
DOI: 10.4018/IJCAC.319032

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

An Adaptable Approach to Fault
Tolerance in Cloud Computing
Priti Kumari, Jaypee Institute of Information Technology, India

Parmeet Kaur, Jaypee Institute of Information Technology, India*

ABSTRACT

Existing fault tolerance approaches in the cloud are broadly based on replication and checkpointing.
Each of these approaches has its advantages and limitations. This paper presents an adaptable fault
tolerance method for determining which of the two approaches will be appropriate for the successful
execution of a task in the given cloud conditions. The proposed method classifies the failure risk of
host machines available for task execution based on their failure history. Subsequently, fuzzy logic
is used to determine the appropriate fault tolerance approach by considering a host’s failure risk,
user-defined task’s priority, and level of resource redundancy. Setting a task’s priority provides a user
with control to solicit a desired fault tolerance level while the availability of resources reflects a cloud
provider’s capability to offer fault tolerance. Simulation experiments have verified that the proactive
selection of a fault-tolerance method increases the number of tasks that complete successfully.

Keywords
Checkpointing, Classification, Cloud Computing, Fault Tolerance, Fuzzy Logic, Replication

1. INTRODUCTION

The extensive use of cloud computing services has been a consequence of the possibility of flexible
and elastic provisioning of resources based on user requirements in a pay-per-use manner. Users are
no longer required to buy, manage, or upgrade their computing resources (Zhou et al., 2017). Instead,
they can get various information technology capabilities, such as computing, storage, memory,
networks, software, etc., as services at low costs and without the hassles of owning or maintaining
the resources. On the other side, cloud service providers benefit due to the scale of their service
usage along with the idea of multi-tenancy. A multitenant architecture allows a cloud provider to
share resources among multiple users; thereby, incurring a lower cost. It is also possible for a user
to request dedicated resources though these will come at an increased cost (Kumari & Kaur, 2020).

Even though cloud computing services are being used for a huge number of applications, there
are concerns related to failures and therefore, degradation of performance in the cloud. Failures affect
the reliability as well as the availability of services and need to be handled effectively. Therefore,
fault tolerance is one of the key elements of Service Level Objectives (SLOs) for cloud services’
users (Buyya et al., 2009). FT is the capability of a device or system to continue its operations in

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

2

the case where some of its components may have failed (Menychtas & Konstanteli, 2012) (Hasan &
Goraya, 2018). Existing approaches to fault tolerance in the cloud are based on traditional distributed
computing approaches that fall broadly into two categories: reactive and proactive. Reactive approaches
include recovery protocols based on checkpointing and replication protocols and these approaches
handle faults after they occur. In contrast, proactive approaches attempt to estimate the occurrence
of failures before they occur. Examples include approaches to job migration and self-healing. Of the
two categories, reactive approaches have found a wider implementation in cloud computing due to
their simplicity and ease of implementation (Kumari & Kaur, 2018) (Saikia & Devi, 2014).

This paper explores the application of the reactive approaches of fault tolerance, i.e., checkpointing
and replication, in the Infrastructure as a service (IaaS) cloud. Checkpointing is a well-known
technique in which the state of an active virtual machine (VM) is saved periodically during normal
execution. In case a failure occurs, the task needs to roll back to the last saved checkpoint instead of
restarting; thus, preventing loss in execution. In cloud computing, checkpointing has been widely
used to periodically save an active virtual machine’s state for recovery on a physical machine other
than the one on which it is hosted (Zhou et al., 2017). The VM can retrieve its last saved error-free
state if the failure occurs before its completion. On the other hand, replication of a task or a resource
implies maintaining a copy of the same. Here, the copy can be used to replace the primary task or
resource in case of failure. Replication is based on the use of redundancy to handle failures and so
has been used in cloud computing wherever resources are, in general, available in abundance.

Each of the two approaches, i.e., checkpointing and replication have its own benefits and
limitations. Checkpointing uses much lower resources as compared to replication since only the
state of a task needs to be saved periodically. However, checkpointing involves overhead at the time
of saving checkpoints as well as during recovery (Zhou et al., 2016). Further, a checkpoint allows
recovery from a single failure since simultaneous failures of the machines hosting the VM and storing
its checkpoint cannot be handled. In comparison, k-replication, i.e., saving k replicas guarantees
recovery from up to k-1 failures though it involves the use of k times the actually needed resources.
Thus, it is evident that the selection of a fault-tolerance approach needs to be judicious for the best
results with minimum resource consumption.

The present work proposes an adaptable approach to the selection of the appropriate FT approach
in the cloud computing environment. The projected scheme is adaptable to the specific environment of
implementation as it considers factors that reflect both a user’s interests as well as the cloud provider’s
capabilities. Firstly, the historic data of physical machines in a cloud is used to classify the machines based
on their risk of failure. This classification takes into account the recorded downtime of a machine, the
nature of the fault, the physical machine’s type, and its purpose. We have used the k Nearest Neighbour’s
(KNN) algorithm (Sharma, 2017) (Sun et al., 2018) to cluster the physical machines into high, medium,
and low-risk categories of failures. Each machine has then been assigned a risk label depending on the
cluster in which it lies. Subsequently, fuzzy logic has been used to frame rules to determine the appropriate
fault tolerance approach for VMs hosted by a particular physical machine. The fuzzy rules are based
on three input variables. The first is the VM’s priority level as specified by the end-user. Secondly,
we consider a physical machine’s risk label, as assigned by the clustering algorithm, and the last input
variable is taken as the level of storage availability. Here, the first input variable reflects the end user’s
interest while the other two variables are an indicator of the cloud provider’s capabilities. The fuzzy
rules aim to provide a result, i.e., checkpointing or replication, after a comprehensive consideration of
both the stakeholders’ interests. Simulation results have verified that the proposed approach outperforms
checkpointing or replication approaches when performed alone.

