
DOI: 10.4018/IJIIT.318673

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

On the Application of Quick Artificial
Bee Colony Algorithm (qABC) for
Attenuation of Test Suite in Real-
Time Software Applications
Jeya Mala D., Vellore Institute of Technology, Chennai, India

Ramalakshmi Prabha, Anna University, Madurai, India

ABSTRACT

Software testing plays a vital role during the software development process, as it ensures quality
software deployment. Success of software testing depends on the design of effective test cases. To
achieve the optimization of generated test cases, the proposed approach combines both global and local
searches by means of intelligent agents which exhibit the behaviour of employed bees, onlooker bees,
and scout bees in the qABC algorithm. The proposed qABC algorithm has key improvements over
the basic artificial bee colony algorithm (ABC) in test optimization by reducing redundancy, filtering
of test cases in each iteration and parallel working of the bees. Further, the fitness evaluation of the
test cases is done by employing two test adequacy metrics namely path coverage and mutation score.
Further, the experimental evaluation of qABC, GA, and the basic ABC based test cases is done using
several case study applications. The result shows that qABC outperforms the other algorithms in terms
of effectiveness of test cases in revealing the faults with less time and a smaller number of test cases.

Keywords
Project Management, Quick Artificial Bee Colony (qABC), Software Quality, Software Testing, Software Test
Optimization, Test Cases, Validation

INTRODUCTION

Every software industry is expected to deliver quality products to satisfy their customers and to
compete in the market. Software testing is one of the ways of improving software quality. As per
40-20-40 principle, software development devotes 40% of aggregate time for project analysis and
design, 20% for programming and the remaining 40% for testing (Pressman, 2005).

According to IEEE, software testing is defined as the process of operating a system or component
under specified conditions, observing or recording the results, and making an evaluation of some

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

2

aspects of the system or component (IEEE Standard 610.12-1990). Which clearly indicates that a
better testing approach ought to be emulated by the industries for producing better products. The
quality of testing depends on the design of effective test cases.

The testing process is a time consuming one because it involves human resources more and
more. Even though several testing tools are available in the market; the industries still continue the
traditional manual writing test cases for the attainment of expected goal. So, the industries are in
need to perform testing effectively within reasonable time.

The researchers usually preferred the evolutionary algorithm and swarm-based algorithm to find
the solution for real world optimization problem- especially NP hard problems. Test case generation
can also be non-deterministic (NP-hard) problem (Karaboga & Gorkemli, 2014). Hence this paper
proposed a novel methodology for automatic generation of test data by using quick Artificial Bee
Colony algorithm (qABC) which extends the functionality of the ABC algorithm.

Artificial Bee Colony (ABC) algorithm is a population based Swarm Intellgence (SI) algorithm
designed by Karaboga (2014). ABC simulates the behaviour of foraging and waggle dance of the
honeybees in nature (Karaboga & Basturk 2008). This algorithm consists of three types of artificial
bees namely employed bees, onlooker bees and scout bees. ABC algorithm produces better results
in many applications such as decision making, transportation problem etc. It is also used in test case
generation. It generates the test cases effectively. (DJ Mala, 2017),

However, the proposed qABC improves the ABC algorithm in terms of generating effective
test cases within a short period. qABC utilizes three bees as in ABC for generating test cases. The
changes are introduced in Onlooker bees’ behaviour and redundancy removal techniques are applied
which is not available in basic or traditional ABC. In this way, ABC generates the test cases faster
and accurately. Because coverage-based metrics will reveal errors effectively here, path coverage and
mutation score are taken as test adequacy criteria. In this paper, qABC algorithm is explained in detail
and then its performance is assessed by evaluating it on a set of test problems. Also, the performance
of qABC is compared with other evolutionary algorithms. The results show that its performance is
better than other evolutionary algorithms.

BACKGROUND

This section briefs the definition relevant to the key terms used in the proposed approach.

Test Case – A test case is a set of inputs, execution preconditions, and expected outcomes developed
for a particular objective, such as to exercise a particular program path or to verify compliance
with a specific requirement. [IEEEdo178b].

Test Optimization – To maximize the profit of finding more bugs and coverage and to minimize the
total number of test cases needed.

Population Based algorithm – This type of algorithm begins with a population of initial solution and
generates the population to produce the better solution by performing some operations such as
Crossover, Mutation etc.

Figure 1. 40 -20-40 principle

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

3

Swarm Intelligence based algorithm – This type of algorithm is inspired by the collective behaviour
of social insect colonies and other animal societies

Exploration - It is the process which refers to the ability of the algorithm to produce better solution
by applying the knowledge of previous solutions.

Test Case Adequacy - A test case is adequate if it is useful in detecting faults in a program [8].
Mutation - It is a single syntactic change that is made to a program statement.
Mutation score – It is the percentage of non-equivalent mutants killed by the test data [8].
Mutation Score = 100 * D / (N - E)
D = Dead mutants
N = Number of mutants
E = Number of equivalent mutants

The rest of this paper is organised as follows: Section 2 highlights the related work; Section 3
describes the problem representation. Section 4 deals with the standard or basic ABC and qABC-
Testcase Generator is outlined in Section 5. The case studies and the results are analysed in Section
6 and finally, Section 7, carries the conclusion.

LITERATURE SURVEY

Several research works have been proposed to solve hard optimization problems. Some of them are
discussed in this section.

