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ABSTRACT

Driving behaviour is a critical issue in modern transportation systems due to the increasing concerns 
about the safety of drivers, passengers, and road users. Machine learning models are capable of 
learning driving patterns from sensor data and recognizing individuals by their driving behaviours. 
This paper presents a novel framework for aggressive driving detection and driver classification based 
on driving events identified from GPS data collected with smartphones and heart rate of the driver 
captured with a wearable device. The proposed system for road rage and aggressive driving detection 
(RAD) is realized with an integral framework with components for data acquisition, event detection, 
driver classification, and model interpretability. The system is implemented by generating a prediction 
model by training machine learning classifiers with a dataset collected in a cohort to classify drivers 
into good, unhealthy, road rage, and always bad. The proposed system is to improve road safety and 
to customize insurance premiums in the best interest of policy holders and insurance companies.

Keywords
Big Data, Driver Behaviour, Driver Monitoring, Interpretable Machine Learning, Manage-How-You-Drive, 
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INTRODUCTION

Driving behaviours are the main cause of road accidents and one of the main sources of insurance 
claims. To improve road safety and reduce the number of insurance claims, it is important to identify 
driving behaviours in order to adapt the insurance contract accordingly. Identifying abnormal driving 
behaviour is an important task for Usage-Based Insurance (UBI) companies as it can help them to 
assess a customer’s risk and price their policies accordingly. Driving behaviours such as speeding 
and aggressive and careless driving are of particular interest to UBI companies as they are directly 
related to an individual’s risk of an accident. Car driving behaviours can be measured by data such 
as speed, acceleration/deceleration, lane position and headway. Accident proneness refers to a 
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general disposition or personality trait that increases the likelihood of an individual being involved 
in an accident (Shinar, 2017). Differences in accident proneness are generally caused by a number 
of factors, such as gender, age, personality traits, driving experience, attitude towards driving, road 
conditions and environmental stimuli. Figure 1 illustrates the factors influencing driver behaviour.

Driving style is defined as a habitual driving behaviour, characterizing a driver’s tendencies to 
behave in specific ways on a regular basis (Sagberg et al., 2015). It also describes how a driver’s 
driving style affects the safety of the individual and others on the road. The identification of such 
habits has become increasingly important for the development of insurance companies as it can help 
them to identify high-risk drivers, estimate risk and set an insurance premium accordingly.

Abnormal driving is generally characterized by atypical or risky behaviour that is not in line with 
the norms for a particular group of drivers (Hu et al., 2017). There are a number of different types 
of abnormal driving, but the most relevant for UBI are those that are associated with an increased 
risk of an accident, such as speeding, aggressive driving and careless driving. Road rage is a brief, 
intense reaction to perceived provocation in a situation of conflict between two or more persons on 
the road, characterized by verbal abuse, shoving, hitting, threatening and possibly minor or major 
physical aggression (Shinar, 1998). Aggressive driving is characterized by hostile, impatient and 
risky behaviour such as speeding, tailgating, weaving in and out of traffic and running red lights.

The World Health Organization (WHO) report on road traffic injuries reveals that around 1.3 
million people die in road crashes every year (WHO, 2022). These crashes are identified as causing 
around 3% loss of Gross Domestic Product (GDP) in most countries. Further, 20 to 50 million people 
are susceptible to injuries, resulting in disabilities and long-term health conditions. Figure 2 depicts 
the fatalities in road accidents over the past few years, which are increasing every year. Along with the 
Bloomberg Initiative for Global Road Safety (BIGRS), the WHO strives to reduce fatalities and help 
governments develop a long-term sustainable plan for safety and road traffic injury prevention, and 
define guidelines and principles of a comprehensive road safety approach. Technological interventions 
in road rage and aggressive driving behaviour are crucial for this objective.

Recent developments such as Drivesafe (Bergasa et al., 2014), a mobile application for alerting 
and ranking drivers, and Advanced Vehicle Technology (AVT) have led to the development of 
assistive mechanisms in the detection and reduction of aggressive driving (Furlan et al., 2020; Benson 
et al,, 2021). AVTs include a wide range of technologies such as anti-collision systems, automatic 

Figure 1. 
Factors Influencing Driving Behaviour
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emergency braking, blind spot monitoring, lane departure warning, forward collision warning, lane 
change assistance, and adaptive cruise control systems. However, the effectiveness of AVTs in 
reducing aggressive driving behaviour is still unknown and there exists a possibility of it becoming 
a distractive technology, frustrating untrained drivers.

