
DOI: 10.4018/IJISP.319018

International Journal of Information Security and Privacy
Volume 17 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A New Feature Selection Method
Based on Dragonfly Algorithm for
Android Malware Detection Using
Machine Learning Techniques
Mohamed Guendouz, GeCoDe Laboratory, Dr. Moulay Tahar University of Saïda, Saïda, Algeria*

 https://orcid.org/0000-0002-9230-8787

Abdelmalek Amine, GeCoDe Laboratory, Dr. Moulay Tahar University of Saïda, Saïda, Algeria

 https://orcid.org/0000-0001-9327-7903

ABSTRACT

Android is the most popular mobile OS; it has the highest market share worldwide on mobile
devices. Due to its popularity and large availability among smartphone users from all around the
world, it becomes the first target for cyber criminals who take advantage of its open-source nature
to distribute malware through applications in order to steal sensitive data. To cope with this serious
problem, many researchers have proposed different methods to detect malicious applications. Machine
learning techniques are widely being used for malware detection. In this paper, the authors proposed
a new method of feature selection based on the dragonfly algorithm, named BDA-FS, to improve
the performance of Android malware detection. Different feature subsets selected by the application
of this proposed method in combination with machine learning were used to build the classification
model. Experimental results show that incorporating dragonfly algorithm into Android malware
detection performed better classification accuracy with few features compared to machine learning
without feature selection.

Keywords
Android Malware Detection, Dragonfly Algorithm, Feature Selection, Machine Learning

1. INTRODUCTION

Android, the Linux-based open-source mobile operating system is the largest used mobile OS in the
world, it dominates the smartphone OS market with 73% share which makes it the most popular OS in
the world, with over 2.5 billion active users. That success is due to the open-source nature of Android
itself and for the large availability of smartphones that run it on the one hand, and on the other hand,
the large number of apps and games freely available and easily accessible for users. Figure 1 shows
the number of available applications in Google Play Store from December 2009 to March 2022.

https://orcid.org/0000-0002-9230-8787
https://orcid.org/0000-0001-9327-7903

International Journal of Information Security and Privacy
Volume 17 • Issue 1

2

Android applications are mainly available for download on the Google Play Store which is the
official Google app store, and other manufacturer-specific app stores such as: Samsung, Huawei,
Xiaomi. Android applications are also available on many unofficial and unsecure third-party websites
in a form of APK files. Applications downloaded from these third-party websites could be very
dangerous and might contain malware codes since they are not verified by Google or any other device
manufacturer, thus, it is necessary to detect malware applications in order to protect user personal
data and device integrity.

The primary goal of mobile device malware is to gain access to user data stored locally on the
device or on cloud as well as user information used in sensitive financial transactions in mobile banking
apps. Mobile malware can be distributed in a variety of ways, including infected file attachments,
shared files via Bluetooth and SMS phishing attacks. However, the primary malware distribution
channel on mobile devices is currently app stores. According to a recent G DATA’s Mobile Security
Report (G DATA, 2022), the company’s security experts counted more than 2.5 million malware apps
for Android devices in 2021. As a result of these factors, Android malware is becoming increasingly
problematic for both enterprise and individual users.

In order to deal with those dangerous attacks, researchers have proposed various methods and
techniques to effectively detect malware apps on Android. Many of these methods use machine
learning algorithms to classify Android apps into benign or harmful using popular classification
algorithms. One of the most used techniques in literature is to use Android permissions as features
to train and build one or multiple classification models, this type of techniques are known as
permission-based methods.

In permission-based malware detection methods, generally the complete set of features is used
as input for training classification algorithms without prior feature selection, because of the large
number of Android permissions, which can exceed 150 permissions (XU, Zhang & Zhu, 2013), using

Figure 1. Number of Available Applications in the Google Play Store from December 2009 to March 2022

International Journal of Information Security and Privacy
Volume 17 • Issue 1

3

the whole set of features makes training more difficult and can decrease detection accuracy. Feature
selection is an essential stage in all machine learning-based techniques. Obtaining an appropriate
feature set will not only help in enhancing classification accuracy, but will also help in decreasing
the curse of dimensionality associated with most machine learning-based techniques.

In this paper, a novel permission-based machine learning method for Android malware detection
with feature selection using dragonfly optimization algorithm is presented. The main contributions
of this paper are summarized as follows:

•	 5,000 malicious applications from different malware families and 5,000 benign Android
applications from multiple categories were used to generate the dataset.

•	 Android permissions were extracted from each application in the dataset and used to generate
the feature vector.

•	 A new feature selection method based on Dragonfly algorithm was proposed to select the most
relevant permissions for Android malware detection using five machine learning algorithms.

•	 The performance of our proposed system is demonstrated through experiments using various
evaluation metrics.

The rest of this paper is organized as follows. Section 2 explains briefly the related works. Section
3 describes the topics related to our study. In Section 4, the architecture of our proposed system for
Android malware detection is presented. Section 5 presents the experimental settings and Section
6 presents and discusses the experimental results. Finally, the conclusion is presented in Section 7.

2. RELATED WORKS

Recently, many techniques and methods have been proposed to detect Android malware applications
using machine learning techniques. Traditional Android malware analysis approaches can be classified
into three main categories, static, dynamic and hybrid analysis. In this section, we describe briefly
the most relevant proposed approaches according to the analysis method they use.