Karaboga and Gorkemlim (2019), have introduced new versions of ABC algorithm to solve
Travelling Salesman Problem (TSP). One of these is the combinatorial version of standard ABC,
called combinatorial ABC (CABC) algorithm. The other one is an improved version of CABC
algorithm, called quick CABC (qCABC) algorithm. This work has produced some promising results
in solving TSP.

Moradi et al. (2018) have proposed a clustering and memory-based chaotic artificial bee colony
algorithm, denoted by CMCABC, for solving the dynamic optimization problems. A chaotic system
has a more accurate prediction for future in the real-world applications compared to a random system,
because in the real-world chaotic behaviours have emerged, but random behaviours have not been
observed. In the proposed CMCABC method, explicit memory has been used to save the previous
good solutions which are not very old. Maintaining diversity in the dynamic environments is one of
the fundamental challenges while solving the dynamic optimization problems

Spieker et al. (2017) have introduced a new method for automatically learning test case selection
and prioritization in Continuous Integration (CI) with the goal to minimize the round-trip time between
code commits and developer feedback on failed test cases. This proposed method uses reinforcement
learning to select and prioritize test cases according to their duration, previous execution and failure
history

Bao et al. (2017) have proposed an improved adaptive genetic algorithm (IAGA) for test cases
generation by maintaining population diversity. It uses adaptive crossover rate and mutation rate in
dynamic adjustment according to the differences between individual similarity and fitness values,
which enhances the exploitation of searching for global optimal solution.

Boopathy et al. (2017), have proposed a combination of Markov chain and Artificial Bee Colony
(ABC) optimization techniques to attain the software code coverage. Initially, dd-graph is captured
from the control flow graph of the source code and is represented as a Markov chain. Then, the
number of paths is obtained based on linear code sequence and jump (LCSAJ) coverage. Further,
ABC optimization is adopted to ensure software code coverage. The initial population is randomly
selected from the test suite and populated for subsequent generations using the ABC algorithm. The
test cases are generated for three mixed data type variables, namely integer, float and Boolean.

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

4

Aghdam and Arasteh (2017) proposed a method that uses Artificial Bee Colony (ABC) algorithm
for solving the issue of test data generation and branch coverage criterion was used as a fitness function
for optimizing the proposed solutions.

Sharma et al. (2016). have presented a set of methods that uses a Genetic Algorithm (GA) for
automatic test-data generation in software testing. They have presented various Genetic Algorithm
(GA) based test methods which will be having different parameters to automate the structural-oriented
test data generation on the basis of internal program structure. The factors discovered are used in
evaluating the fitness function of GA to select the best possible test method. These methods take
the test population as an input and then evaluate the test cases for that program. This integration
will help in improving the overall performance of genetic algorithm in search space exploration and
exploitation with better convergence rate.

Mao et al. (2015), in their paper have reformed the basic ACO algorithm into discrete version so
as to generate test data for structural testing. First, the technical roadmap of combining the adapted
ACO algorithm and test process together is introduced. In order to improve algorithm’s searching
ability and generate more diverse test inputs, some strategies such as local transfer, global transfer
and pheromone update are defined and applied. The coverage for program elements is a special
optimization objective, so the customized fitness function is constructed in their approach through
comprehensively considering the nesting level and predicate type of branch.

Wong and Choong (2015) presented an improved Bee Colony Optimization algorithm with Big
Valley landscape exploitation as a biologically inspired approach to solve the Job Shop Scheduling
problem. They compared the experimental results of their algorithm with Shifting Bottleneck Heuristic,
Tabu Search Algorithm and Bee Colony Algorithm with neighbourhood Search on Taillard JSSP
benchmark and they showed that it is comparable to these approaches.

Tinggui, and Xiao (2014) have also enhanced artificial bee colony (ABC) algorithm with self-
adaptive searching strategy and artificial immune network operators for global optimization.

Nokolic and Teodorovic (2013) proposed a bee’s algorithm to solve difficult combinatorial
optimization problems. In their paper, in addition to proposing the Bee Colony Optimization (BCO)
as a new metaheuristic, they also described two BCO algorithms called the Bee System (BS) and the
Fuzzy Bee System (FBS). In FBS, the agents (artificial bees) use approximate reasoning and rules of
fuzzy logic in their communication and acting. In this way, the FBS is capable to solve deterministic
combinatorial problems, as well as combinatorial problems characterized by uncertainty.

Lijuan et al. (2012), have proposed a practical model, which utilizes GA as the searching policy
to generate software structural test data. To achieve higher performance, the issues such as encoding
strategy, evolution operator, evaluation function construction and instrumentation were addressed
in detail. A new method of initialization of population was introduced in order to make the initial
population to have higher adaptability, and much emphasis is put on algorithms’ operator evolution,
which is a key factor that can highly affect algorithms efficiency.

Lam et al. (2012), combined both global search methods done by scout bees and local search
method done by employed bees and onlooker bees in their modified ABC. The parallel behaviour of
these three bees makes generation of feasible independent paths and software test suite optimization
faster. Test Cases are generated using Test Path Sequence Comparison Method as the fitness value
objective function.

Mala and Mohan (2010) have applied the general ABC algorithm for optimal test cases generation
and they proved that, this ABC is outperforming the GA and Bacteriologic algorithms in test case
generation and optimization by means of a number of case studies. But one of the weak areas in
their work is the number of cycles is increased as the number of nodes is increasing in the software.

