
DOI: 10.4018/IJISP.319019

International Journal of Information Security and Privacy
Volume 17 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Super-Resolution Reconstruction of 
Remote Sensing Images Based on 
Symmetric Local Fusion Blocks
Xinqiang Wang, Tianjin Sino-German University of Applied Sciences, China*

 https://orcid.org/0000-0002-8230-482X

Wenhuan Lu, Tianjin University, China

ABSTRACT

In view of the rich information and strong autocorrelation of remote sensing images, a super-resolution 
reconstruction algorithm based on symmetric local fusion blocks is proposed using a convolutional 
neural network based on local fusion blocks, which improves the effect of high-frequency information 
reconstruction. By setting local fusion in the residual block, the problem of insufficient high-frequency 
feature extraction is alleviated, and the reconstruction accuracy of remote sensing images of deep 
networks is improved. To improve the utilization of global features and reduce the computational 
complexity of the network, a residual method is used to set the symmetric jump connection between 
the local fusion blocks to form the symmetry between them. Experimental results show that the 
reconstruction results of 2-, 3-, and 4-fold sampling factors on the UC Merced and nwpu-resisc45 
remote sensing datasets are better than those of comparison algorithms in image clarity and edge 
sharpness, and the reconstruction results are better in objective evaluation and subjective vision.
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1. INTRodUCTIoN

Image super-resolution reconstruction aims to reconstruct high-resolution images with richer details 
from single or multiple low-resolution images. It has broad application prospects in public security 
surveillance, medical image imaging, satellite remote sensing, and other fields. In the field of satellite 
remote sensing, high-resolution (HR) images with rich texture details are particularly important in 
target detection and recognition (Ding et al., 2016; Wu et al., 2015; Cui et al., 2018), disaster monitoring 
(Shamsolmoali et al., 2019), land cover classification (Michael et al., 2018), and the processing and 
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analysis of remote sensing images. Remote sensing image is huge and widely used, including some 
confidential information and special features. The application in urban public security mainly includes 
traffic system, emergency system, public security emergencies, etc. It is one of the important means 
to obtain information in urban construction. In remote sensing image acquisition, it is impossible to 
obtain high-resolution images due to the limitation of imaging conditions in the detection imaging 
system. Many researchers use algorithms to obtain higher-resolution images. The traditional super-
resolution reconstruction algorithm has limited feature extraction and expression ability, resulting in 
a poor image effect. Therefore, the efficient reconstruction of high-quality, high-resolution images 
to meet the application requirements in satellite remote sensing is a concern.

2. BACKGRoUNd

ISR reconstruction algorithms include difference-based (Bätz, Eichenseer et al., 2015; Wei, 2016), 
reconstruction-based (Papyan & Elad, 2015; Xu et al., 2013), and learning-based (Lai et al., 2017; 
Wang et al., 2022) methods. While simple and effective, the classical difference-based method relies 
heavily on prior knowledge of natural images, resulting in obvious jagged edges of reconstructed 
images and limited restoration of detailed information. The reconstruction-based approach utilizes 
powerful image priori, such as non-local self-similar (Dong et al., 2013), sparse (Yang et al., 2010) 
and denoising (Zhang et al., 2017) priori, which can flexibly rebuild an HR image of relatively high 
quality. However, due to limited prior knowledge and time consumption of the optimization process, 
the restoration effect of high-frequency details of images is poor. Most methods to reconstruct remote 
sensing images are based on this method, and their performance is limited.