In static analysis, features are extracted from the application without actually running it, such
as permissions, strings, API calls and opcode sequences. These features are mainly extracted from
.apk files using various reverse engineering tools like Apktool. In (Li et al., 2018), authors proposed
SIGPID, an Android malware detection system based on analyzing permission usage, they proposed
a method to mine the permission data to find the most important permissions that might be useful in
differentiating between benign and malicious apps. Then, they used machine learning techniques to
classify various samples of malware and benign apps, their proposed system achieved a classification
accuracy of 93.62% in detecting Android malwares. (Sanz et al., 2013) also used extracted permissions
to train multiple machine learning classifiers like decision trees, random forest, naïve bayes and
SVM on a dataset that consists of 357 benign applications and 249 malware sample. Random forest
achieved the best results with 92.00% of classification accuracy.

In (Aafer, Du & Yin, 2013), authors generated relevant features by analyzing API-Level call
traces to classify benign and malware apps. Then, they a number of machine learning techniques
to classify benign and malware apps. As a result, their system achieved a classification accuracy of
99% using K-NN classifier.

In (Arp, Spreitzenbarth et al., 2014), authors proposed DREBIN, which is an on-device Android
malware detection system. The authors extracted various static features from manifest file such as
hardware components, permissions and intents. And also, other features from the disassembled code
like restricted and suspicious API calls and network addresses. Authors have used SVM classifier
for the classification process, results showed that SVM performed a classification accuracy of 94%.
Static analysis approaches are not limited only to permissions analysis but also to other features of
Android applications like API call (Shen et al., 2018; Mariconti et al., 2016), opcode sequence (Chen

International Journal of Information Security and Privacy
Volume 17 • Issue 1

4

et al., 2018; McLaughlin et al., 2017), function call graphs (Gascon et al., 2013; Gao et al., 2018) and
the combination of that features (Li, Wang & Xue, 2018; Wang et al., 2018).

In dynamic analysis, features are generated from runtime behaviors of Android applications
by running them on real devices or emulators. Such dynamic features are system calls, API call,
network traffic and CPU usage. For example, authors in (Canfora et al., 2015) used sequence of
system calls and machine learning to automatically detect malware applications, their proposed
achieved good detection results with 97% of classification accuracy. In (Wu & Hung, 2014), authors
extracted sensitive API call traces from Android applications and applied n-gram model to represent
the features. Then, they implemented an SVM classifier to build their malware detection model.
Evaluation results showed that their proposed method reached a classification accuracy of 86.1%.
Some researchers proposed the combination of multiple dynamic features to build the malware
classifier such as combing network traffic, CPU usage and System call (Shabtai et al., 2012; Alam
& Vuong, 2013; Afonso et al., 2015; Cai et al., 2018).

On the other hand, hybrid analysis consists of combining both static and dynamic analysis to detect
Android malware applications. For example, authors in (Yuan et al., 2014) combined permissions and
API calls with network data and dynamic behavior of applications to detect malwares using machine
learning algorithms. In (Martinelli, Mercaldo & Saracino, 2017), authors used permissions, opcode
sequence and app store information in combination with System call and SMS usage.

3. BACKGROUND

This section presents a detailed overview of some concepts from literature related to our study
including: Android permissions, feature extraction, the Dragonfly algorithm and finally some machine
learning algorithms used in our study.

3.1 Android Permission System
Android applications are installed as a compressed archive file called APK, the Android application
package (APK) file of a third-party application is very similar to a compressed ZIP file. It stores all
the contents of the application, including the compiled source code in a DEX format, app’s resources
like strings, images and colors, and the manifest file named AndroidManifest.xml. The manifest file
defines the user permissions required by the application.

Permissions are the pillar of security mechanisms in Android, they control access to critical APIs
that perform sensitive operations on hardware components and user’s personal data, such operations
include: camera access, device location, voice calls, emails and SMS. Every Android application
must declare the permissions it needs in advance, the user is informed about the declared permissions
during installation time or at runtime so he can grant or deny the application from a certain permission.
Permissions are classified into two protection levels, normal and dangerous.

Normal permissions represent relatively minimal danger to the privacy of the user, they are
automatically granted at install time by the permissions system. Such permissions are ACCESS_
NETWORK_STATE and INTERNET. On the other hand, dangerous permissions have the ability to
significantly impact the user’s stored data, operation’s workflow of other installed applications or the
device itself. Dangerous permissions are requested as they are needed while the app is running and
the application that need them must verify whether or not it has those permissions every time it runs,
because the user can withdraw the permissions at any moment. For instance, CAMERA, READ_SMS
and WRITE_EXTERNAL_STORAGE are examples of dangerous permissions.

3.2 Feature Selection
In machine learning systems, the large number of features, which are often unrelated or redundant,
creates several issues, such as confounding the learning algorithm, over-fitting models, and decreasing
the classification accuracy. The primary goal of feature selection is to choose the most significant

International Journal of Information Security and Privacy
Volume 17 • Issue 1

5

features or attributes from a large number of possible features in order to achieve equivalent or even
greater classification accuracy than if all the original features were used.