Karaboga and Basturk (2008) proposed the use of ABC in solving numerical function optimization.
They compared the efficiency of ABC with other optimization algorithms such as GA, PCO and
PS-EA and proved that ABC outperformed them.

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

5

Karaboga and Basturk (2008) have proved that a most optimistic and an efficient bio-inspired
algorithm is artificial bee colony (ABC) for optimization problems such as TSP etc.

Vanmali et al, (2002) identified that Tabu search requires more memory to reduce the local
optima and searching while solving optimization problems.

PROBLEM REPRESENTATION

Optimization is the process of modifying a system to work more effectively or use fewer resources.
Test Suit Optimization is the process of selecting or generating the test cases that cover the testing
components within less time in other words to maximize the profit of coverage and minimize the
test cases.

In this auto generation of test cases using qABC, path coverage is considered as test adequacy
criterion for test suit optimization. Test cases are selected by coverage value associated with each
path. The objective of the function is to maximize the coverage value.

The objective function of the proposed approach for test case optimization isMax.

Coverage_Value (Path)	 (1)

Sub to.

1 if
i

n
fitenss

=∑ 1
(nodei,testcase)=100% 	

Coverage_value(Path)=	 (2)

0 otherwise	

Eq. (1) is to maximize the coverage of path. The constraint (2) indicates that if the entire node
in given path is covered by test case, the coverage value will be set into 1otherwise will be set in to
0. Nodes coverage is identified by calculating fitness of the node with the test case.

ABC ALGORITHM
Artificial bee colony (ABC) algorithm introduced by Dervis Karaboga on inspiration by the foraging
behaviour and waggle dance of the honeybees. It is the most popular swarm intelligence-based
optimization algorithm.

The ABC algorithm consists of three groups of bees, namely, employed, onlookers and scouts.
The bees leave the hive and fly around the search space with food position in their mind and on
finding which, they dance in the hive about their new food position.

The onlooker bees just watch this dance and decide the food sources to exploit. Regardless of
any information about the food source, Scouts bees fly and choose the food sources randomly. If
the new source has the higher quantum of nectar than that of the previous one in their memory, they
memorize the new position and forget the previous one [10]. Initially all of the bees in the hive work
as scouts and they all start with random solutions or food sources. In further cycles, the employee
bee whose food source is abandoned becomes a scout and starts to find new food source.

Steps of ABC Algorithm
In ABC algorithm, a food source position is defined as a possible solution and the nectar amount or
quality of the food source corresponds to the fitness of the related solution in optimization process.

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

6

Since, each employed bee is associated with one and only one food source, the number of employed
bees is equal to the number of food sources [5].

The steps of the basic ABC algorithm are given below:
Step 1: 	 Initialization of food sources
Step 2: 	 REPEAT

◦◦ Employed bees leave the hive to the food source in their mind and finds a neighbour source,
then evaluates its nectar amount and dances in the hive

◦◦ Onlooker bee watches the dance of employed bees and locates one of their sources guided by
the dances, then goes to that source and finds the neighbour source around the food sources,
and evaluates its nectar amount.

◦◦ Abandoned food sources are determined and then, they are replaced with the new food
source by Scout bees.

◦◦ The best food source is memorised.
Step 3: 	 UNTIL (requirements are met)
Initialization Phase
In the initialization phase, initial solution which is known as initial population of optimization problem
is generated randomly. The initial population is represented as xi.Where i ε {1, 2..., SN}, SN is the
randomly chosen index.

Food sources are randomly initialised with Eq. (3) in a given range.

x x rand x x
i
j

min
j

max
j

min
j= + () −()0 1, 	 (3)

Where x
min
j lower bound, x

max
j upper bound of the variable j, x

i
j value of j for dimension i. Where j

ε {1, 2… D}

Employed Bees Phase
The employed bees select the value xi from initial population and find a neighbour food source vi
by using Eq. (2).

v x rand x x
i
j

i
j

i
j

k
j= + () −()0 1, 	 (4)

Wherexkis a food source selected randomly. k ε {1, 2, . . ., SN}, Now, the fitness values of v
i
j and

x
i
j are calculated. Based on the comparison of both the fitness values choose any of one the test case

by applying Greedy selection process. The fitness value Fitness(xi) is calculated from its objective
function value Fit(xi)by using Eq. (5).

1/ (1 + Fit (xi)) if Fit (xi) 3 0	
Fitness(xi) =	

1 + |Fit (xi)| if Fit (xi)< 0	 (5)

Onlooker Bees Phase
The employed bees return to the hive, and share their information of food source with onlooker bees.
An onlooker chooses her food source based on the probability of the fitness value. The probability
value Pj can be calculated by Eq. (6).

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

7

P Fitness x Fitness x
j i

j

SN

i
= () ()

=
∑/
1

	 (6)

Scout Bees Phase
Abandoned solution is determined. If it exists, the employed bee concerned becomes scout bee and
it replaces the abandoned test case by new solution generated by using E

PROPOSED qABC-TESTCASE GENERATOR

The framework of qABC-Testcase Generator is shown in Figure 2. The qABC-Testcase- Test case
Generator has two phases, the first of which is Scanning phase and the second is Generation phase.
Initially the component to be tested is identified and it is scanned in scanning phase. This phase
retrieves the features of the component such as number of paths and is stored in the repository of
Component’s Traits Data Base (CTDB). With the help of this information the Generation phase
generates the test cases and store it in the repository Test Case Data Base (TCDB).