Traditionally, motor insurance pricing (Kafková & Křivánková, 2014) is performed with 
Generalized Linear Models (GLM) (Nelder & Wedderburn, 1972) such as logistic regression (LR), 
Poisson regression, Cox proportional hazards model, etc. These models use demographic information 
(e.g., age, gender, marital status, etc.), driving record (e.g., number of accidents, tickets, etc.) and 
vehicle type as predictors of risk, called the ‘priori information’. Later, posterior information about 
the policyholder is obtained from historical claims data (e.g., total claims costs, number of accidents) 
or population data (e.g., market share, insurance penetration rate, etc.). This information is used to 
determine the expected cost, total loss, etc. for a given policyholder as described in the works of Gao 
et al. (2021) and Corradin et al. (2022).

However, GLMs do not possess the flexibility to learn complex effects from multiple causes as 
they model only interaction between two factors. In a recent investigation, Blier-Wong et al. (2020) 
have projected the limitations of the usage of GLM in evaluating the risks in property and casualty 
insurance (P&C) covers that involve multiple behaviour causes. The authors advocate the usage of 
machine-learning approaches to overcome the drawbacks of GLM models.

Machine-learning models are capable of learning non-linear functions and have shown greater 
success in modelling complex relationships between inputs and the targeted output. Further, they can 
handle unstructured data, characteristic of insurance portfolios. Therefore, algorithms that work with 
training reactive features using data from past claims that have been laid for other policy holders, 
can help to build a robust risk model. Grize et al. (2020) emphasize the significance of the usage of 
machine-learning approaches in the insurance vertical when modelling the analytical applications 
such as risk estimation, premium calculation, profitability monitoring and risk modelling.

Inspired by the pioneering and recent works advocating the usage of machine-learning approaches 
in the insurance business (Dietterich, 1997; Bian et al., 2018), this research explores the possible uses 

Figure 2. 
Yearly Fatalities in Road Accidents
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of machine-learning models in RAD, based on multiple behavioural causes for UBI-related claims. 
The contributions of this research are as below:

1. 	 This research proposes a novel framework for RAD based on the behavioural, environmental, 
emotional and physiological/psychological factors of an individual for UBI policy planning.

2. 	 Conventional machine-learning models such as DT (Quinlan, 1996), RF (Breiman, 2001) and 
SVM (Cortes & Vapnik, 1995) are modelled as multiclass classifiers to categorize drivers into 
four types such as good, unhealthy, road rage and always bad.

The proposed framework and the models evaluated with real-time data generalize well with 
arbitrary data captured in a cohort in India, suggesting the feasibility of deploying such models for 
RAD in other geographies.

This paper is organized as follows. Section 2 presents a comprehensive review of driver behaviour 
modelling and applications of machine-learning approaches in the insurance industry. Section 3 
presents the mathematical representations of the machine-learning models employed in this research. 
The proposed framework is described in section 4, and experimental results with illustrations, 
interpretations and comparative analysis are presented in section 5. The paper is concluded with 
directions for further research in section 6.

RELATED WORK

This section presents an inclusive analysis of literature spanning the earliest to the most recent 
representative works in the context of this research. Over the past two decades, several approaches for 
automated driving behaviour monitoring have been proposed (Ji et al., 2004; Al-Sultan et al., 2013). 
With the evolution of telematics insurance models in which premiums are calculated based on the 
data collected from vehicle-mounted devices and risk profiles of drivers, Manage-How-You-Drive 
(MHYD) insurance schemes have become popular (Cieślik, 2017).

Generally, driver patterns are monitored with GPS devices, On-Board Diagnosis (OBD) sensors 
and smartphone sensors. However, GPS is a passive device and thus is vulnerable to various sources 
of noise and interference, and GPS-based driver pattern monitoring has been limited to only specific 
purposes, e.g., driving route tracking and vehicle detection (Chowdhury et al., 2018). OBD sensors 
such as throttle, brake and steering wheel angle sensors are widely used to collect data from the 
vehicle (Amarasinghe et al., 2015). Compared with OBD sensors, smartphone sensors have much 
better data quality due to their higher signal-to-noise ratio and immunity to the power fluctuations 
of the vehicle (Samuel et al., 2021). As a result, a lot of research has been carried out to monitor 
driving patterns using smartphone sensors. Driver behaviour modelling (AbuAli & Abou-zeid, 2016; 
Chen et al., 2019) has been a long-standing area of research with many studies proposed in the past 
decade towards understanding and detecting driver behaviour anomalies to improve road safety. 
Several studies have been carried out to identify the features of aggressive driving and road rage 
incidents and evaluate their effects on insurance pricing (Peng et al., 2015; Gvozdenović and Uzelac 
2018; Arumugam and Bhargavi 2019; Naik and Sikka 2021). Further, the outbreak of COVID-19 
has considerably affected the road traffic statistics. Insurance companies are facing challenges in risk 
assessment, policy pricing, personalized claims, etc. due to the fluctuation in accident statistics during 
COVID-19. A few studies on the impact of COVID-19 on the insurance industry call for adaptation of 
digital technologies, new data-driven models, telematics and other technologies to achieve a balance 
between customer experience and business continuity (Katrakazas et al., 2020; Babuna et al., 2020; 
Volosovych et al., 2021).