In general, feature selection methods are classified into three main types: filter, wrapper and
embedded methods (Liu & Motoda, 1998). In filter-based approaches, the algorithm evaluates the
quality of each feature in the dataset separately outside of the training phase. Features are then ordered
downward according to their individual score and then some certain top features are selected. In
wrapper-based methods the quality of features relies on the performance of a learning algorithm,
in this type of methods, the algorithm uses a search strategy to look for a subset of features from
the original dataset, then it trains a learning algorithm using only those selected features, based on
the outcomes of the learning algorithm, the most highly evaluated features are selected. Embedded
methods do both feature selection and algorithm training in the same phase.

In this paper, a wrapper-based feature selection method using a binary version of the dragonfly
optimization algorithm was proposed for Android malware detection.

3.3 Dragonfly Algorithm (DA)
Dragonfly algorithm (DA) is one of the most recent and interesting nature-inspired swarm intelligence
meta-heuristic optimization algorithm proposed by Mirjalili (Mirjalili, 2016). The DA, as its name
suggests, it is inspired from the static (hunting) and dynamic (migration) swarming behaviors of
dragonflies, these two proprieties constitute the base of the exploration and exploitation phases of
DA, respectively, which are two essential operations in meta-heuristic optimization. The exploration
phase is designed by the static swarming behavior of dragonflies, in this phase, dragonflies make small
groups and fly over different areas looking for food. The exploration phase, however, is inspired from
the dynamic swarming behavior, in this phase, dragonflies fly in larger groups over long distances
towards one area or direction in order to migrate.

In order to model the swarm behaviors of dragonflies, five basic individual behaviors are used
as follows:

•	 Separation represents how individuals are separated from other individuals in the neighborhood
to avoid collision. This behavior is mathematically modeled as follows:

S X X
i

j

N

j
= − −

=
∑� �

1

	 (1)

where X is the position of the current individual and Xj is the position of the j-th neighbor of X. N
is the total number of neighboring individuals.

•	 Alignment indicates how an individual matches its velocity with the velocity of other neighboring
individuals, and it is expressed as follows:

A
V

Ni

j

N

j
= =∑ 1 	 (2)

where Vj is the velocity of the j-th individual.

•	 Cohesion represents the attraction of individuals towards the center of the swarm. It is defined
as follows:

International Journal of Information Security and Privacy
Volume 17 • Issue 1

6

C
Xj

N
X

i

j

N

= −=∑ 1 	 (3)

•	 Attraction refers to the attraction of individuals towards food source. The attraction between
individual i and the food source is calculated using the following equation:

F F X
i loc
= − 	 (4)

where Floc represents the location of the food source.

•	 Distraction refers to the avoidance of enemies by an individual dragonfly and it is calculated
as follows:

E E X
i loc
= + 	 (5)

where Eloc denotes the position of the enemy.
In order to simulate the movements of dragonflies and update their position in a search space,

the DA uses two vectors: the step vector (∆X) and the position vector (X). The step vector is similar
to the velocity vector used in the Particle Swarm Optimization (PSO) algorithm () and it is updated
as follows:

∆ ∆X sS aA cC fF eE w X
t i i i i i t+ = + + + +()−1

	 (6)

where s, a, c, f, e represents the weights of the separation, alignment, cohesion, attraction and distraction
of the i-th individual, respectively, w denotes the inertia weight, and t represents iteration number.
Using these weights, the DA can simulate different exploration exploitation behaviors during the
optimization process.

The new position of the i-th individual is calculated as follows:

X X X
t t t+ += +
1 1

∆ 	 (7)

where t is the current iteration.
Algorithm 1 represents the pseudo code of the original dragonfly algorithm.

Algorithm 1. The pseudo code of the Dragonfly Algorithm

Initialize the population of the artificial dragonflies Xi (i=1, 2, 3, …,n)
Initialize step vectors ∆Xi (i=1, 2, 3, …, n)
While (termination criteria is not met) do
 Evaluate all individuals by calculating their fitness values
 Update F and E
 Update the weights: s, a, c, f, e and w
 Calculate S, A, C, F and E
 Update step vectors (∆Xt+1)
 Update position vectors (Xt+1)
End While.

International Journal of Information Security and Privacy
Volume 17 • Issue 1

7

The dragonfly algorithm was originally designed to handle continues optimization problems.
In this type of problems, the search space contains continues numerical values and the new position
of individuals is updated by adding the velocity vector to the current position of the individual. This
mechanism cannot be used to deal with binary optimization problems like feature selection.

In binary optimization problems, the position of an individual is updated by replacing one or
more bits of the individual’s position vector with a value of 0 or 1. The original version of the DA is
converted to a binary version without making any modifications to its structure by using a transfer
function (). A transfer function calculates the probability of changing one bit of the individual to 0
or 1 based on the step vector of that individual. In our proposed method, we calculate the probability
of changing the individual’s position by using the following transfer function:

T X
X

X
∆

∆

∆
() =

+1 2
	 (8)

The value of T(∆X) is then used to update the position of the current individual as follows:

X
X r T X

X r T Xt
t t

t t
+

+

+

=
¬ < ()

≥ ()







1
1

1

∆

∆
	 (9)

3.4 Machine Learning Algorithms
In order to assess the performance of our proposed method, five different machine learning based
classification models were used in this study. These algorithms were used in combination with the
dragonfly algorithm for selecting the best features to increase the classification accuracy of the
Android malware detection system. The following section describes the used classification models:

•	 Decision Trees (DT): Decision Tree (DT) is a popular supervised machine learning technique
used generally for both classification and regression. The DT algorithm builds a classification
model to predict the correct class of a data instance by creating a tree-like structure using basic
decision rules inferred from data features. This algorithm has grown popularity because of its
simplicity and its achievement of good accuracy results in classification problems. C4.5, also
called J48, is the most popular implementation of the DT algorithm (Quinlan, 1996) and it’s the
one used in this study.