There is great interest in deep learning technology with strong characteristic learning and 
expression ability. With its end-to-end training mode and superior performance, it is seeing increased 
practical application. Dong et al. (Dong et al., 2014) of the Chinese University of Hong Kong first 
applied deep learning to ISR reconstruction, adopting a three-layer super-resolution convolutional 
neural network (SRCNN) to reconstruct an image’s super-resolution. An algorithm introduced residual 
learning to improve the depth and performance of the network (Kim et al., 2016a). Dong et al. (Dong 
et al., 2016) improved SRCNN and reduced the computational complexity by taking the original 
low-resolution image as the input and adopting a deconvolution layer at the end to complete the 
image reconstruction of different sampling factors. Problems of gradient disappearance and network 
degradation become more obvious as the network becomes deeper (Kim et al., 2016b). Recently 
several algorithms were proposed using a symmetric residual convolution neural network (CNN) for 
image super-resolution reconstruction (Liu et al., 2019; Wang et al.,2022;Liu et al., 2021). Wang et 
al.(Wang et al., 2022) applied methods of symmetric short- and long-hop connection, respectively, 
within and outside the block were adopted to mitigate gradient disappearance and network degradation 
caused by the depth of the network. Wang et al tried evaluate deep-learning-based infrared-visible 
images fusion method based on encoder-decoder architecture. Wang et al. proposed a degradation and 
super-resolution attention model (D-SRA) using unsupervised machine learning to super-resolution 
reconstruct high resolution (HR) time-resolved fluid images from coarse data. The deep network is 
thought to have a good effect in extracting image features, which can be improved by increasing the 
network depth. However, some critical problems still exist in the extraction of deep features from 
remote sensing images:

1.  Remote sensing images have richer features than ordinary images, so it is impossible to extract 
deep detail features only by improving the network depth.

2.  Only increasing network depth may lead to gradient disappearance and network degradation 
during network training, resulting in the decline of network extraction ability.

3.  The number of parameters also increases, requiring increased network computation and training 
difficulty, longer reconstruction time images, and lower reconstruction efficiency.
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Considering these deficiencies, a CNN model based on symmetric local fusion blocks is proposed in 
this paper. The combination of a skip connection and residual structure achieves fully integrated information 
in the block, improving the extraction capability of high-frequency information of remote sensing images 
and accelerating convergence. A symmetric residual connection mode promotes the effective integration 
of global information. The original low-resolution remote sensing image is used as the input of the model, 
reducing computational complexity and improving image reconstruction efficiency.

3. FeATURe FUSIoN STRUCTURe

A residual-dense network (RDN) based on residual-dense blocks is proposed to solve the problem of 
insufficient feature extraction of a deep CNN(Liu et al., 2019). To make full use of the image features 
extracted from each residual dense block, the RDN adopts a feature fusion structure among the blocks 
to effectively fuse and adaptively learn the global features extracted from the network. This algorithm 
demonstrates that the feature fusion structure can effectively improve the ability of network feature 
extraction and greatly reduce the number of network parameters. Another method for image super-
resolution reconstruction (HDRN)(Jiang et al., 2020), also fully demonstrates that the local fusion 
method is not only beneficial for the reconstruction of ordinary images, but also applicable to the 
reconstruction of remote sensing images. In view of the advantages of a feature fusion structure for 
deep networks, we use feature fusion and a local fusion structure to effectively integrate and utilize 
internal network features. The local fusion structure is shown in Figure 1.

The output of each convolutional layer is directly connected to the end of the last layer to realize the 
effective integration of feature information extracted from each layer; as the input of the next convolutional 
layer, it promotes the fluidity of shallow and deep characteristic information. With the increase of network 
depth, the local fusion structure among convolutional layers can quickly complete the update of shallow 
network parameters, thus mitigating the phenomenon of gradient disappearance caused by network depth.

4. SUPeR-ReSoLUTIoN ReCoNSTRUCTIoN ALGoRITHM oF ReMoTe 
SeNSING IMAGe BASed oN SyMMeTRIC LoCAL FUSIoN BLoCK

To improve the reconstruction quality of remote sensing images, make full use of spatial information, 
and effectively reduce the computational burden during network training, a super-resolution 

Figure 1. 
Local Fusion Structure
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reconstruction algorithm (SR-SLFB) for remote sensing images based on a symmetric local fusion 
block is proposed. The network model consists of five local fusion blocks and 38 convolutional layers, 
primarily for feature extraction, feature fusion, and image reconstruction. The network structure of 
the algorithm is shown in Figure 2, where x  and y  are the input and output, respectively, of the 
network.