The highlights of the paper are as follows:

•	 Proposes a novel classification and fuzzy rule-based fault tolerance approach.
•	 The use of a fuzzy inference system captures the real-world user requirements and a cloud

provider’s abilities.

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

3

•	 The proposed approach is adaptable and hence, can be used in a dynamic manner based on the
actual system state.

The rest of the text is structured as follows: Section 2 deliberates upon the checkpointing and
replication techniques. Related work on fault tolerance and fuzzy logic is also discussed in the section.
The proposed approach is described in Section 3. Section 4 discusses the simulation results. Finally,
this paper is winded up in Section 5.

2. BACKGROUND AND RELATED WORK

The dynamic nature of the cloud system rises the chance of failure. Therefore, fault tolerance (FT)
methods are imperative to evade the consequence of failures in the cloud system. FT methods enable
systems or devices to provide essential services even in the existence of faulty components. These
assist in the detection and management of system failures caused by either hardware or software
issues. According to the literature, FT methods for cloud systems are usually based on two approaches:
reactive and proactive (Kumari & Kaur, 2018) (Amoon, El-Bahnasawy, Sadi, & Wagdi, 2019).

The reactive FT scheme is utilized to diminish the effect of breakdown in the cloud after the
occurrence of the failures. The most repeatedly used reactive FT schemes are replication as well as
checkpointing (Amin et al., 2015) (Ray et al., 2020). In comparison, the proactive FT methods are
used to anticipate the failure in advance and replace the suspicious component with some running
elements. The main purpose of the proactive FT approach is to avoid the existence of failures and
evade the recovery process of the reactive FT approaches. Although the use of these methods aims
to reduce the number of upcoming failures, these are less practically feasible in cloud systems (Liu
et al., 2016) (Prakash & Vyas, 2022).

2.1 Background
To handle the failure in the cloud system reactively, the most commonly used methods are replication
and checkpointing. The replication fault-tolerance method maintains multiple copies of VMs or tasks
and places them in diverse locations within a data center (Zhou et al., 2016). In case of a task or
VM’s failure, execution can continue as long as a copy or replica is available. The main advantages
of using replication are that it provides higher availability and reliability, causes less data movement
over the network, and thus, has a lower communication overhead. However, resuming the replica
VM or task consumes more resources in terms of time and network. In other words, implementing
a replication method is expensive since it consumes more storage space and incurs an overhead of
updating the replicas (Kumari & Kaur, 2020) (Agarwal & Kotakula, 2022).

On the other side, the checkpointing method is used to save the error-free execution state of
the system regularly to stable storage. In the event of a failure, the cloud system can go on with the
request from the last preserved checkpoint state rather than restarting from the beginning. (Zhou et al.,
2017). The checkpointing process is demonstrated in figure 1. The main advantage of implementing
the checkpointing method is that it is less expensive than replication. However, saving checkpoints
intermittently and resuming a failed service is time-consuming as well as incurs additional overheads
during normal working (Zhao et al., 2016).

Thus, each of the two methods has its pros and cons and a judicious choice of the appropriate
method is important.

2.2 Related Work
The key motive of applying FT techniques in the cloud system is to improve accessibility as well
as reliability. In order to accomplish this goal, significant research has been undertaken in this field
resulting in replication as well as checkpointing-based protocols.

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

4

Zhou et al. (2016) have projected an FT method based on replication to enhance the consistency
of server-based cloud services. The authors have used a heuristic procedure to select an appropriate
host server to keep the replica of VMs. Patra, et al. (2016) have projected an adaptive model to forecast
and handle the failure that occurs in real-time cloud computing. The proposed adaptive model uses
replication as well as the resubmission fault tolerance method. Another replication and resubmission
method based on the reliability requirement has been presented by E. Abdelfattah et al. (2017). If the
server with the maximum reliability fails, then the task or VM executing on this server is scheduled
at the server having the second-best reliability. A two-stage FT technique is presented by Wu, Y. et
al. (2019). In the first state, the authors have developed an algorithm to rank the services according
to their significance. The replication strategies for services are changed according to their ranks. An
A*-based heuristic alternative path finding procedure is implemented in the second stage to find
suitable replacement systems to handle the failure of complex services.

A peer-to-peer checkpointing-based method for the cloud data center has been presented by
J. Zhao, et al. (2018). Using this method, the checkpoint images of VMs are saved on the peer or
neighboring server. A. Zhou, et al. (2017) have presented an EDCKP (edge switch failure-aware)
fault tolerance method to handle the failure of the server as well as edge switch of fat-tree topology
in a cloud data center. In this scheme, the checkpoint images of VMs are placed on the server that
is in the same pod. This scheme improves the reliability of cloud services and also consumes fewer
network resources. Amoon, et al. (2019) have presented a checkpointing method that employs a
flexible checkpointing interval. The extent of the interval is defined based on the failure rate of the
server where VMs are executing to finish the execution of the application. A scheduling method,
presented by Chinnathambi, et al. (2019), is used to monitor the performance of a virtual node as well
as an effective checkpointing scheme to bear the migration of tasks and jobs with slight overhead.
Moreover, the proposed method efficiently identifies the VM’s faults and immediately transfers the
task to some working VM.

Further, it has been observed that research in this field has employed methods of soft computing
for the development of effective FT methods. These methods are tolerant of uncertainty, imprecision,
and approximation and provide traceability, robustness, and low-cost optimal solutions to difficult
computational problems (Gupta et al., 2020) (Ejimogu & Başaran, 2017). The most commonly used soft
computing approaches are evolutionary computing, artificial neural networks (ANN), and fuzzy logic
(Srivastava & Srivastava, 2014). Of the soft computing methods, fuzzy logic deals with imprecise and
vague information to make the best possible decision for the given input. Therefore, fuzzy logic finds
application in all problems involving uncertain or imprecise data. Since cloud systems are essentially
complex and dynamic systems, soft computing methods have found application in these systems.