Scanning Phase
Figure. 3 shows the scanning phase where in, the component to be tested is scanned to get the traits
of the component such as number of paths, node list and the data member present in the component.
The number of paths in the component is calculated by using the metrics Cyclomatic complexity.
Then, this information is stored in the repository known as Component’s Traits DataBase (CTDB).

Generation Phase
The diagram in Figure 4 shows the Generation phase wherein, test cases are generated for the
component to be tested by the proposed algorithm qABC which is developed from Artificial Bee
Colony Algorithm (ABC).
Step 1: 	 Initialization process begins. Test path is chosen from the database CTDB.

Each Employee bee do the following operations:
Step 2: 	 By using initial test cases, the new test case is generated for the chosen path. Fitness value
of test cases is evaluated at the first node in the path. By applying greedy selection process any one
of the test cases which has a higher fitness value, is selected.

Figure 2. The framework of qABC-Testcase generator

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

8

Step 3: 	 By using the selected test case, the fitness value of each node in the selected path is calculated.
If any one of the nodes is not covered by the test case, it will be considered as unfit, and the next
uncovered path will be selected which does not have the unfit node.
Step 4: 	 By using fitness values the probability is calculated.
Step 5: 	 If the probability is 100%, the test case and the path will be stored in the database Test Case
Data Base (TCDB). Then go to step 7
Step 6: 	 Otherwise the test case will be marked as abandoned, and a new test case will be generated.
Go to Step 3.
Step 7: 	 Select the path from CTDB and the test case from TCDB for test case generation and follow
step 2.

PROPOSED qABC ALGORITHM FOR TEST OPTIMIZATION

The phases of qABC algorithm are similar to those of ABC algorithm.
Initialization Phase
Repeat
Investigation Phase (Employee Bee)
Decision Phase (Onlooker Bee)
Replace Phase (Scout Bee)
Until (Maximum cycle)

Initialization Phase
In this phase, the following initialization can be done.

1. 	 Control parameter Initialization:

Figure 3. The scanning phase of qABC

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

9

a. 	 Number of paths by calculating cyclomatic complexity of the component to be tested. Number
of employee bee is equal to the number of paths in the test component.

b. 	 Total number of variables in each path, which is known as dimension D.
c. 	 Maximum number of cycles.

2. 	 Test case Initialization: Initialize the test cases for each path.

Initialization task is important because the initial population can affect the convergence speed.
Owing to the randomness and sensitivity dependence on the initial conditions, chaotic maps have
been used to initialize the population so that the search space information can be extracted to increase
the population diversity.

Initialization task can be performed in the following way:

•	 Random initialization
•	 The chaotic systems with affinity-based compression

The test cases are generated using random initialization by Eq. (1).
Chaotic map is used for generating the initial value to improve the global convergence. cmn is

sinus map and is calculated by using Eq. (7).

cm cm
n n

sin cmn
+

()=
1

2
2 3. ()

� 	 (7)

Figure 4. The generation phase of qABC

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

10

Where cm N
n
= …0 1 2, , , .., , n is the iteration counter and Nis the maximum number of chaotic

iterations. Here, N is randomly chosen as 50

x x cm x x
i
j

min
j

n
j

max
j

min
j= + −() 	 (8)

For initial test case generation, random method is applied, because it produces wide range of
values within the boundary when compared to the chaotic method. The Figure5 shows that the 100
values generated within the range of 1 to 100 in random based and Figure6 shows that chaotic systems
based. Figure5 displays initial values span across the boundary, but in Figure6 the most of values
falls in range from 30 to 60. Hence for initialization random method is preferred.

Figure 5. Initialization using randomization

Figure 6. Initialization using chaotic method

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

11

Investigation Phase (Employee Bee)
In this phase each employed bee generates neighbour solution vi of initial value xi using Eq. (4). Then
they find the fitness value of viand xi using Eq. (5). They apply greedy selection method; either vior
xi will be selected based on their fitness value.

Suppose the number of paths in the component to be tested is five then five employed bees are
involved.

1. 	 Each employed bee memorises different test case from the initial solution and using this they
generate new solution.

2. 	 All employed bees work in parallel and initially all the nodes are considered as uncovered.
3. 	 Each bee does the following:

a. 	 It calculates the fitness value for the first uncovered node of the first path by the memorised
test case and newly generated test case. Then compare the fitness value and select any one
of the test case using greedy selection process.

b. 	 The selected test case is used to calculate the fitness value of the next uncovered node in the
path. If this value is fit for the node and the node is considered as covered node, the node
name and the fitness value is memorized then it continues to calculate the fitness value for
the next uncovered nodes in the selected path. If any node is not covered then it will be
considered as unfit node and the bee moves to next path only it does not have the unfit node.
It finds the fitness for the uncovered node in the new path and follows the step 3.b.

c. 	 If all the paths in the software are tested, then it moves to next phase. The test case, and the
path is memorized when all the nodes in the path is covered.