The Driving Behaviour Detection and iDentification system (D3) (Yu et al., 2016) identifies six 
kinds of abnormal driving behaviours such as fast U-turn, sideslipping, sudden braking, weaving, 



International Journal of Software Innovation
Volume 11 • Issue 1

5

swerving and turning with a wide radius. SafeDrive (Zhang et al., 2017) is a cloud-based driver 
anomaly detection system based on unsupervised learning, implemented in the Internet-of-Vehicle 
(IoV) platform. A driving model for quantification of driving style proposed by Shi et al. (2015) is 
personalized to a driver based on the vehicle and the road conditions.

A model for driving behaviour visualization proposed by Liu et al. (2017) is based on the 
hypothesis that a few essential features generate multivariate data to model driving behaviours. An 
approach for driving event detection and driver profiling detects lateral and longitudinal driving 
manoeuvres with Hidden Markov Models (HMM) and jerk energy technique respectively (Daptardar 
et al., 2015). A multi-type data-based framework to access the driving risk level for UBI proposed 
by Yin and Chen (2018) employs a set of kernels to capture attributes. A predictive (Arun Kumar & 
Yellampalli, 2018) model for auto insurance based on binary LR, called black box, uses GPS data.

Six classification models are proposed by Brahim et al. (2022) for driver behaviour classification 
into four categories: intermediate, aggressive, dangerous and normal. A framework for driver behaviour 
and driving pattern modelling based on driver, vehicle and environmental parameters also advocates 
the application of various ML approaches (Malik & Nandal, 2021). Two most recent works on the 
application of predictive analytics in the insurance sector show that customer satisfaction, reduction 
of operation costs and detection of fraudulent claims can be considerably improved with ML models 
(Sharma et al., 2022; Prajapati, 2022).

A detailed review of the above shows that UBI is the emerging model of personal insurance and 
will replace the traditional pooling-based models in the near future. It is understood that complexity 
in risk-based premium computation can be reduced with usage information. Risk assessment with ML 
approaches for modelling driver behaviours, learning driving patterns and predicting risk classification 
is key to developing UBI models. Few works have shown that models based on multiple attributes 
outperform models trained with a single attribute. This review identifies the need for robust models 
for risk assessment and risk classification based on multiple attributes, and this research is aligned 
with this requirement.

METHODS

The hypothesis of this research is that road rage and aggressive driving detection behaviour can 
be predicted by training the machine-learning models with multiple attributes characteristic of the 
driving behaviour and health of a driver.

LR is a statistical technique for developing a predictive model to determine the probability of 
an outcome in relation to one or more independent variables. LR is a commonly used tool in many 
disciplines such as economics, biology, epidemiology and medical research. However, the linearity 
assumption of LR between independent and dependent variables is often not met in many real-world 
applications, which can lead to inaccurate results. Particularly, in modelling driving behaviours, it 
is important to account for the nonlinearity of various factors. Compared to LR, machine-learning 
models such as Decision Tree (DT), Random Forest (RF) and Support Vector Machine (SVM) can 
better model nonlinear relationships between independent and dependent variables.

The proposed RAD framework is implemented with a component for driver rage detection using 
a machine-learning model to classify driving behaviours. Three different baseline models described 
in the following subsections are trained with driving data to classify driving behaviours.

Decision Tree
A ‘DT’ (Quinlan, 1996) is a statistical classification system that learns from a set of instances to 
sort new instances into one or more classes. The DT algorithm constructs a tree-like structure that 
represents a decision problem. At the root of the tree is a set of test instances. The DT algorithm then 
recursively partitions the test instances into subsets according to a test criterion. Each node in the tree 
is a partition of the test instances and is associated with a label that is the result of applying the test 
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criterion to the instances in that partition. The leaves of the tree are the labels of the test instances. 
The DT learns to classify new instances by traversing the tree from the root to the leaves.

Given a set of instances I x y x y
n n

= ( ) … ( ){ }1 1
, , , , , the DT T  is represented as a binary tree 

with m  nodes and l  leaves, where x
i
 is the feature vector and each y

i
 is the label of instance i . 