Figure 1. Checkpointing process

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

5

M.A.H. Monil et al. (2016) presented an approach based on fuzzy logic for choosing as well
as migrating VMs in the cloud. They have tested and evaluated the performance of the projected
algorithm on the CloudSim toolkit. Their simulation outcomes demonstrated that this scheme is
more energy-efficient compared to others. A proactive autoscaling prototype for a cloud system has
been developed by D. Tran et al. (2017). This model consists of two components for prediction and
scaling decisions. The prediction is done on the time-series data and for that, they have used the
fuzzy method, neural network, and genetic algorithm. For the scaling decision, the author has used
the predicted value as well as SLA violation approximations to accomplish final resource allocation.
The testing of the proposed solution on real workload data has verified the feasibility of the proposed
approach as well as its higher efficiency as compared to existing methods.

A fuzzy logic procedure and prediction scheme have been projected by D.M. Bui et al. in
(2018) to proactively recognize the faults that may arise in the cloud system. According to the
authors, the proposed method can offer improved performance in terms of reaction rate as well as
accuracy, which enhances the reliability of the cloud system. M. N. Cheraghlou et al. (2019) have
proposed a scheme called CFTFIS that evaluates the architecture of FT as well as determines the
level of FT on the basis of fuzzy patterns. The proposed scheme consists of 3 parameters, namely
policies, techniques for fault detection, and fault recovery methods. The architecture of FT and the
improved percentage of projected ability are accomplished at five diverse fuzzy levels. In case the
susceptibility of a cloud-based system to failures is recognized, a correct and appropriate choice
of architecture is employed in the system. Rezaeipanah et al. (2022) put forth an adaptive method
to identify the breakdowns in the cloud-based system in the initial stage. In order to monitor the
system, a prediction technique has been used by the authors. Further, to identify the faults, they
have used an algorithm based on fuzzy logic. In order to facilitate error-free task scheduling,
Sathiyamoorthi et al. (2021) suggested an effective and adaptive fault-tolerant scheduling approach.
To achieve optimal cloud computing infrastructure dependability and availability, Attallah et al.
(2021) proposed a methodology that tolerates virtual machine CPU failures. By combining proactive
and reactive techniques, Rawat et al. (2021) introduced a new Threshold-Based Adaptive Fault
Tolerance (TBAFT) strategy in the cloud.

By analyzing the literature, it was observed that the existing works, in general, rely on anyone
FT technique without considering the features of the cloud environment or the task being performed.
However, without the use of an appropriate FT method, it is difficult to achieve reliability and
availability. Hence, there is a requirement to develop a scheme that can adapt to the features of the
system being considered. Therefore, this work has presented a fault tolerance method based on
classification and fuzzy logic that selects an appropriate FT scheme for a given system.

3. PROPOSED APPROACH

The paper presents an adaptable approach to fault tolerance in IaaS clouds which provide
computing resources as a service to end-users through virtualization technology. A physical
machine (PM) present in the cloud is capable of hosting one or more virtual machines (VM)
depending on its own and the hosted VM’s configuration. Each VM is assumed to be executing a
user’s task. The failure of a VM will prevent or delay the completion of task execution resulting
in reduced user satisfaction as well as loss to the cloud provider. A VM may fail due to multiple
software or hardware-related causes. Of these, the software failures are a result of the task or
application executing on the VM and are beyond a service provider’s scope. However, a PM’s
failure is a risk that can be predicted based on a PM’s historical data. Therefore, this work uses
data on PMs’ previous failures to label a PM according to its risk of failure. Subsequently, the
risk labels of PMs are taken along with a task’s priority level and the level of storage available
in the cloud to determine the fault tolerance approach suitable for the task.

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

6

3.1 Clustering and Labeling PMs Based on Failure Data
As a first step towards fault tolerance, we consider the physical machines on which virtual machines
are hosted. Data related to the past occurrences of PM failures are analyzed with the objective to
determine the risk of a PM’s failure in the future. The dataset from a cloud provider includes various
features with regard to a PM’s failure. The work has used the following features for risk labeling:
the cause of failure, the downtime during a failure, and the physical machine’s type and its purpose.
The cause of fault indicates whether a fault is likely to recur or not. For instance, hardware faults
may recur as they are related to the machine but a software fault may have been due to the hosted
VM or the task executed on it and are not likely to happen again. Downtime is used as it is expected
to reflect the fault severity.

KNN algorithm (Rong et al., 2016) has been used for unsupervised clustering of the failure data.
It is a non-parametric algorithm and does not assume any specific data distribution and thus, suits the
real-world failure data. Further, the data is unlabelled and KNN is used to firstly group the data into
three clusters based on feature similarity (Java, n.d.). Then, the formed clusters were analyzed and
given a risk label, i.e., high, medium, and low. Thus, PMs lying in the cluster with labels as (high/
medium/low) are thus classified to be PMs with (high /medium/low) risk of failure. Clusters formed
by the KNN algorithm on the NERSC (Mohammed et al., 2018) dataset and the predicted outcomes
and its analysis in terms of precision, recall as well as F1-measure are carried out in table 1. The
overall accuracy obtained is 99.98%. Subsequently, label tuning is performed on the clustered value
to label the machine into high, moderate, and low risk.

3.2 Fault Tolerance Method Selection Fuzzy Inference System (FTMSFIS)
Fuzzy logic is a method of reasoning and decision-making that is often used in systems involving
uncertain, imprecise, or vague information. It is based on the concept of relative graded membership
motivated by human perception and cognition process (Bui & Lee, 2018). Fuzzy logic is applicable in
problems involving human expertise, little data, or where input parameters are linguistic in nature or
do not possess sharp or crisp boundaries (Cheraghlou et al., 2019). Since it provides an effective way
for the resolution of multi-criteria decision problems, it has been used in the development of intelligent
systems for optimization, pattern recognition, control, project risk assessment, trust evaluation systems
for cloud service providers, and many more. The present work employs fuzzy logic to derive an
effective method of FT in the cloud. The choice of fuzzy logic is depending on the fuzzy nature of
input parameters of storage availability, the machine’s risk of failure, and a user’s priority level. It is
postulated that a fuzzy logic-based system resembling human cognition will yield effective results
for the current problem. The proposed fuzzy rule-based system, referred to as the Fault Tolerance
Method Selection Fuzzy Inference System (FTMSFIS) selects an appropriate FT method to handle
the failures in the cloud. FTMSFIS is a Mamdani fuzzy inference system (FIS) (Rezaeipanah et al.,
2022) to adapt the input parameters to two output classes of replication and checkpointing.