4. 	 The fitness value can be calculated by using Fitness (Xi), This function helps to check the node
coverage and returns the coverage value. It reads the nodes from CTDB and finds the coverage
value by using the following conditions.
(i) 	 For a>b, if a > b, Fiti = -1, else Fiti =1or 0
(ii) 	For a>=b, if a>=b,Fiti = -1, else Fiti =1or 0
(iii) 	For a<b, if a <b, Fiti = -1, else Fiti =1or 0
(iv) 	For a<=b, if a<=b, Fiti = -1, else Fiti =1or 0
(v) 	 For a==b, if (a==b), Fiti = -1, else Fiti =1or 0
(vi) 	For a! =b,if a!=b, Fiti = -1, else Fiti =1or 0
(vii) 	 For a OR b, Fiti = a OR b
(viii) 	 For a AND b,Fiti = a AND b

Decision Phase (Onlooker Bee)

1. 	 Onlooker bee calculates the probability value of each test case which is informed by the employed
bees.

2. 	 The test case which has 100% probability for the path will be memorized.
3. 	 If any path has not yet been covered, select the test case xi which has high probability. Then find

the neighbours of xi.
4. 	 Eq. (9) is used to find whether the generated test case is neighbour of xi.

d i j r md
i

, *() ≤ 	 (9)

5. 	 r is neighbourhood radius. Euclidean distance between xi and xj is calculated using Eq. (10). Eq.
11 is used to check the whether both values are same.

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

12

d x x x x
i
k

j
k

k

D

i
k

j
k,() = −()

=
∑
1

2
	 (10)

A x v
d x v

i
j
i
j

i
j
i
j

,
,

() =
+ ()

<
1

1
a 	 (11)

Where α is a threshold value.α =1 indicates both test cases v
i
j and x

i
j are same. α = 0 shows that,

there is no similarity between test cases v
i
j andx

i
j .

Hence, here 0.1 is considered as threshold value.

6. 	 Euclidean distance between xi and xj is represented as d (i,j). Mean Euclidean distance for xi is
represented as mdi and is calculated by Eq. (12).

md
d i j

SNi
j

SN

=
()
−=

∑
1 1

,
	 (12)

7. 	 Select the test case among the neighbours and generate new test case. Fitness value of the new
test case is calculated for uncovered path. If it is covered now, it will be memorized.

Replace Phase (Scout Bee)
The scout bee determines the abandoned test case. If it is there, it replaces the test case by a new
test case.

EXPERIMENTAL EVALUATION

A number of applications are taken to test the performance of the proposed quick Artificial Bee
Colony algorithm (qABC). These case studies are of different sizes which are varied in number of
class components.

Test cases are generated, and the time taken for test case generation is also measured. The test
case is evaluated by path coverage and mutation score. Then, the qABC is compared with Genetic
Algorithm (GA) and Artificial Bee Colony algorithm (ABC).

For a simulative case study, the Mark Processing System is taken, and the steps involved in the
proposed algorithm are exhibited with the test adequacy criteria for readers’ understanding.

Case Study: Mark Processing System
Mark processing system is taken for explanatory purpose. This system consists of three predicate
nodes. The conditions are made up of variables intmark and extmark and att. The sample code for
student mark processing system is as follows.
void main()
{
1.      int intmark,extmark,att;
2.      read intmark,extmark,att;
3.      if(ext>50)

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

13

{
4.      printf(“pass”);
5.      If(att>90)
6.      int Bonusmark=10;
}
7.      else if ((int+ext)>40)
8.      printf(“Pass”);
9.      else
10.      printf(“Fail ”);
11.      }

Scanning Phase
Here the Cyclomatic value is 4. This value and the condition variables intmark, extmark and the 4
paths are stored in the database CTDB.

Generation Phase:
Step 1. The initial values of intmark, extmark, TotFitness for every path will be initialized. It is given
in Table 1.

•	 Three variables intmark,extmark,att are initialized. Here TotFitness value indicates the maximum
fitness value of the given path. If the TotFitness value is zero, it indicates that the path does not
satisfy any condition.

•	 The number of paths of this program is 4.
•	 Repeat
•	 For all the paths, new test case is generated by using the following formula:

v x ö x x
i
j

i
j

i
j

k
j= + −() 	

•	 i indicates variables and j indicates path remove ‘, for example v11 indicates extmark, v12 is
intmark and v13 att.’

•	 PATH 1.
•	 For i=1 to 3, j=1, k=1+ (i% number of variables used here)

◦◦ i=1, k=2,j = 0 125.
v11 = x11+j (x11-x12); v11= 65+(0.86667) (65-35) = 91

◦◦ i=2, k=3
v12=x12+j (x12-x13); v12=35+(0.74) (35-85) = -2

◦◦ i=3, k=1
v13=x13+j (x13-x11); v13=85+(0.75) (85-65) = 100

Table 1. Execution paths with fitness value

Path No Path Extmark intmark Att TotFitness

P1 1-2-3-7-9-10-11 22 14 52 0

P2 1-2-3-4-5-6-11 65 35 85 4

P3 1-2-3-4-5-11 85 18 17 2

P4 1-2-3-7-8-11 3 69 89 2

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

14

•	 xi1= {65.35,85} and vi1= {91,-2,100} are applied to the first predicate node 3, that is fitness
value is calculated by using the equations 5. The fitness value of xi1 is 2 and vi1 is 2. Both test
cases have high fitness value. But TotFitness value of path1 is zero. Hence both test cases are
not suitable to path1. Hence the process moves to the next path which includes the node3.

For PATH2

•	 Greedy selection process is applied. Randomly xi1 is selected. Next this value is applied to next
predicate node.