Each node v  in T  has l
v

 leaves, and each of these leaves is associated with a label y
j
. The decision 

tree learning method constructs T  for a given training set. In the training process, an instance is 
presented with the corresponding feature vector x . Then the tree T  is traversed from the root node 
to the leaf nodes. For each node v  of the tree, the algorithm decides whether to branch to the left or 
the right child. For each node v  of the tree, the algorithm determines a partition p

v
 of the training 

instances and computes a weight w
v
 associated with the partition. The partition p

v
 is defined by the 

values of feature vectors in the partition. The algorithm also determines a label y
v
 for each partition. 

The label of the instance is determined by the highest weight of the partition, in equation (1):

y argmax w x p
v

j
v j v

= ∈{ } 	 (1)

Random Forest
The RF algorithm (Breiman, 2001), is a machine-learning technique used for classification and 
regression. It computes a series of tree classifiers called DTs, each consisting of a set of rules for 
classification. The algorithm works by generating a large number of classifiers, each constructed using 
a different set of features and a different sample of training data. The randomness in the algorithm 
consists in the fact that each classifier is constructed using a different set of features. The mathematical 
description of the RF classifier is given as below.

It follows a nonparametric regression framework in which each input vector X  is first mapped 
to a feature space, then to a decision space via a feature mapping function f X f X: → ( ) , then to a 

response space via a response mapping function g f X g f X: ( ) → ( )( )  and finally the response 

vector Y  is obtained by applying a response function h g f X h g f X: ( )( )→ ( )( )( ) .
For a given training sample D X Y X Y

n n
= ( ) … ( ){ }1 1

, , , , , a set of classification trees T T
n1

, ,¼  

are constructed as follows. Each tree T
i
 is a binary tree, where each internal node is labelled by a feature 

of the input vector X
i
 and each leaf node is labelled by a class label Y

i
. A training sample is first 

mapped to the input space using f , then to the decision space using g , and finally to the response 
space using h . Finally, for each tree T

i
, the response Y  is predicted as a majority vote over all the leaf 

nodes. For classification problems, the response is set to the class with the largest number of votes, and 
for regression problems, the predicted response is the average response over all the trees.

Support Vector Machine
A Support Vector Machine (SVM) is a supervised learning algorithm used for classification and 
regression. It is a type of kernel machine-learning algorithm that uses a kernel function to calculate 
the distance between two points in a feature space. SVMs are popular for text classification and image 
recognition tasks. The SVM algorithm works by finding a hyperplane that separates two classes of 
data as efficiently as possible. The hyperplane is the plane that maximizes the distance between the 
two classes of data. Points that lie on the hyperplane are classified as belonging to one of the classes, 
and points that lie outside the hyperplane are classified as belonging to the other class.
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The binary SVM classifier constructs a hyperplane to separate two classes labelled y = − +( )1 1,  
from each other. An SVM has a decision function as in equation (2) where, K x x

i
,( )  is a kernel 

function for x y i n
i i
, , , ,= …1  is a class label, a

i
Î   and b Î   are hyper-parameters, and K  is a 

Gaussian kernel given by equation (3) where s  is a kernel parameter:

f x a y K x x b
i
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=
∑
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� , 	 (2)

K x x x x
i i
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exp
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A Multiclass SVM (MSVM) (Weston et al., 1998) is a variant of SVM for one-vs.-one or one-
vs.-all multiclass classifications. The one-vs.-one MSVM uses a separate binary SVM for each pair 
of classes and the one-vs.-all MSVM uses a single binary SVM for each class.

The one-vs.-all MSVM used in this research is trained in two phases:

1. 	 Classifying all training points into one of the k  classes; and
2. 	 Classifying the remaining points into one of the remaining k -1  classes.

The training data is assumed to be  = ( ) ={ , }x y
i i i

m
1
, where x

i
dÎ   and y

i
∈ − +{ }1 1, .

The 
2
 regularized linear SVM used in this research solves the optimization problem defined in (4):

min ,
,

*

a b
i

m

i i
i

m

i
i

x x C y a C y b

subject to

{ }
= =

− + +∑ ∑
1

2
2
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2

1
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   y x a b
i
T + ≥ −1 g

	 (4)

where C > 0  is a trade-off parameter, x *  is a separating hyperplane and y x a
i
T
i
≥ −1 g  for 

i m= …1, , .

PROPOSED RAD FRAMEWORK

Problem Definition
Abnormal driving behaviours such as reckless and aggressive driving are usually one of the reasons for 
accidents, which are considered common offences in several countries. UBI is a risk-based insurance 
model that monitors driving behaviour of a driver on a particular road in real time, which helps insurers 
to identify potential risks, predict possible accidents in the near future and compute the premium. 
Unlike the conventional insurance models that classify the drivers into two or three categories based 
on historic driving data, static speed limits and fixed premiums, a UBI business model dynamically 
changes the insurance premiums for each driver, based on real-time driving behaviour.