Figure 2 demonstrates the FTMSFIS model. This fuzzy system consists of three attributes as
input variables namely: Machine Risk (MR), Storage Availability (SA), and Task Priority (TP). The
single output variable is the Fault Tolerance Method (FTM). A detailed description of values for
input and output variables is summarized in Table 2.

Table 1. Statistical analysis

High Medium Low

Precision 100 83 100

Recall 100 100 91

F1 -Measure 100 91 95

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

7

•	 Fuzzy Inference System (FIS): A FIS is composed of a fuzzifier, inference engine, and
defuzzifier. The term fuzzifier is used to translate input parameters into linguistic terms. The
defuzzifier transforms the inference engine’s outcome into a crisp value. The inference engine
is responsible for acquiring output using well-defined rules and kept in the database.

•	 Input Variables: See below:
◦◦ Machine Risk (MR): This variable denotes the types of risk associated with the physical

machine. This variable is represented over a scale of 0-2. The variable is signified using the
3 fuzzy sets such that low, moderate, and high.

◦◦ Storage Availability (SA): This variable signifies the amount of storage available at the
particular physical machine. The SA is described in terms of percentage, i.e., over a scale of
0-100. This variable is represented using the three fuzzy sets such that less, medium, and high.

Figure 2. Proposed model of FTMSFIS

Table 2. System variables, linguistic terms, and Interval endpoints

Variables Variable
type Linguistic Terms

Interval endpoints

Scale Points

Machine Risk Input

Low

(0 -2)

(0, 0, 1)

Moderate (0, 1, 2)

High (1, 2, 2)

Storage Availability Input

Less

(0 -100)

(0, 0, 10, 30)

Medium (20, 50, 80)

High (40, 60, 100, 100)

Task Priority Input

Low

(0 -10)

(0, 0, 3)

Medium (2, 5, 8)

High (6, 8, 10, 10)

Fault Tolerance Method Output
Checkpointing

(0 -80)
(0, 30, 50)

Replication (30, 45, 80)

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

8

◦◦ Task Priority (TP): This attribute signifies the priority associated with the tasks i.e., being
executed on the virtual machine. This variable is represented over a scale of 0-10 using the
3 fuzzy sets, low, medium, and high.

•	 Output Variable: This fuzzy system has only one output variable i.e., Fault Tolerance Method
(FTM). The FTM denotes which type of fault tolerance technique is selected to deal with failure
proactively. This variable is represented using the two fuzzy sets of checkpointing and replication
and denoted over a scale of 0-80.

•	 Membership Function for Input and Output Variables: In this paper, to decrease the
complications, the trapezoid and triangle membership function is used for the input as well as
output variables. The fuzzy set membership of the variable machine risk, storage availability,
task priority, and the fault tolerance method is described as follows:
◦◦ Machine Risk (MR): This variable is defined using three fuzzy sets: Low, Moderate, and

High, as depicted in figure 3. The horizontal and the vertical axis denote the input value
and degree of membership of the attribute MR respectively.

◦◦ Storage Availability (SA): This input variable is defined using three fuzzy sets, Less,
Medium, and High, as presented in figure 4.

◦◦ Task Priority (TP): This variable is defined using 3 fuzzy sets as Low, Medium, as well
as High, as illustrated in figure 5.

◦◦ Fault Tolerance Method (FTM): This variable is defined using two fuzzy sets of
Checkpointing and Replication, as presented in figure 6.

The membership function µ of the MR attribute is defined as follows:

µ
low MR

x
if x

x if x_

,

,
() =

>

−() ≤ ≤







0 1

1 0 1

������������

������ ��
	 (1)

Figure 3. The Machine Risk (MR) fuzzy set

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

9

µ
mod_

,

,
MR
x

if x

x if x

x
() =

<

() ≤ ≤

−()

0 0

0 1

2

������������

��������� ��

,,

, � �

����� ��

������������

if x

if x

1 2

0 0

≤ ≤
>











	 (2)

µ
high MR

x
if x

x if x_
()

,

(),
=

<
− ≤ ≤







0 1

1 1 2

 
	 (3)

Figure 4. The SA fuzzy set

Figure 5. The TP fuzzy set

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

10

The horizontal and the vertical axis denote the input value and degree of membership
of the attribute SA respectively. The membership function µ of the SA attribute is defined
as follows:

µ
less A

x

if x

x
if x

_S
()

,

()
,=

<
−

≤ ≤

1 10

30

20
10 3

 00

0 30, if x >











	 (4)

µ
med A

x

if x

x
if x

_S
()

,

()
,

=

<
−

≤ ≤

0 20

20

30
20 5

 00

80

30
50 80

0 80

()
,

,

−
≤ ≤

>







x
if x

if x







 	 (5)

µ
high A

x

if x

x
if x

_S
()

,

()
,=

<
−

≤ ≤

0 40

40

20
40

 660

1 60, if x >











	 (6)

The horizontal and the vertical axis denote the input value and degree of membership
of the attribute TP respectively. The membership function, µ of the TP attribute, is defined
as follows:

Figure 6. The FTM fuzzy set

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

11

µ
low TP

x
if x

x
if x_

()
,

()
,

=
>

−
≤ ≤




0 3

3

3
0 3






	 (7)

µ
med TP

x

if x

x
if x

_
()

,

()
,

(
=

<
−

≤ ≤

0 2

2

3
2 5

8

−−
≤ ≤

>










x

if x

if x

)
,

,
3

5 8

0 8



	 (8)