•	 The selected test case is already tested on node3, hence the fitness value calculated for the next
predicate node5. Its fitness value is 0.5. Hence it is not fit for node5, now the process moves
to next path which does not have the node5 in their path but include the node3. Here the next
path is path3.

For PATH3

•	 In path3, there is no further predicate node. Hence calculation of fitness value is stopped. By
summing up of all the fitness values of node in the path3, total fitness value is 2. The probability
is calculated as

Probability = (sum_of_fitenss value of all the nodes/ TotFitness of the path) * 100	
Probability = (2/2) * 100= 100	

•	 The probability is 100%, hence the test case, path and its probability values are stored.
•	 This indicates vi1 is suitable for the node3, hence it will be checked for the path which is not yet

covered but includes the node3 in their path. If it covers any path it is also stored.
•	 The above process is also done by the entire employed bee in a parallel way. The test case and

the coverage information are stored simultaneously in the database, hence the bees concentrate
only on the uncovered path. This will in turn reduce the time.

•	 Finally, the onlooker bee finds any path is not yet covered, if it is there,
•	 The new test cases are generated for uncovered path by using the best test case generated so far.
•	 Suppose the best test case is x11= -20, x12=50, x13=50
•	 For i=1 to 3, j=1, k=1+ (i% number of variables used here)

◦◦ i=1, k=2
v11 = x11+j (x11-x21); v11= -20+(0.625) (-20-50) = -63.75

◦◦ i=2, k=3
v12=x12+j (x12-x31); v12=50+(0.625) (50-50) = 50

◦◦ i=3, k=1
v13=x13+j (x13-x11); v13=50+(0.625) (50-(-20)) = 93.75

•	 The Euclidean distance is calculated between xi1= {-20,50,50} and vi1= {-63.75,50,93.75}.
•	 Based on the Euclidean value the newly generated test case is tested whether it is duplicated or

not by using Eq11.
•	 Then Mean Euclidean value is calculated to check whether the test case in neighbour or not. If

it is neighbour then it is applied to all the predicate nodes in the uncovered path. Now only one
bee is acting as an employed bee. Otherwise new test case is generated by using Eq. (4).

•	 Cycle_count is increased.
•	 Until Cycle_count=Max_count

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

15

RESULT ANALYSIS AND DISCUSSION

A set of application programs are tested for experimental verification of the proposed method. Three
factors such as number of cycles, path coverage and time taken in terms of seconds for generating
test cases had been taken for verification. Test cases are generated by the proposed qABC algorithm,
GA and ABC. Then their performances are compared. Table1 shows the path coverage of newly
generated test cases, number of cycles and time consumed for test case generation of six case studies
by GA, ABC and qABC. The result shows that, qABC is better in performance as it has higher path
coverage with a smaller number of cycles and less consumption of time compared to other intelligent
algorithm. Figure 7 shows the number cycles needed for test case generation by GA, ABC and qABC.
Figure 8 shows the path coverage by the newly generated test cases. Figure 9 shows the Time taken
for generating the test cases. The results are provided in Table2.

As Genetic algorithm (GA) generates the test cases in a local optimum way and the fitness
measurement to decide the validity of test cases is not used for further generation, it falls down at
local optima.

ABC follows the random based initialization and test cases are redundantly generated. Three bees
alone work in parallel. After calculating the fitness values for all the nodes in the selected path, the
coverage of the path will be decided. Then it moves to find the coverage of next path. So, the time
consumption for test case generation is high.

Table 2. Path coverage and time taken for GA, ABC and qABC

Program

GA based ABC qABC

No. of
Generation

Path
Coverage

Time
Taken

No. of
Cycles

Path
Coverage

Time
Taken

No. of
Cycles

Path
Coverage

Time
Taken

Marks Analysis System 190 80% 65 50 85% 35 20 100% 13

Hospital Management System 180 76% 65 50 82% 33 25 97% 12

Ticket Reservation System 170 81% 59 56 91% 30 30 98% 12

Library Management System 100 65% 40 75 90% 25 40 89% 5

Payroll System 110 61% 45 45 88% 28 25 99% 7

Tax Calculation 180 80% 56 60 100% 30 30 100% 7

Figure 7. Number of cycles used by GA, ABC and qABC

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

16

The qABC finds the optimal solution with a smaller number of iterations and time because of
the redundancy removal techniques. The redundant test cases are identified in the earlier stage and
removed at once. In this proposed method more than one employed bee are employed and work in
parallel and they update the path coverage status simultaneously. Each employed bee stops the fitness
calculation process, when it encounters the node that is not covered by the test case in the selected path,
and it moves to find the coverage of next uncovered path does not contain the recent uncovered node
in its path. Hence it consumes less time and generated the test cases with minimum number of cycles.

Mutation Score Based Analysis
The effectiveness of the test case can also be measured by the mutation score. As per Offut’s guidelines
the defects are injected in the programs, and the faulty programs are called mutants. Here the mutants
are generated using MuJava tool. Then the adequacy of the generated test case is checked. A test case
is adequate if it is useful in detecting faults in a program. A test case can be shown to be adequate by

Figure 8. % of path coverage by GA, ABC and qABC

Figure 9. Time taken for test case generation by GA, ABC, qABC

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

17

finding at least one mutant program that generates a different output than does the original program
for that test case. If the original program and all mutant programs generate the same output, then
the test case is inadequate. The test adequacy is measured in terms of mutation score. The test case
which has higher mutation score will be preferred. The mutation score of GA, ABC and qABC is
calculated by using MuJava tool and it is shown in Table3 and Figure10. The mutation score of the
qABC is high when compared with other evolutionary algorithms.