•	 Random Forest (RF): RF is a supervised classification method based on the decision trees
algorithm (Liaw & Wiener, 2002). It consists of a number of uncorrelated decision tree classifiers
trained on various subsets of the dataset and uses average voting to improve classification accuracy
and reduce overfitting phenomenon.

•	 K-Nearest neighbor classifier (KNN): The K-NN algorithm (Larose & Larose, 2005) works
by finding a predefined number of samples, called neighbors, that are closest in distance to the
current sample, and predict the class of that sample as the most aggregated class of its neighbors.

•	 Naïve Bayes (NB): The naïve bayes algorithm is a probabilistic supervised machine learning
algorithm based on the Bayes Theorem of conditional probability (Murphy, 2006). The algorithm
estimates the probability of each class label for a specific data instance, and the class with the
highest probability is considered to be more likely the class label of that instance.

•	 Support Vector Machine (SVM): SVM, also known as Support Vector Network (SVN), is a
supervised machine learning model for binary classification. The idea behind SVM is to create a
hyperplane that can separate instances of two data classes as far as possible (Cortes & Vapnik, 1995).

International Journal of Information Security and Privacy
Volume 17 • Issue 1

8

4. METHODOLOGY

This section presents a detailed overview of our proposed classification system. The general
methodology of the proposed Android malware detection system is described in Figure 2. The proposed
approach is divided into three stages: (1) feature extraction, (2) feature selection and (3) machine
learning classification of benign/malware apps. In the first step, permissions declared by both benign
and malware Android apps are extracted directly from APK files and converted to a feature vector.

In the second stage, pertinent features are selected from the original feature vector of the extracted
permissions using the dragonfly algorithm in combination with various machine learning classifiers,
features are selected based on their performance in classification accuracy. In the last step, various
machine learning classifiers are trained using the selected features in the past stage, and then evaluated
and compared to each other.

4.1 Android Malware Dataset Creation
The dataset used in this paper consists of 5,000 malicious and 5000 benign Android applications.
Android malware applications were taken from the DREBIN Android Malware Dataset (Arp et al.,
2014). DREBIN dataset has been widely used by so many researchers in recent years, it consists of
5,560 Android applications from 179 different malware families.

The benign Android applications were downloaded from the APKCombo website
(APKCombo, 2018), which is the largest APK store with more than 8 million Android applications
and games. In this study, top Android applications from various categories were downloaded
and taken as benign samples.

4.2 Feature Extraction
According to recent researches, permissions, among other static and hybrid features extracted from
APKs, are considered to be the most relevant features in Android malware detection. In this study,
we use permissions extracted from each benign and malware app in the dataset as features or data
attributes in the classification.

Figure 2. The Architecture of the Proposed Methodology

International Journal of Information Security and Privacy
Volume 17 • Issue 1

9

In order to extract permissions from APKs, we used the AAPT2 (Android Asset Packaging Tool)
from Google (Google, 2022). AAPT2 is a command-line build tool primarily used to compile and
generate the APK file from a project’s source code, but it is also used to extract some information
from production-ready APKs like: package name, strings and most importantly permissions. The
feature extraction phase works as follows: first, the requested permissions are extracted from each
APK file in the dataset using AAPT2 dump command, then, a pair application/list of permissions is
created for each application. At the end, the feature vector is generated for each application which
consists of the pair: application/list of all permissions, this feature vector indicates the use of each
permission by the application with 1 or 0, a value of 1 means that the permission is declared inside
the APK file, and 0 means otherwise. Figure 3 shows an example of the output result of that command
on a malicious sample.

4.3 Feature Selection With the Binary Dragonfly Algorithm
Feature selection plays an important role in machine learning classification. A good feature selection
can improve significantly the classification accuracy and detection rate of Android malware by keeping
the most relevant features and removes the unnecessary features that are not useful.

In this paper, we propose a new wrapper-based feature selection method based on a binary
Dragonfly Algorithm. The feature selection problem is considered as a binary search space optimization
problem, which require encoding individual solutions as a binary vector, each position in the vector
can take the value of 0 or 1. In our proposed method, a value of 0 means that the corresponding
permission is not used for classification, and a value of 1 means the opposite, the permission will be
used in classification. The length of the binary vector representing possible solutions is equal to the
total number of features in the dataset.

In order to apply the dragonfly algorithm on the feature selection problem, we have used a
binary version of the original algorithm by incorporating a transfer function to change the position
of individuals from a continuous search space to a binary search space as discussed in Section 3.3.