µ
high TP

x

if x

x
if x

_
()

,

()
,

,

=

<
−

≤ ≤

0 6

6

2
6 8

1

 if x >










8

	 (9)

The horizontal and the vertical axis denote the input value and degree of membership of the
attribute FTM respectively. The membership function, µ of the FTM attribute, is defined as follows:

µ
CP
x

if x

x
if x

()

,

,

(
=

<

≤ ≤

0 0

30
0 30

50

−−
≤ ≤

>









 x
if x

if x

)
,

,
20

30 50

0 50



	 (10)

µ
Re

()

,

()
,

p
x

if x

x
if x

=

<
−

≤ ≤

0 30

30

15
30 45

(()
,

,

80

35
45 80

0 80

−
≤ ≤

>







x
if x

if x







	 (11)

3.3 Fuzzy Rules
An inclusive set of 27 fuzzy rules is framed for determining the value of the FTM variable (output variable)
on the basis of the values of 3 input variables. To form the fuzzy rules, we followed certain conditions:

Case 1: If the storage availability on a physical machine is high and the priority of the task submitted
by the user is high then irrespective of the value of machine risk, the replication fault-tolerance
method is selected to handle the failure.

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

12

Case 2: If the storage availability on a physical machine is high or medium and the priority of the
task submitted by the user is low then there can be two sub-conditions:
◦◦ If physical machine risk is high, then the replication fault-tolerance method is selected to

deal with the failure.
◦◦ If physical machine risk is low, then the checkpointing fault-tolerance method is selected

to handle the failure.
Case 3: In the case of low storage availability on a physical machine, irrespective of the value of task

priority and machine risk, the checkpointing fault-tolerance method is selected to deal with the failure.

The 27 fuzzy inference rules consider all the possible combinations of the above-defined
conditions (Case 1 to Case 3) for the input variables. Considering Case 1, Case 2, and Case 3, three
rules are designed for each. Hence, the total number of framed rules is 3*3*3 = 27. The 27 rules for
the proposed fuzzy system are illustrated in Table 3.

Table 3. Proposed rules for FTMSFIS

Rule No. Machine Risk Storage Availability Task Priority Fault Tolerance Method

1 Low Less Low Checkpointing

2 Low Less Medium Checkpointing

3 Low Less High Checkpointing

4 Low Medium Low Checkpointing

5 Low Medium Medium Checkpointing

6 Low Medium High Replication

7 Low High Low Checkpointing

8 Low High Medium Checkpointing

9 Low High High Replication

10 Moderate Less Low Checkpointing

11 Moderate Less Medium Checkpointing

12 Moderate Less High Checkpointing

13 Moderate Medium Low Checkpointing

14 Moderate Medium Medium Checkpointing

15 Moderate Medium High Replication

16 Moderate High Low Checkpointing

17 Moderate High Medium Checkpointing

18 Moderate High High Replication

19 High Less Low Checkpointing

20 High Less Medium Checkpointing

21 High Less High Checkpointing

22 High Medium Low Replication

23 High Medium Medium Replication

24 High Medium High Replication

25 High High Low Replication

26 High High Medium Replication

27 High High High Replication

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

13

Subsequently, on evaluation of the rules in Table 3 according to the given conditions, we
found that some rules could be combined to get a minimized set of rules in order to further
optimize the proposed fuzzy system. For instance, rules 1-3 indicate that if machine risk is
low and storage availability is less, then irrespective of Task Priority, the FT method to be
used is Checkpointing. Hence, Rules 1-3 in Table 3 are merged to form the new rule 1 in Table
4. Similarly, rules 10 - 12 in Table 3 are combined to form rule 8 in Table 4, and 19 - 21 are
merged to form rule 15 in Table 4. Following the same approach, rules from 22 to 24, and 25
to 27 are combined to form rules 16 and 17 respectively in table 4. Thus, after merging a few
rules, the total number of fuzzy rules for the proposed fuzzy system is 17. The reduced set of
fuzzy rules is illustrated in Table 4.

Further, Figure 7 illustrates the design of the proposed fuzzy system in the MATLAB environment.
We have designed the Mamdani FIS with three inputs, one output, and 17 rules. The fuzzifier
transformed input attributes in a linguistic term set with the help of membership functions. The
fuzzifier’s result is forwarded to the inference engine, which uses the database’s well-defined rules
to provide the best possible output.

To represent the final system output, the produced fuzzy result is sent to the defuzzifier,
which translates the outcome into a crisp value. Defuzzification is done using the centroid
method. The FTM of a system is evaluated in either checkpointing or replication states based
on the defuzzifier result. The FTMSFIS inference engine database rules, which were executed
in MATLAB, are shown in Figure 8a. Figure 8b depicts a Surface Viewer interpretation of the
predicted fuzzy system.

Table 4. Minimized rules for FTMSFIS

Rule No. Machine Risk Storage
Availability Task Priority Fault Tolerance

Method

1 Low Less Low/Medium/High Checkpointing

2 Low Medium Low Checkpointing

3 Low Medium Medium Checkpointing

4 Low Medium High Replication

5 Low High Low Checkpointing

6 Low High Medium Checkpointing

7 Low High High Replication

8 Moderate Less Low/Medium/High Checkpointing

9 Moderate Medium Low Checkpointing

10 Moderate Medium Medium Checkpointing

11 Moderate Medium High Replication

12 Moderate High Low Checkpointing

13 Moderate High Medium Checkpointing

14 Moderate High High Replication

15 High Less Low/Medium/High Checkpointing

16 High Medium Low/Medium/High Replication

17 High High Low/Medium/High Replication

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

14

4. SIMULATION RESULTS

In this segment, we measure the effectiveness of the projected scheme with simulation-based
experiments. The suggested scheme is compared with the replication and checkpointing
method in terms of the total amount of successful recoveries as well as the maximum storage
consumption. The simulations are run on a PC with an Intel® Core (TM) CPU i5-7200 processor
running at 2.7 GHz and 8 GB of RAM. We assume that each PM can have 0 to 4 VMs for
executing the submitted tasks.