CONCLUSION AND FUTURE WORK

Successful Software Project Management includes the efficient quality assurance and testing activities
done during the entire project management cycle. Although, several industries are now focusing their
attention on achieving optimization in this labour intensive and time-consuming recurrent activity that

Table 3. Mutation score of GA, ABC and qABC

Program GA ABC qABC

Marks Analysis System 30.30% 71.80% 84.70%

Hospital Management System 46.10% 87.50% 95.60%

Ticket Reservation System 59.50% 85% 92.30%

Library Management System 20% 79.30% 86.80%

Payroll System 45.90% 89.10% 90.20%

Tax Calculation 26.00% 82.50% 93.20%

Figure 10. Mutation score of GA, ABC and qABC

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

18

requires a lot of care to deliver the quality software product, they are still struggling on identifying
the right techniques. Due to the enormous growth of AI in the software industry, several project
management activities are also automated using such AI techniques.

This proposed work applied an improved version of an Artificial Bee Colony Algorithm (ABC)
with each bee being represented as Intelligent Agent in their software implementation part, namely
quick ABC (qABC). This algorithm has most important features such as (i) Parallel working behaviour
(ii) Faster convergence (iii) improvement of quality in solution generation in each phase. Hence, it
is applied in the most important, and cost and time impacted testing process to get the test cases
generation in both automated and optimized manner.

By generating different test cases and applying those cases on every execution path of the class
components simultaneously, the tester will get the efficient and suitable test cases associated with
each path quickly. As the test adequacy criteria are including both coverage and mutation score, the
test cases generated will be both efficient and successful ones as they can reveal a greater number
of injected defects in the software. Various applications are tested by the test cases generated using
qABC and other evolutionary algorithms namely GA and ABC. Based on the results, it has been
identified that, the proposed qABC based test optimization approach yields better results in terms of
fast generation of test cases, higher percentage of path coverage and mutation score of revealing the
injected errors when compared to GA and ABC.As a future work, more factors will be considered
to increase the mutation score, in order to improve the efficiency of the proposed qABC algorithm-
based test optimization approach.

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

19

REFERENCES

Bao, X., Xiong, Z., Zhang, N., Qian, J., Wu, B., & Zhang, W. (2017). Path-oriented test cases generation based
adaptive genetic algorithm. PLoS One, 12(11), e0187471. doi:10.1371/journal.pone.0187471 PMID:29136028

Banharnsakun, A., Achalakul, T., & Sirinaovakul, B. (2011). The best-so-far selection in artificial bee colony
algorithm. Applied Soft Computing, 11(2), 2888–2901. doi:10.1016/j.asoc.2010.11.025

Bestoun S. A. (2016). Test case minimization approach using fault detection and combinatorial optimization
techniques for conFigureuration-aware structural testing. Engineering Science and Technology, an International
Journal, 19(2), 737-753

Chen, T., & Xiao, R. (2014). Enhancing artificial bee colony algorithm with self-adaptive searching strategy
and artificial immune network operators for global optimization. TheScientificWorldJournal, 2014, 2014.
doi:10.1155/2014/438260 PMID:24772023

Mao, C., Xiao, L., Yu, X., & Chen, J. (2015). Jinfu Chen c (2015), Adapting ant colony optimization to
generate test data for software structural testing. Swarm and Evolutionary Computation, 20(February), 23–36.
doi:10.1016/j.swevo.2014.10.003

Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017). Reinforcement Learning for Automatic Test Case
Prioritization and Selection in Continuous Integration, ISSTA’17. ACM. doi:10.1145/3092703.3092709

Shah, H., Tairan, N., Garg, H., & Ghazali, R. (2018). Global Gbest Guided-Artificial Bee Colony Algorithm for
Numerical Function Optimization. Computers, 7(4), 1–17. doi:10.3390/computers7040069

Karaboga, D., & Gorkemli, B.Karaboga and Beyza Gorkemlim. (2019). Solving Traveling Salesman Problem by
Using Combinatorial Artificial Bee Colony Algorithms. International Journal of Artificial Intelligence Tools,
28(01), 1950004. doi:10.1142/S0218213019500040

Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft
Computing, 8(1), 687–697. doi:10.1016/j.asoc.2007.05.007

Wong, L.-P., & Choong, S. S. (2015). A Bee Colony Optimization algorithm with Frequent-closed-pattern-based
Pruning Strategy for Traveling Salesman Problem. Conference on Technologies and Applications of Artificial
Intelligence (TAAI). IEEE. doi:10.1109/TAAI.2015.7407122

Mala, D. J., & Mohan, V. (2009). ABC Tester-Artificial bee colony based software test suite optimization
approach. International Journal of Software Engineering, 2(2), 15–43.

Vanmali, M., Last, M., & Kandel, A. (2002). Using a neural network in the software testing process. International
Journal of Intelligent Systems, 17(1), 45–62. doi:10.1002/int.1002

Pressman, R. S. (2005). Software engineering - A practitioner ’s Approach (International Edition). McGraw-Hill.