The SR-SLFB network has internal fusion connections and external symmetric connections. The 
information transmission of each convolutional layer is realized by a skip connection. These multiple 
local fusion blocks are formed to fully utilize the features in the block. Outside the network, symmetric 
connections are established between the front and back local fusion blocks to realize information 
sharing. This symmetric connection shares features extracted from the front end to the back end, 
effectively reducing information loss caused by gradient disappearance.

4.1. Shallow Feature extraction Module
Given the low resolution and the large amount of information contained in remote sensing images, 
we take the original low-resolution remote-sensing images as the input of the network to reduce the 
amount of computation and learning. Feature extraction adopts two convolutional layers with a 3 3´  
convolution kernel to extract features from the original low-resolution input image x. The extracted 
shallow feature can be expressed as 

B x
0
= ( )f , (1)

where f  is a feature-extraction function.
The network uses two convolutional layers to extract shallow features in the low-resolution space, 

which act as input data for later local fusion blocks. The activation functions in the network adopt 
leaky rectified linear unit (LReLU) functions, and the negative slope is set to 0.05, for stability and 
fast convergence.

4.2. Feature Fusion Module
4.2.1. Global Symmetric Connection
Feature fusion is the core of the network. During image reconstruction, gradient disappearance and 
network degradation become more obvious with increasing network depth. At the same time, super-
resolution reconstruction relies heavily on the feature information of low-resolution images. To improve 
feature extraction without increasing computational complexity, feature fusion is divided into five 
local fusion blocks with identical structures and global symmetry among blocks, so that shallow and 
deep feature information are mapped uniformly and feature sharing is realized. The output of the mth 
local fusion block can be expressed as

Figure 2. 
Framework of CNN based on locally fused symmetric blocks
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where F
m

 is the function corresponding to the mth  local fusion block, and B
m-1

 is its input.

4.2.2. Local Fusion Block
With the local fusion block, image feature enhancement is realized through convolutional layers with 
6-layer convolution kernels of size 3 3´ , and feature enhancement uses a residual jump connection 
to fully integrate extracted image features to fully utilize features of different levels. A convolutional 
layer with a 1 1´  kernel is used to complete image feature compression, and key features are extracted 
through the convolutional layer with one layer of feature compression, which greatly reduces the 
computational complexity of network training. The local fusion block is shown in Figure 3.

There are 64 convolution kernels in each convolutional layer, with LReLU activation. The output 
of the current local fusion block is

B B M M M M
m m

m m m
N
mD− −

− − − −= +( )( )1 2 0
1
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where B
m-1

 is both the output of the current local fusion block and the input of the next local fusion 
block; B

m-2
 is the input of the current local fusion block; Mm

0
1-  is the output of the convolutional 

layer of the first layer in the m th−( )1  local fusion block; D  is a dimension reduction operation; 
M
i
m i− =( )1 1 2 5, , ,  is the output of the ith  convolutional layer in the m th−( )1  local fusion block; 

and C  is a convolution operation.

4.3. Image Reconstruction Module
The traditional reconstruction algorithm based on a CNN preprocesses the original low-resolution 
image by interpolation before input to the network, which increases computational complexity and 
destroys image context information, leading to unsatisfactory reconstruction. Due to the great similarity 
between the original low-resolution image and the high-resolution image, we take the former as the 
network input, image upsampling is completed through a transposed convolutional layer without an 
activation function, and the effective features output from the final local fusion block are combined 
to generate residual images for high-resolution image reconstruction, which further improves image 
reconstruction quality. The result is

Figure 3. 
Local Fusion Block
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n n 1

, (5)

where R  is a reconstruction operation and U  is a bi-cubic interpolation operation.