4.1 Metrics

1. 	 Recoverability: This metric is used to calculate the percentage of successful VM recoveries and
is defined in equation 12:

Recoverability
Total Number of Successful Recovery

Total N
=

 uumber of Failure
×100 	 (12)

2. 	 Maximum Storage Consumption (MSC): This metric is used to calculate the maximum amount
of storage consumed on PMs while executing checkpointing and replication methods as well as
the proposed method. The MSC is defined in equation 13:

Figure 7. FTMSFIS implementation in MATLAB

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

15

Figure 8. (a) an illustration of inference engine rules intended in MATLAB; (b) an illustration of Surface Viewer of FTMSFIS rules

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

16

Replication Method pm v s

Checkpointing Method pm v cp

i
i

n

i

=

=

∑ * *

* * ii

Proposed Method pm v s pm v cpi

i

n

i
i

h

j
j

l

∑

∑ ∑= + * * * *

	 (13)

where:

•	 n represents the total number of PMs.
•	 v signifies the number of VMs on each PM.
•	 s denotes the size of each virtual machine.
•	 cpi denotes the checkpoint image size of each virtual machine.
•	 h denotes the total number of high-risk machines.
•	 l denotes the total number of low-risk machines.

5. RESULTS

5.1 Case 1: High Storage Availability and High Task Priority
5.1.1 Measuring Successful Recoverability
The objective of this experiment is to measure the number of VMs that recovered successfully in
a given time period using the proposed method. In this scenario, the replication method is selected
by the proposed approach. Hence, we compare the outcomes with the number of VMs successfully
recovered achieved using the checkpointing method. From the outcomes in Fig. 9, it can be seen
that the proposed strategy achieves higher recoverability than the checkpointing scheme by about
4% on average.

The next set of experiments is done to evaluate the number of recoveries under varying failure
rates (FR) of VM. FR means how often a PM or VM breaks down in a quantified period of time.

Figure 9. Successful recovery of virtual machines

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

17

Fig. 10 demonstrates the recoverability of the system for FR as 0.01, 0.05, 0.1, and 0.5 for varying
execution times.

In both the above cases, the proposed approach is providing a higher recoverability than the
checkpointing scheme.

5.2 Case 2: High Storage Availability and Low Task Priority
5.2.1 Measuring Recoverability
The results of the suggested methodology are compared to the number of successful VM recoveries
accomplished using replication and the checkpointing strategy in this experiment. From the outcomes
in Fig. 11, it can be observed that the proposed method accomplishes higher recoverability, of nearly
56% and 48% on average than the replication and checkpointing schemes respectively.

The subsequent set of experiments evaluates the number of recoveries under different failure
rates (FR) of VM. Fig. 12 demonstrates the recoverability of the system for FR as 0.01, 0.05, 0.1,
and 0.5 for varying execution times.

In both the above cases, the proposed approach is providing a higher recoverability than the
replication and checkpointing scheme. The same can be attributed to the adaptability of the proposed
scheme depending on the task priority and the given cloud environment.

5.2.2 Measuring Maximum Storage Consumption
In this experiment, the outcomes of the proposed method are compared with the replication and the
checkpointing method in terms of maximum storage consumption. From the outcomes in Fig. 13, it
can be observed that the proposed method consumes less storage space than the replication method
but is higher than the checkpointing method.

Figure 10. Successful recovery vs failure rate

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

18

In the above-defined instances, the proposed approach is providing a higher recoverability than
the replication and checkpointing scheme. However, the proposed approach consumes slightly higher
storage space than checkpointing but less than the replication scheme. The results are according to
expected outcomes since the proposed approach flexibly selects either checkpointing, which takes

Figure 11. Successful recovery of virtual machines

Figure 12. Successful recovery vs failure rate

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

19

up less space, or replication, which consumes higher space. Thus, the proposed approach improves
the reliability of the cloud systems while taking up less storage than replication.

5.3 Case 3: Low Storage Availability and High or Low Task Priority
5.3.1 Measuring Replication Factor
This experiment is done to measure the percentage of VM allocation (successful placement of VMs)
on the varying replication factor. From the outcomes in fig. 14, it can be observed that the number
of VM allocations using replication factor 2 is better than the replication factor 3. However, in case
of failure, the system with replication factor 3 provides better reliability.

Figure 13. Maximum storage consumption on PMs (in GB)

Figure 14. VM allocation vs Replication Factor

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

20

5.3.2 Measuring Recoverability
The aim of this experiment is to determine the number of VMs that successfully recovered using the
suggested method in a particular time frame. The results are compared to the number of VMs that
have been successfully recovered using the replication approach. The results in Fig. 15 show that the
proposed strategy achieves higher recoverability than the replication scheme, of nearly 6% on average.

The next set of experiments is done to evaluate the number of recoveries under varying failure
rates (FR) of VM. Fig. 16 demonstrates the recoverability of the system for FR as 0.01, 0.05, 0.1,
and 0.5 for varying execution times.

In both the above cases, the proposed approach is providing a higher recoverability than the
replication scheme.

5.3.3 Measuring Maximum Storage Consumption
This experiment is done on a distinct set of PMs to evaluate the amount of storage consumed using the
proposed method. The outcomes of the proposed method are compared with the replication scheme
in terms of maximum storage consumption. From the result in Fig. 17, it can be observed that the
proposed method consumes less storage space than the replication method.

In the above-defined instances, the proposed approach is providing a higher recoverability than
the replication scheme. However, the proposed approach also consumes less storage space than the
replication scheme.

