the system, the next step will be to improve and refine the 

Figure 14. 
The degree of fairness of EECCO, CPOP, LoPRTC, and GT-GAOA algorithms
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requirements analysis model, evaluate the effectiveness of the scheme in this paper after obtaining 
actual data, and further improve the performance of the algorithm. In the future, the task offloading 
scheme for multi-intelligence collaborative operation will be studied in depth to complement the work 
in this paper. At the same time, the next stage can start to carry out the technical landing, to realize 
the computing unloading platform. At present, due to the limitations of hardware and software and 
other factors, it is difficult to achieve the implementation of technology.
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