5. eXPeRIMeNTAL ANALySIS

To verify the effectiveness of the proposed algorithm, ablation experiments were carried out on the 
NWPU-RESISC45 and UC Merced remote sensing datasets. The proposed algorithm was compared 
to bicubic, SRCNN (Dong et al., 2014), FSRCNN (Dong et al., 2016), and SymRCN (Liu et al., 
2019). The peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) were adopted 
to measure the quality of image reconstruction. These are defined as

PNSR
M N

Y Y
= ⋅

×

−
10

2
log

*
, (6)
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where Y  and Y *  are high-resolution images and reconstructed images, respectively; M N´  are the 
size of the image; m

Y
 and m

Y * respectively represent the average gray values of the original LR and 
reconstructed image; s

Y
and s

Y *  respectively represent the variance of the original and reconstructed 
images; s

YY * is the covariance of the original and reconstructed images; C
1
 and C

2
 are constants. 

In order to avoid the situation where the denominator is 0, C k L C K L1 1 2 2
2 2

= ( ) = ( )* *, , generally 
K K L1 0 01 2 0 03 255= = =. , . , . The values of constants C1�and C2�are 6.5025 and 58.5225 
respectively. The larger the value of PSNR and SSIM, the better the effect of the reconstructed image, 
and the closer it is to the original image.

The hardware environment was a computer with an Intel Xeon CPU E5-1650 v4 @ 3.6 GHz´12 
processor, Tesla K20cGPU, and 64 GB memory. The software environment was a Linux operating system, 
MATLAB R2016a, Caffe deep learning framework, and CUDA Toolkit 8.0 development package.

In the experiment, the slope of the linear rectification function with leakage was set to 0.05. To 
initialize the network, the method proposed in document (Jichang et al., 2019) was used for weight 
initialization, and the offset was set to zero. Adam was used for network optimization. The initial 
learning rate was set to 10 4- , and the training ended at 600,000 iterations.

5.1 dataset Setup
The UC Merced (He et al., 2015) and NWPU-RESISC45 (Yang et al., 2010) datasets were used as 
training sets for the model. To demonstrate the effectiveness of the proposed method, a total of 600 
images were randomly selected from the two datasets, and rotated 90, 180, and 270 degrees, turned 
horizontally, and reduced by factors of 0.9, 0.8, 0.7, and 0.6, for a total of 24000 images for training 
data. Similarly, a total of 51 images were randomly selected as test data.

Bicubic interpolation was used to downsample original high-resolution images with a factor m 
(m=2,3,4), which generates the corresponding low-resolution image, then crop the obtained low-
resolution image into sub-images of h h´  size. Original high-resolution images were similarly 
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cropped into mh mh´  sub-images. Since the over-cropped sub-image cannot obtain enough image 
information when the sampling factor becomes large. To make full use of the information in images, 
low- and high-resolution images were cropped to 292 / 572 , 152  / 432 , and 112 / 412 , respectively, 
according to m (m=2, 3, 4) times the sampling size.

5.2 Analysis of SR-SLFB Network Structure
The proposed local fusion structure, as the core of the SR-SLFB network, can adaptively aggregate 
effective image features and improve the expression ability of the deep network. The depth of the 
network is improved by setting up several local fusion blocks, which can extract the deep features of 
remote sensing images and improve network feature extraction. To analyze the network structure of 
the SR-SLFB algorithm and show that the local fusion method can effectively reduce the gradient 
disappearance caused by the deep network, the average PSNR value of the UC Merced dataset was 
compared to that of two-fold sampling factor reconstruction using in-block partial fusion and non-
partial fusion. As can be seen from Figure 4, after local fusion, the average PSNR of the network 
during training was significantly improved compared to that without local fusion. Moreover, with the 
increase of training iteration times, network convergence was faster and reconstruction performance 
was better after using the local fusion method.

Table 1 shows the average runtime with and without local fusion. Not using local fusion will take 
longer to run, while using local fusion will significantly improve the runtime. In the test procedure, 
using local fusion is 2.3ms faster than do not use local fusion.