Figure 3. Output Result of AAPT2 Dump Permissions Command

International Journal of Information Security and Privacy
Volume 17 • Issue 1

10

In our proposed method, in order to find the optimal features subset, features (permissions) are
evaluated according to the following fitness function:

Fitness X ErrorRate C S
n

Ni i() = × ()+ ×α β, 	 (10)

where Xi is the i-th individual, Si is the corresponding feature subset of Xi and C is a machine learning
classifier. ErrorRate(C, Si) represents the classification error rate obtained by classifier C using the
feature subset Si. n is the number of selected features and N is the total number of features in the dataset.
α and β are two tuning parameters corresponding to the importance of classification performance and
the number of features. α is fixed between 0 and 1 and β=1- α. In this paper we fixed α as 0.9 because
the classification performance is slightly more important than the number of features.

Algorithm 2 shows the pseudo code of our proposed algorithm for feature selection with
dragonfly algorithm.

4.4 Malware Classification Using Machine Learning Classifiers
We used five supervised machine learning algorithms to perform the feature selection using binary
dragonfly algorithm. We also used the same five algorithms to conduct experiments on the dataset
without using feature selection and compared the results with our proposed approach. The used
algorithms are Decision Tree, Random Forest, Naïve Bayes, K-NN and SVM.

5. EXPERIMENTAL STUDY

This section describes briefly the technique used for evaluating our proposed method, the parameters
used for each algorithm and the evaluation metrics used to evaluate the performance of the proposed
Android malware detection system.

5.1 Experiment Settings
In this study, the K-fold cross-validation technique was used to prepare training and testing sets
(Kohavi, 1995). The dataset was randomly sliced into 10 sub-datasets of equal size, and our proposed
method was trained 10 times. Each time, one subset is used for testing, and the remaining 9 sub-
datasets are used for training.

Our proposed feature selection algorithm was executed 30 times with random seed on an Apple
MacBook Pro machine with 2.7 GHz Intel Core i5 processor and 8GB of RAM. We used the Python

Algorithm 2. The pseudo code of the proposed feature selection algorithm (BDA-FS)

Input: D, the dataset consisting of N permission features
Output: V, Optimal subset of features of D
 (1) Initialize the population of the artificial dragonflies Xi (i=1, 2, 3, …,n)
 (2) Initialize step vectors ∆Xi (i=1, 2, 3, …, n)
While (termination criteria is not met) do
 Evaluate all individuals by calculating their fitness values using (10)
 Update F and E using equations (4) and (5)
Update the weights: s, a, c, f, e and w
Calculate S, A, C, F and E using equations (1) to (5)
Update step vectors (∆Xt+1) using equation (6)
Calculate T(Δx) using equation (8)
Update position vectors Xt+1 using equation (9)
End While.

International Journal of Information Security and Privacy
Volume 17 • Issue 1

11

programming language and scikit-learn library for our implementation. The parameter settings of
dragonfly algorithm and other machine learning algorithms are shown in Table 1.

Figure 4 shows a portion of the Python script used to train and evaluate machine learning classifiers.

5.2 Evaluation Metrics
In machine learning, binary classification results can be represented by a confusion matrix (Costa
et al., 2007). A confusion matrix contains different type of errors made by a classification model.
Table 2 shows the general format of a confusion matrix and its content.

Table 1. Parameter settings

Algorithm Parameter Value

Binary Dragonfly Algorithm (BDA)

Population size 50

Number of iterations 100

Dimension of individual Total number of features
(permissions)

α in fitness function 0.99

β in fitness function 0.01

Decision Tree (DT) criterion gini

Random Forest (RF) n_estimators: The number of trees in
the forest. 100

Support Vector Machine (SVM) kernel RBF

Figure 4. Python Script for Classification

Table 2. Confusion Matrix

Actual class

Positive (Malware) Negative (Benign)

Predicted class
Positive (Malware) True Positive (TP) False Positive (FP)

Negative (Benign) False Negative (FN) True Negative (TN)

True Positive (TP): the number of malicious applications correctly classified as Android malware.
False Positive (FP): the number of benign applications incorrectly classified as malicious applications.
False Negative (FN): the number of Android malware applications predicted as benign.
True Negative (TN): the number of benign applications correctly detected as benign.

International Journal of Information Security and Privacy
Volume 17 • Issue 1

12

The following evaluation metrics are derived from the confusion matrix:

•	 Accuracy: Represents the percentage of total correctly classified applications. It is defined as
follows:

Accuracy
TP TN

TP FP FN TN
=

+
+ + +

	

•	 Precision: represents the percentage of correct positive predictions relative to total positive
predictions. It is defined as follows:

Precision
TP

TP FP
=

+
	

•	 Recall: represents the percentage of correct positive predictions relative to total actual positives.
It is defined as follows:

Recall
TP

TP FN
=

+
	

•	 F1 Score: a weighted harmonic mean of precision and recall. The closer to 1, the better the
model. F1 score is defined by the following equation:

F
Precision Recall

Precision Recall
1

2
=
× ×

+
	

6. RESULTS AND DISCUSSION

This section shows and discusses the evaluation results obtained by our proposed method for Android
malware detection.

6.1 Accuracy, Number of Selected Features and Training Time
In order to validate the effectiveness of our proposed feature selection method on the classification
results, we firstly evaluated each machine learning classifier in term of accuracy using a 10-fold cross-
validation. The average accuracy and the training time obtained by each classifier without feature
selection and with feature selection using our proposed method in addition to training time taken by
each algorithm to build the classification model are summarized in Table 3.