Nikoliж, M. (2013, September). DuљAn Teodoroviж (2013), Empirical study of the Bee Colony Optimization
(BCO) algorithm. Expert Systems with Applications: An International Journa, 40(11), 4609–4620. doi:10.1016/j.
eswa.2013.01.063

Moradi, M., Nejatian, S., & Hamid, P. V. R. (2018). CMCABC: Clustering and Memory-Based Chaotic Artificial
Bee Colony Dynamic Optimization Algorithm. International Journal of Information Technology & Decision
Making, 17(04), 1007–1046. doi:10.1142/S0219622018500153

Narasimman, S. (2017, August). Quantification of Software Code Coverage Using Artificial Bee Colony
Optimization Based on Markov Approach. Arabian Journal for Science and Engineering, 42(8), 3503–3519.
doi:10.1007/s13369-017-2554-7

Lam, S. S. B., Raju, M. L. H. P., M, U. K., Ch, S., & Srivastav, P. R. (2012). Automated Generation of Independent
Paths and Test Suite Optimization Using Artificial Bee Colony. Procedia Engineering, 30, 191–200. doi:10.1016/j.
proeng.2012.01.851

Sharma, A., Patani, R., & Aggarwal, A. (2016). Software Testing Using Genetic Algorithms. International
Journal of Computer Science & Engineering Survey., 7(2), 21–33. doi:10.5121/ijcses.2016.7203

http://dx.doi.org/10.1371/journal.pone.0187471
http://www.ncbi.nlm.nih.gov/pubmed/29136028
http://dx.doi.org/10.1016/j.asoc.2010.11.025
http://dx.doi.org/10.1155/2014/438260
http://www.ncbi.nlm.nih.gov/pubmed/24772023
http://dx.doi.org/10.1016/j.swevo.2014.10.003
http://dx.doi.org/10.1145/3092703.3092709
http://dx.doi.org/10.3390/computers7040069
http://dx.doi.org/10.1142/S0218213019500040
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1109/TAAI.2015.7407122
http://dx.doi.org/10.1002/int.1002
http://dx.doi.org/10.1016/j.eswa.2013.01.063
http://dx.doi.org/10.1016/j.eswa.2013.01.063
http://dx.doi.org/10.1142/S0219622018500153
http://dx.doi.org/10.1007/s13369-017-2554-7
http://dx.doi.org/10.1016/j.proeng.2012.01.851
http://dx.doi.org/10.1016/j.proeng.2012.01.851
http://dx.doi.org/10.5121/ijcses.2016.7203

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

20

Wagner, I. A., Lindenbaum, M., & Bruckstein, A. M. (2000). ANTS: Agents, Networks, Trees, and Subgraphs.
In M. Dorigo, G. Di Caro, & T. Stützle (Eds.), Special Issue on Ant Colony Optimization, Future Generation
Computer Systems (pp. 915–926). ACM, North Holland.

Wang, L., Yue, Z., & Hou, H. (2012). Genetic Algorithms and Its Application in Software Test Data Generation.
2012 International Conference on Computer Science and Electronics Engineering .

Aghdam, Z. K. & Arasteh, B. (2017). An Efficient Method to Generate Test Data for Software Structural
Testing Using Artificial Bee Colony Optimization Algorithm. International Journal of Software Engineering
and Knowledge Engineering, 27(06), 951–966

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

21

APPENDIX – A

It provides the screenshots of the tool developed in-house. They are provided in Figure 11, Figure
12 and Figure 13.
(i) Test case generator using qABC
(ii) Sample: Mutation Score of the test cases of student Mark analysis system

Figure 11. Test case generation using qABC

Figure 12. Population generation using qABC

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

22

Figure 13. Mutation score based analysis for effectiveness of test cases

International Journal of Intelligent Information Technologies
Volume 19 • Issue 1

23

D. Jeya Mala is currently working as Associate Professor Senior in the School of Computer Science and Engineering
(SCOPE), Vellore Institute of Technology, Chennai. She has more than 20 years of teaching and research and 4
years of industrial experience. She received her doctorate degree in the area of “Artificial Intelligence in Software
Engineering”. She is listed in the Who’s Who list of SEBASE repository of University College of London, UK for
her research work in the area of Search Based Software Engineering and been invited as a member of Machine
Intelligence Research Labs (MIR Labs). She is selected as an Expert Member of AICTE-NEAT evaluation Committee
2022. To her credits she has received funding support for sponsored research projects, collaborative and number
of consultancy projects. She has published a patent and has published more than 60 papers in reputed, refereed;
SCI and Scopus indexed journals and conferences and book chapters. She has published a MOOC course for
Udemy that has more than 2200 learners’ enrollment. Also, a text book for McGraw Hill publishers and two edited
books for IGI Global USA, more than two course books for universities were published and some are ongoing.
She is the Recipient of “Best Techno Faculty Award 2016” from ICTACT, A Govt Initiative; ‘Poster Awardee for
the year 2016” from Indian Science Congress Assiciaation (DST, Govt.of India), “Best Oral Presentation Award”
from GCGSD 2020, “Certificate of Excellence” and “Top Performer Award” from IIT Bombay etc. She has formed
the reviewer board of several international journals and conferences. She is a member of editorial boards and
technical programme committees of several reputed journals and conferences. Her research interests include
Artificial Intelligence, Software Engineering, Software Test Optimization, Cyber Security and Block Chain.

Ramalakshmi Prabha was a research scholar of Anna University, Chennai. She has the area of interests as Software
Engineering, Software Testing, Intelligent Techniques.