5.3 Comparison of Proposed Algorithm to other Algorithms
To demonstrate the effectiveness of SR-SLFB, downsampling operations of 2-, 3-, and 4-fold factors for 
the UC Merced and NWPU-RESISC45 remote sensing datasets were performed, and SR-SLFB algorithm 
was compared to the bicubic, SRCNN, FSRCNN, and Sym-RCN algorithms. For more convincing 
comparisons, the number of iterations of algorithms was set to 600,000, and training was performed again.

Tables 2 and 3 show the comparative results of average PSNR and SSIM, respectively, on the UC 
Merced and NWPU-RESISC45 datasets for different reconstruction algorithms with sampling factors 

Figure 4. 
Quantitative evaluation (PSNR) on UC Merced dataset
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of 2, 3, and 4. SR-SLFB performed best, with the highest average PSNR and SSIM values. For the 
UC Merced dataset, compared to the other four algorithms, the PSNR and SSIM values of SR-SLFB 
increased by 3.10db and 0.0797, 1.67db and 0.0378, 1.12db and 0.0210, and 0.22db and 0.0046, 
respectively. Due to the low resolution of the original NWPU-RESISC45 dataset, its reconstruction 
performance was slightly lower than that of the UC Merced dataset. The PSNR and SSIM values of 
the SR-SLFB algorithm were 2.99db and 0.0647, 1.57db and 0.0341, 1.08db and 0.0195, and 0.16db 
and 0.0021, respectively, higher than those of the other four algorithms.

There are three reasons for the high-image quality reconstructed by SR-SLFB and its high PSNR 
and SSIM values.

1.  The algorithm’s local fusion structure achieves a high degree of combination of features at different 
levels in images and enhances the flow of information in the network. The algorithm effectively 
reduces the phenomenon of network gradient disappearance by setting skip connections among 
convolutional layers in the local fusion block.

Table 1. 
The average runtime with and without local fusion

Method SR-SLFB

Not using local fusion 30.8ms

Using local fusion 28.5ms

Table 2. 
Average PSNR for sampling factors 2, 3, and 4 on UC Merced and NWPU-RESISC45 datasets

Dataset Sampling 
factor

Bicubic 
(PSNR)

SRCNN 
(PSNR)

FSRCNN 
(PSNR)

SymRCN 
(PSNR)

SR-SLFB 
(PSNR)

UC Merced

×2 30.81 32.41 33.04 34.55 34.77

×3 27.76 29.25 29.69 30.47 30.74

×4 26.02 27.20 27.78 28.19 28.36

NWPU-RESISC45

×2 30.78 32.37 32.90 34.48 34.50

×3 27.62 29.16 29.57 30.31 30.48

×4 26.15 27.28 27.82 28.26 28.54

Table 3. 
Average SSIM for sampling factors 2, 3, and 4 on UC Merced and NWPU-RESISC45 datasets

Dataset Sampling 
factor

Bicubic 
(SSIM)

SRCNN 
(SSIM)

FSRCNN 
(SSIM)

SymRCN 
(SSIM)

SR-SLFB 
(SSIM)

UC Merced

×2 0.8633 0.8981 0.9021 0.9223 0.9290

×3 0.7512 0.8083 0.8245 0.8392 0.8435

×4 0.6627 0.6953 0.7253 0.7397 0.7423

NWPU-RESISC45

×2 0.8630 0.8934 0.8967 0.9102 0.9138

×3 0.7674 0.7992 0.8256 0.8362 0.8379

×4 0.6993 0.7287 0.7428 0.7709 0.7719
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2.  The symmetric connection mode realizes the symmetric sharing of the global features extracted from 
the network, and establishes an information-sharing bridge between the local fusion blocks, realizes 
the effective complementation of image features, and further improves reconstruction performance.