6. CONCLUSION

The dynamic nature of the cloud computing environment makes it vulnerable to varied types of
faults. This results in the significance of FT methods in the implementation of reliable and robust
cloud-based systems. The paper presents a classification and fuzzy logic-based adaptable approach
to FT in the cloud. It considers parameters related to a user’s preferences, a physical machine’s risk
of failure, and a cloud system’s capabilities to determine the appropriate fault tolerance method to be
used for a task submitted by the user. Here, two types of FT methods are considered: checkpointing
and replication. The performance of the proposed method is evaluated through simulation experiments.
It has been seen that the suggested adaptable approach outperforms the methods of checkpointing

Figure 15. Successful recovery of virtual machines

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

21

Figure 16. Successful recovery vs failure rate

Figure 17. Maximum storage consumption on PMs (in GB)

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

22

and replication when used alone. The implementation of the adaptable method results in a higher
number of successful recoveries than the other methods; thus, leading to efficient use of resources,
user satisfaction, and economical profits for users as well as cloud providers.

DATA AVAILABILITY STATEMENT

The dataset analyzed during the current study is NERSC data available CFDR repository at https://
www.usenix.org/cfdr-data.

https://www.usenix.org/cfdr-data
https://www.usenix.org/cfdr-data

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

23

REFERENCES

AbdElfattah, , EElkawkagy, , MEl-Sisi, , A. (2017), A reactive fault tolerance approach for cloud computing.
13th International Computer Engineering Conference (ICENCO). IEEE.

Agarwal, K. K., & Kotakula, H. (2022). Replication Based Fault Tolerance Approach for Cloud. In International Conference
on Distributed Computing and Internet Technology, (pp. 163-169). Springer. doi:10.1007/978-3-030-94876-4_11

Amin, Z., Singh, H., & Sethi, N. (2015). Review on fault tolerance techniques in cloud computing. International
Journal of Computers and Applications, 116(18).

Amoon, M., El-Bahnasawy, N., Sadi, S., & Wagdi, M. (2019). On the design of reactive approach with flexible
checkpoint interval to tolerate faults in cloud computing systems. Journal of Ambient Intelligence and Humanized
Computing, 10(11), 4567–4577. doi:10.1007/s12652-018-1139-y

Amoon, M., El-Bahnasawy, N., Sadi, S., & Wagdi, M. (2019). On the design of reactive approach with flexible
checkpoint interval to tolerate faults in cloud computing systems. Journal of Ambient Intelligence and Humanized
Computing, 10(11), 4567–4577. doi:10.1007/s12652-018-1139-y

Attallah, S. M., Fayek, M. B., Nassar, S. M., & Hemayed, E. E. (2021). Proactive load balancing fault tolerance
algorithm in cloud computing. Concurrency and Computation, 33(10), e6172. doi:10.1002/cpe.6172

Bui, D. M., & Lee, S. (2018). Early fault detection in IaaS cloud computing based on fuzzy logic and prediction
technique. The Journal of Supercomputing, 74(11), 5730–5745. doi:10.1007/s11227-017-2053-3

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer
Systems, 25(6), 599–616. doi:10.1016/j.future.2008.12.001

Cheraghlou, M. N., Khademzadeh, A., & Haghparast, M. (2019). New fuzzy-based fault tolerance evaluation
framework for cloud computing. Journal of Network and Systems Management, 27(4), 930–948. doi:10.1007/
s10922-019-09491-2

Chinnathambi, S., Santhanam, A., Rajarathinam, J., & Senthilkumar, M. (2019). Scheduling and checkpointing
optimization algorithm for Byzantine fault tolerance in cloud clusters. Cluster Computing, 22(6), 14637–14650.
doi:10.1007/s10586-018-2375-9

Ejimogu, O. H., & Başaran, S. (2017). A systematic mapping study on soft computing techniques to the cloud
environment. Procedia Computer Science, 120, 31–38. doi:10.1016/j.procs.2017.11.207

Gupta, B. B., Agrawal, D. P., Yamaguchi, S., & Sheng, M. (2020). Soft computing techniques for big data and
cloud computing. Springer.

Hasan, M., & Goraya, M. S. (2018). Fault tolerance in cloud computing environment: A systematic survey.
Computers in Industry, 99, 156–172. doi:10.1016/j.compind.2018.03.027

Java. (n.d.). Java Point. Java. https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning

Kumari, P., & Kaur, P. (2018). A survey of fault tolerance in cloud computing. Journal of King Saud University-
Computer and Information Sciences.

Kumari, P., & Kaur, P. (2020). Topology-aware virtual machine replication for fault tolerance in cloud computing
systems. Multiagent and Grid Systems, 16(2), 193–206. doi:10.3233/MGS-200328

Liu, J., Wang, S., Zhou, A., Kumar, S. A., Yang, F., & Buyya, R. (2016). Using a proactive fault-tolerance
approach to enhance cloud service reliability. IEEE Transactions on Cloud Computing, 6(4), 1191–1202.
doi:10.1109/TCC.2016.2567392

Menychtas, A., & Konstanteli, K. G. (2012). Fault detection and recovery mechanisms and techniques for service-
oriented infrastructures. In Achieving real-time in distributed computing: from grids to clouds (pp. 259–274).
IGI Global. doi:10.4018/978-1-60960-827-9.ch014

Mohammed, B., Modu, B., Maiyama, K. M., Ugail, H., Awan, I., & Kiran, M. (2018). Failure analysis modeling
in an infrastructure as a service (IaaS) environment. Electronic Notes in Theoretical Computer Science, 340,
41–54. doi:10.1016/j.entcs.2018.09.004

http://dx.doi.org/10.1007/978-3-030-94876-4_11
http://dx.doi.org/10.1007/s12652-018-1139-y
http://dx.doi.org/10.1007/s12652-018-1139-y
http://dx.doi.org/10.1002/cpe.6172
http://dx.doi.org/10.1007/s11227-017-2053-3
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1007/s10922-019-09491-2
http://dx.doi.org/10.1007/s10922-019-09491-2
http://dx.doi.org/10.1007/s10586-018-2375-9
http://dx.doi.org/10.1016/j.procs.2017.11.207
http://dx.doi.org/10.1016/j.compind.2018.03.027
http://dx.doi.org/10.3233/MGS-200328
http://dx.doi.org/10.1109/TCC.2016.2567392
http://dx.doi.org/10.4018/978-1-60960-827-9.ch014
http://dx.doi.org/10.1016/j.entcs.2018.09.004

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

24

Priti Kumari received the MCA degree from the Banasthali University of Rajasthan, India in 2014. Got the M.Tech
degree in Computer Science & Engineering from the Banasthali University of Rajasthan, India in 2016. She is
currently a Ph.D. student in Jaypee Institute of Information Technology, Noida, India, Computer Science branch.
Her research interests include Cloud Computing, Fault Tolerance, and Distributed Computing.