As presented in Table 3, accuracy values indicate that Random Forest (RF) algorithm had the
best performance among all algorithms on classifying benign and malicious Android applications
without using feature selection. The average accuracy achieved by RF algorithm is 96.52%. Decision
Tree (DT) and SVM algorithms have achieved almost the same classification accuracy. On the other
hand, Naïve Bayes and K-NN performed badly on detecting malwares. They have achieved the lowest
classification accuracies among all other algorithms.

Regarding the average time taken by each algorithm to build the classification model, Table 3
shows that the five algorithms have achieved different training time values. We noticed that SVM

International Journal of Information Security and Privacy
Volume 17 • Issue 1

13

algorithm took longer time to build the classification model among all other algorithms, this is due
to its linear and the large number of computational operations it needs to accomplish the work.

Tables 3 clearly shows the impact of our proposed feature selection method on improving both
classification accuracy and training time and also in reducing the number of features. For instance,
the classification accuracy values of Naïve Bayes and K-NN algorithms were significantly improved
after integrating our proposed feature selection method to both of them, their accuracy values were
increased by 25.14% and 6.18% respectively. The accuracy values of Decision Tree and Random
Forest algorithms were also enhanced a little bit. However, their training time has been reduced
significantly, the two algorithms took exactly 0.02s and 0.70s respectively to build their classification
models using small feature subsets selected by our proposed method (17 for DT and 30 for RF).
Alternatively, the classification performance of SVM has been impacted in a negative way, SVM’s
accuracy value was reduced by 0.88% but its training time was significantly enhanced. SVM took
exactly 2.80s in place of 8.46s to build its classification model using only 41 features from a total of
114 features in the original dataset. Figure 5 demonstrates the impact of our feature selection method
on the classification accuracy of all algorithms.

Talking about the performance of feature selection itself, Table 3 shows that the Decision Tree
algorithm had the most significant result with 17 selected permissions.

6.2 Precision, Recall and F1-Score
To further investigate the overall performance of machine learning algorithms used in this study, we
evaluated them in terms of precision, recall and F-Score. Table 4 presents obtained results by each
machine learning classifier before and after integrating our proposed BDA-FS method. Results shown
in Table 4 aggregate the previous results and corroborate the positive impact of our proposed method
on enhancing Android malware detection.

Based on the data shown in Table 4, we made charts to compare the F1-Score obtained by each
classifier before and after feature selection. Figure 6 shows a graph of the F1-Score.

7. CONCLUSION

In this paper, we have proposed a new feature selection method based on a binary Dragonfly
Algorithm, called BDA-FS, for Android malware detection using machine learning techniques
for classification. In this study, permissions extracted from Android applications using the
AAPT2 tool were used as feature vectors for five supervised machine learning algorithms
(Decision Tree, Random Forest, Support Vector Machine, Naïve Bayes and K Nearest
Neighbors). In order to evaluate the performance of our proposed method, we have compared

Table 3. Performance Comparison of Each Classifier in Term of Accuracy, Training Time and the Number of Selected Features
Before and After Feature Selection

Algorithm

Without feature selection With proposed BDA-FS

Accuracy (%) Training Time Accuracy (%) Training Time
Number

of selected
features

Decision Tree (DT) 95.48 0.44s 95.29 0.02s 17

Random Forest (RF) 96.52 2s 96.33 0.70s 30

SVM 95.19 8.46s 94.31 2.80s 41

Naïve Bayes 58.97 0.47s 84.11 0.05s 52

K-NN 88.20 0.39s 94.38 0.22s 34

International Journal of Information Security and Privacy
Volume 17 • Issue 1

14

classification performance results of each classifier without using feature selection at all and
with using DBA-FS method. Experimental results show that the combination of Random Forest
with our proposed Dragonfly algorithm for feature selection achieved the best performance so
far with an accuracy of 96.33% using only 30 features from a total of 114 features in the original
dataset. Results also demonstrate that our proposed method has improved the performance of
other algorithms in term of accuracy, training time and selected features.

This study confirmed that our proposed BDA-FS method can significantly improve the
performance of machine learning techniques for Android malware detection by increasing the
classification accuracy, reducing the feature space and improving training time.

Figure 5. Average Accuracy Obtained by Each Classifier Before and After Feature Selection

Table 4. Precision, Recall and F1-Score results obtained by each classifier with and without feature selection

Algorithm
Without feature selection With proposed BDA-FS

Precision Recall F1 Score Precision Recall F1 Score

Decision Tree
(DT) 0.948 0.928 0.938 0.953 0.953 0.953

Random Forest
(RF) 0.970 0.934 0.952 0.963 0.963 0.963

SVM 0.974 0.893 0.932 0.9497 0.8935 0.9207

Naïve Bayes 0.473 0.988 0.640 0.725 0.918 0.929

K-NN 0.776 0.957 0.857 0,944 0,944 0.944

International Journal of Information Security and Privacy
Volume 17 • Issue 1

15

CONFLICT OF INTEREST

The authors of this publication declare there is no conflict of interest.

FUNDING AGENCY

This research received no specific grant from any funding agency in the public, commercial, or not-
for-profit sectors.