3.  The algorithm increases network depth by adding local fusion blocks, enhances the network’s 
ability to extract deep-level features of the image, makes full use of high-frequency information 
in the image context, and enhances network reconstruction ability.

Table 4 compares the average test time of different reconstruction algorithms on the UC Merced 
and NWPU-RESISC45 datasets when the sampling factor is 2, 3, and 4.

It can be seen from Table 4 that the average test time of SR-SLFB was less than those of the 
other algorithms, and the average time of SRCNN was the longest. When the sampling factor was 2, 
the average test time of SR-SLFB for image reconstruction between the two datasets was 0.031 s, and 
those of FSRCNN and SymRCN were 0.877s and 0.045 s, respectively. SR-SLFB was 0.846 s faster 
than FSRCNN and 0.014 s faster than SymRCN. When the sampling factor was 4, the average test 
time of SR-SLFB for image reconstruction between the two datasets was 0.0295s, and the average test 
times of FSRCNN and SymRCN were 0.7925s and 0.0315s, respectively. SR-SLFB was 0.763s faster 
than FSRCNN and 0.002s faster than SymRCN. Through the analysis, it can be seen that SR-SLFB 
took less time to reconstruct the image, and was more efficient at image reconstruction.

SR-SLFB was relatively fast at reconstructing images because it adopts the residual structure and 
applies it to the local fusion block, which effectively reduces the number of network parameters, alleviates 
the complexity of network training, and increases the speed of network convergence and reconstruction. 
SR-SLFB sets a small convolution kernel of 3 3´ , which effectively reduces the number of network 
parameters, increases learning ability, and further improves network reconstruction speed.

Figures 5 to 10 show the effects of the four algorithms after the reconstruction of 2-, 3-, and 4-fold 
sampling factors on the UC Merced and NWPU-RESisc45 remote sensing datasets respectively. It is 
shown that the texture of remote sensing images reconstructed by SR-SLFB for different sampling 
factors was clearer and more detailed, and the sawtooth and artifacts were reduced. Because the 
proposed symmetric local fusion block effectively extracts and fuses image features, the reconstructed 
remote sensing image has a clearer edge, is closer to the original image, and has a better visual effect.

6. CoNCLUSIoN

A method of super-resolution reconstruction of remote sensing images based on a symmetric 
local fusion block was proposed in view of characteristics such as difficulty in super-resolution 
reconstruction, strong autocorrelation, and rich texture details. The network model consisted of 38 
convolutional layers. The core part of the network model consisted of five local fusion blocks, each 

Table 4. 
Average test time for sampling factors 2, 3, and 4 on UC Merced and NWPU-RESISC45 datasets

Dataset Scale Bicubic SRCNN FSRCNN SymRCN SR-SLFB

UC Merced

×2 - 5.162 0.812 0.055 0.036

×3 - 5.075 0.745 0.028 0.024

×4 - 5.137 0.729 0.022 0.020

NWPU-RESISC45

×2 - 4.252 0.942 0.035 0.026

×3 - 4.136 0.878 0.043 0.037

×4 - 3.893 0.856 0.041 0.039
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Figure 5. 
Results of super-resolution on agricultural15 with 2-fold sampling factors

Figure 6. 
Results of super-resolution on runway_095 with 2-foldsampling factors

Figure 7. 
Results of super-resolution on airplane 40 with 3-fold sampling factors
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Figure 8. 
Results of super-resolution on roundabout_169 with 3-fold sampling factors

Figure 9. 
Result of super-resolution on baseball diamond03 with 4-fold sampling factors

Figure 10. 
Results of super-resolution on freeway _ 079 with 4-fold sampling factors
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containing six convolutional layers with the same structure and one compression unit. Through the 
connection mode of symmetric local fusion, the effective integration of multi-level features was 
realized, which improved the convergence speed of the network and effectively diminished the 
phenomena of gradient disappearance and network degradation. In the next step, we will consider 
training image super-resolution reconstruction models suitable for different scenes by learning 
different degradation models.
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