Monil, M. A. H., & Rahman, R. M. (2016). VM consolidation approach is based on heuristics, fuzzy logic, and
migration control. Journal of Cloud Computing, 5(1), 8. doi:10.1186/s13677-016-0059-7

Patra, P. K., Singh, H., Singh, R., Das, S., Dey, N., & Victoria, A. D. C. (2016). Replication and resubmission
based adaptive decision for fault tolerance in real-time cloud computing: A new approach. International Journal
of Service Science, Management, Engineering, and Technology, 7(2), 46–60. doi:10.4018/IJSSMET.2016040104

Prakash, S., & Vyas, V. (2022). Analysis of Fault Tolerance Techniques in Virtual Machine Environment. In
ICT Analysis and Applications, (pp. 121-131). Springer. doi:10.1007/978-981-16-5655-2_12

Rawat, A., Sushil, R., Agarwal, A., Sikander, A., & Bhadoria, R. S. (2021). A new adaptive fault tolerant
framework in the cloud. Journal of the Institution of Electronics and Telecommunication Engineers, 1–3. doi:
10.1080/03772063.2021.1907231

Ray, B., Saha, A., Khatua, S., & Roy, S. (2020). Proactive Fault-Tolerance Technique to Enhance Reliability of
Cloud Service in Cloud Federation Environment. IEEE Transactions on Cloud Computing. IEEE.

Rezaeipanah, A., Mojarad, M., & Fakhari, A. (2022). Providing a new approach to increase fault tolerance in
cloud computing using fuzzy logic. International Journal of Computers and Applications, 44(2), 1–9. doi:10.
1080/1206212X.2019.1709288

Rong, H., Wang, H. M., Liu, J., & Xian, M. (2016). Privacy-preserving k-nearest neighbor computation in multiple cloud
environments. IEEE Access: Practical Innovations, Open Solutions, 4, 9589–9603. doi:10.1109/ACCESS.2016.2633544

Saikia, L. P., & Devi, Y. L. (2014). Fault tolerance techniques and algorithms in cloud computing. International
Journal of Computer Science & Communication Networks, 4(1), 01-08.

Sathiyamoorthi, V., Keerthika, P., Suresh, P., Zhang, Z. J., Rao, A. P., & Logeswaran, K. (2021). Adaptive fault
tolerant resource allocation scheme for cloud computing environments. Journal of Organizational and End User
Computing, 33(5), 135–152. doi:10.4018/JOEUC.20210901.oa7

Sharma, S. (2017). Enhance data security in cloud computing using machine learning and hybrid cryptography
techniques. International journal of advanced research in computer science, 8(9).

Srivastava, N. P., & Srivastava, R. K. (2014). Soft Computing Approaches To Fault-Tolerant Systems.
International Journal of Advanced Networking and Applications, 5(6), 2096.

Sun, J., Du, W., & Shi, N. (2018). A Survey of kNN Algorithm. Information Engineering and Applied Computing.
doi:10.18063/ieac.v1i1.770

Tran, D., Tran, N., Nguyen, G., & Nguyen, B. M. (2017). A proactive cloud scaling model based on fuzzy time
series and SLA awareness. Procedia Computer Science, 108, 365–374. doi:10.1016/j.procs.2017.05.121

Wu, Y., Peng, G., Wang, H., & Zhang, H. (2019). A two-stage fault tolerance method for large-scale manufacturing
network. IEEE Access: Practical Innovations, Open Solutions, 7, 81574–81592. doi:10.1109/ACCESS.2019.2923660

Zhao, J., Xiang, Y., Lan, T., Huang, H. H., & Subramaniam, S. (2016). Elastic reliability optimization through
peer-to-peer checkpointing in cloud computing. IEEE Transactions on Parallel and Distributed Systems, 28(2),
491–502. doi:10.1109/TPDS.2016.2571281

Zhou, A., Sun, Q., & Li, J. (2017). Enhancing reliability via checkpointing in cloud computing systems. China
Communications, 14(7), 1–10. doi:10.1109/CC.2017.8010962

Zhou, A., Wang, S., Cheng, B., Zheng, Z., Yang, F., Chang, R. N., & Buyya, R. (2016). Cloud service reliability
enhancement via virtual machine placement optimization. IEEE Transactions on Services Computing, 10(6),
902–913. doi:10.1109/TSC.2016.2519898

http://dx.doi.org/10.1186/s13677-016-0059-7
http://dx.doi.org/10.4018/IJSSMET.2016040104
http://dx.doi.org/10.1007/978-981-16-5655-2_12
http://dx.doi.org/10.1080/03772063.2021.1907231
http://dx.doi.org/10.1080/1206212X.2019.1709288
http://dx.doi.org/10.1080/1206212X.2019.1709288
http://dx.doi.org/10.1109/ACCESS.2016.2633544
http://dx.doi.org/10.4018/JOEUC.20210901.oa7
http://dx.doi.org/10.18063/ieac.v1i1.770
http://dx.doi.org/10.1016/j.procs.2017.05.121
http://dx.doi.org/10.1109/ACCESS.2019.2923660
http://dx.doi.org/10.1109/TPDS.2016.2571281
http://dx.doi.org/10.1109/CC.2017.8010962
http://dx.doi.org/10.1109/TSC.2016.2519898