Figure 6. F1-Score Results of Each Classifier Before and After Feature Selection

International Journal of Information Security and Privacy
Volume 17 • Issue 1

16

REFERENCES

Aafer, Y., Du, W., & Yin, H. (2013, September). Droidapiminer: Mining api-level features for robust malware
detection in android. In International conference on security and privacy in communication systems (pp. 86-
103). Springer, Cham.

Afonso, V. M., de Amorim, M. F., Grégio, A. R. A., Junquera, G. B., & de Geus, P. L. (2015). Identifying Android
malware using dynamically obtained features. Journal of Computer Virology and Hacking Techniques, 11(1),
9–17. doi:10.1007/s11416-014-0226-7

Alam, M. S., & Vuong, S. T. (2013, August). Random forest classification for detecting android malware. In
2013 IEEE international conference on green computing and communications and IEEE Internet of Things and
IEEE cyber, physical and social computing (pp. 663-669). IEEE.

APKCombo. (2018). APKCombo. APK Combo. https://apkcombo.com/

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R. T. (2014, February).
Drebin: Effective and explainable detection of android malware in your pocket. In Ndss (Vol. 14, pp. 23-26).

Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011, October). Crowdroid: behavior-based malware detection
system for android. In Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile
devices (pp. 15-26). ACM. doi:10.1145/2046614.2046619

Cai, H., Meng, N., Ryder, B., & Yao, D. (2018). Droidcat: Effective android malware detection and categorization
via app-level profiling. IEEE Transactions on Information Forensics and Security, 14(6), 1455–1470. doi:10.1109/
TIFS.2018.2879302

Canfora, G., Medvet, E., Mercaldo, F., & Visaggio, C. A. (2015, August). Detecting android malware using
sequences of system calls. In Proceedings of the 3rd International Workshop on Software Development Lifecycle
for Mobile (pp. 13-20). IEEE. doi:10.1145/2804345.2804349

Chan, P. P., & Song, W. K. (2014, July). Static detection of Android malware by using permissions and API calls.
In 2014 International Conference on Machine Learning and Cybernetics (Vol. 1, pp. 82-87). IEEE. doi:10.1109/
ICMLC.2014.7009096

Chen, T., Mao, Q., Yang, Y., Lv, M., & Zhu, J. (2018). Tinydroid: a lightweight and efficient model for android
malware detection and classification. Mobile information systems, 2018.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. doi:10.1007/
BF00994018

Costa, E., Lorena, A., Carvalho, A. C. P. L. F., & Freitas, A. (2007, July). A review of performance evaluation
measures for hierarchical classifiers. In Evaluation methods for machine learning II: Papers from the AAAI-
2007 workshop (pp. 1-6).

G DATA. (2022, June 2). G DATA Mobile Security Report. G Data. https://www.gdatasoftware.com/
news/2022/02/37321-g-data-mobile-security-report-more-than-25-million-new-malware-apps-for-android-
devices

Gao, T., Peng, W., Sisodia, D., Saha, T. K., Li, F., & Al Hasan, M. (2018). Android malware detection via graphlet
sampling. IEEE Transactions on Mobile Computing, 18(12), 2754–2767. doi:10.1109/TMC.2018.2880731

Gascon, H., Yamaguchi, F., Arp, D., & Rieck, K. (2013, November). Structural detection of android malware
using embedded call graphs. In Proceedings of the 2013 ACM workshop on Artificial intelligence and security
(pp. 45-54). IEEE. doi:10.1145/2517312.2517315

Google. (n.d.). AAPT2 (Android Asset Packaging Tool). Google. https://developer.android.com/studio/command-
line/aapt2

Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection.
In Ijcai, 14(2), 1137-1145).

Larose, D. T., & Larose, C. D. (2005). K-nearest neighbor algorithm. Discovering knowledge in data: An
introduction to data mining, 90, 106.

http://dx.doi.org/10.1007/s11416-014-0226-7
https://apkcombo.com/
http://dx.doi.org/10.1145/2046614.2046619
http://dx.doi.org/10.1109/TIFS.2018.2879302
http://dx.doi.org/10.1109/TIFS.2018.2879302
http://dx.doi.org/10.1145/2804345.2804349
http://dx.doi.org/10.1109/ICMLC.2014.7009096
http://dx.doi.org/10.1109/ICMLC.2014.7009096
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018
https://www.gdatasoftware.com/news/2022/02/37321-g-data-mobile-security-report-more-than-25-million-new-malware-apps-for-android-devices
https://www.gdatasoftware.com/news/2022/02/37321-g-data-mobile-security-report-more-than-25-million-new-malware-apps-for-android-devices
https://www.gdatasoftware.com/news/2022/02/37321-g-data-mobile-security-report-more-than-25-million-new-malware-apps-for-android-devices
http://dx.doi.org/10.1109/TMC.2018.2880731
http://dx.doi.org/10.1145/2517312.2517315
https://developer.android.com/studio/command-line/aapt2
https://developer.android.com/studio/command-line/aapt2

International Journal of Information Security and Privacy
Volume 17 • Issue 1

17

Li, D., Wang, Z., & Xue, Y. (2018, May). Fine-grained android malware detection based on deep learning.
In 2018 IEEE Conference on Communications and Network Security (CNS) (pp. 1-2). IEEE. doi:10.1109/
CNS.2018.8433204

Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., & Ye, H. (2018). Significant permission identification for machine-
learning-based android malware detection. IEEE Transactions on Industrial Informatics, 14(7), 3216–3225.
doi:10.1109/TII.2017.2789219

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.

Liu, H., & Motoda, H. (Eds.). (1998). Feature extraction, construction and selection: A data mining perspective
(Vol. 453). Springer Science & Business Media. doi:10.1007/978-1-4615-5725-8

Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., & Stringhini, G. (2016). Mamadroid:
Detecting android malware by building markov chains of behavioral models. arXiv:1612.04433.

Martinelli, F., Mercaldo, F., & Saracino, A. (2017, April). Bridemaid: An hybrid tool for accurate detection
of android malware. In Proceedings of the 2017 ACM on Asia conference on computer and communications
security (pp. 899-901). ACM. doi:10.1145/3052973.3055156

McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., & Joon Ahn, G. (2017,
March). Deep android malware detection. In Proceedings of the seventh ACM on conference on data and
application security and privacy (pp. 301-308). ACM. doi:10.1145/3029806.3029823

Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-
objective, discrete, and multi-objective problems. Neural Computing & Applications, 27(4), 1053–1073.
doi:10.1007/s00521-015-1920-1

Murphy, K. P. (2006). Naive bayes classifiers. University of British Columbia, 18(60), 1-8.

Quinlan, J. R. (1996). Learning decision tree classifiers. [CSUR]. ACM Computing Surveys, 28(1), 71–72.
doi:10.1145/234313.234346

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P. G., & Álvarez, G. (2013). Puma: Permission
usage to detect malware in android. In International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special
Sessions (pp. 289-298). Springer, Berlin, Heidelberg.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2012). “Andromaly”: A behavioral malware
detection framework for android devices. Journal of Intelligent Information Systems, 38(1), 161–190. doi:10.1007/
s10844-010-0148-x

Shen, F., Del Vecchio, J., Mohaisen, A., Ko, S. Y., & Ziarek, L. (2018). Android malware detection
using complex-flows. IEEE Transactions on Mobile Computing, 18(6), 1231–1245. doi:10.1109/
TMC.2018.2861405

Wang, W., Gao, Z., Zhao, M., Li, Y., Liu, J., & Zhang, X. (2018). DroidEnsemble: Detecting Android malicious
applications with ensemble of string and structural static features. IEEE Access: Practical Innovations, Open
Solutions, 6, 31798–31807. doi:10.1109/ACCESS.2018.2835654

Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., & Zhang, X. (2014). Exploring permission-induced risk in
android applications for malicious application detection. IEEE Transactions on Information Forensics and
Security, 9(11), 1869–1882. doi:10.1109/TIFS.2014.2353996

Wu, W. C., & Hung, S. H. (2014, October). DroidDolphin: a dynamic Android malware detection framework
using big data and machine learning. In Proceedings of the 2014 Conference on Research in Adaptive and
Convergent Systems (pp. 247-252). ACM. doi:10.1145/2663761.2664223

Xu, W., Zhang, F., & Zhu, S. (2013, November). Permlyzer: Analyzing permission usage in android
applications. In 2013 IEEE 24th International Symposium on Software Reliability Engineering (ISSRE)
(pp. 400-410). IEEE.

Yuan, Z., Lu, Y., Wang, Z., & Xue, Y. (2014, August). Droid-sec: deep learning in android malware detection. In
Proceedings of the 2014 ACM conference on SIGCOMM (pp. 371-372). ACM. doi:10.1145/2619239.2631434

http://dx.doi.org/10.1109/CNS.2018.8433204
http://dx.doi.org/10.1109/CNS.2018.8433204
http://dx.doi.org/10.1109/TII.2017.2789219
http://dx.doi.org/10.1007/978-1-4615-5725-8
http://dx.doi.org/10.1145/3052973.3055156
http://dx.doi.org/10.1145/3029806.3029823
http://dx.doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.1145/234313.234346
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1109/TMC.2018.2861405
http://dx.doi.org/10.1109/TMC.2018.2861405
http://dx.doi.org/10.1109/ACCESS.2018.2835654
http://dx.doi.org/10.1109/TIFS.2014.2353996
http://dx.doi.org/10.1145/2663761.2664223
http://dx.doi.org/10.1145/2619239.2631434

International Journal of Information Security and Privacy
Volume 17 • Issue 1

18

Mohamed Guendouz received his Bachelor’s degree in computer science from the Dr.Tahat Moulay University of
Saïda, Algeria in 2012, he received his Master’s degree from the same university. Now, Mohamed Guendouz is a
PhD student at Dr. Tahar Moulay University of Saïda and a researcher at the GeCoDe Research Laboratory, he
works on Big Data and Social Networks Analysis, he participated in several international conferences in Algeria
as an Author.

Abdelmalek Amine received an engineering degree in Computer Science, a Magister diploma in Computational
Science and PhD from Djillali Liabes University in collaboration with Joseph Fourier University of Grenoble.
His research interests include big data, IoT, data mining, text mining, ontology, classification, clustering, neural
networks, and biomimetic optimization methods. He participates in the program committees of several international
conferences and on the editorial boards of international journals. Prof. Amine is the head of GeCoDe-knowledge
management and complex data-laboratory at UTM University of Saida, Algeria; he also collaborates with the
“knowledge base and database” team of TIMC laboratory at Joseph Fourier University of Grenoble.