Recently, the outbreak of COVID-19 has significantly reduced the driving activities of millions of 
people. Usage-based premium computation, which is the mainstay of the UBI business model, is data-
driven. UBI companies are now confronting the challenging problem of detecting abnormal driving 
behaviour of people from limited on-road data (i.e., the time and date of the on-road events) that are either 
collected manually or through the network of fixed roadside vehicle detection systems. Risk detection 
based on behavioural, environmental, physiological and emotional factors can help insurance companies 



International Journal of Software Innovation
Volume 11 • Issue 1

8

to provide personalized insurance premiums and to support drivers in making better decisions. To this 
end, a combination of machine learning and data science techniques is required to construct such a model.

Foreseeing the growing trend of UBI business models in the future, this research proposes the 
RAD system to overcome the drawbacks of the conventional models. The proposed model is realized 
as a multiclass classifier for driver categorization with the following objectives:

•	 To collect the driving data from the live driving environment with the GPS and wearable devices 
using smartphones.

•	 To classify the drivers into four categories such as good, unhealthy, road rage and always bad:
◦◦ Good drivers – drivers with an overall driving score above the threshold.
◦◦ Unhealthy drivers – drivers reported as having health problems.
◦◦ Bad drivers – drivers with a poor driving score, who exhibit consistent irregularity in driving 

and who have received more warnings.
◦◦ Road rage/aggressive drivers – drivers who exhibit road rage and aggression, thus have a 

higher potential for road accidents.
•	 To provide alerts, suggestions or warnings to drivers when they are driving abnormally, to 

prevent road accidents.

A classification diagram in Figure 3 illustrates the role of the proposed RAD system in insurance pricing.

Proposed RAD Architecture
The proposed RAD architecture consists of four components: data collection, rage and aggression 
detection, interpretability and UBI calculation, as shown in Figure 4. The data collection component 
collects the driving data from different drivers in real time. The rage and aggression detection 
component is trained to classify the drivers from the data collected in real-time. The explainable 
interpretable engine provides explanation on the behaviour of the RAD component in discerning the 
drivers based on the data. The UBI calculation engine provides insights to the insurance companies, 
which then calculate the personalized premium for the individuals. The functions of the individual 
components are illustrated with Figure 5 and described in the following subsections.

Driving Data Collection
Data is collected from the driving environment in real time by using an iOS app, developed with iOS/
Swift 3.0 technology and installed on the smartphone of the driver. A cloud instance is created and 

Figure 3. 
Classifications of MHYD
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big data/machine-learning technologies are installed in the machine. As soon as the driver starts the 
vehicle, the data collection mechanism collects the data using the iOS app, with the help of GPS signals 
and a wearable device. This app will start logging the trip details as soon as driver starts the vehicle 
and continue until the driver stops the vehicle. A trip is characterized as a drive from a source point 
to a destination, the details of which are sent to the cloud environment for further processing. Swift 
3.0 allows users to configure the desired accuracy of location information with a set of predefined 
constants. In this research, kCLLocationAccuracyBest is used to capture the location at the best 
accuracy. This content is added to section 4.2.1.

Figure 4. 
Proposed RAD Architecture

Figure 5. 
Functions of RAD Components
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Rage and Aggression Detection
The RAD process is realized in two sub-phases, namely model generation and prediction. Model 
generation refers to building a classifier model by training a naïve classifier with driver data. In this 
research, three classifiers are built with three separate machine-learning models, as discussed in section 
III. Before training, the missing values are filled with valid values and the data samples are normalized. 
The trained model is run in the driver’s device and synchronized every 24 hours. The arbitrary real-time 
data samples captured are classified into one of the four driver categories assigning the target labels, 
and personalized voice alerts are provided for the unhealthy and rage/aggressive drivers.

In RAD, the data flow is seen as a series of transformations of the driver data captured by the 
data acquisition devices as it passes to the other components until the driving behaviour is classified, 
as shown in Figure 6. The web portal is developed to check the details about a particular driver at 
any instant in time. A middleware and integration layer uses a few Representational State Transfer 
(REST) web services to handle the data flow between the data collection and classification layers.

Interpretability
A critical part of artificial intelligence/machine learning is to understand how models arrive at their decisions. 
This helps to build trust between the humans and the machine-learning models, allowing the user to confide in 
the system. Interpretability can be achieved using data-centric visualization, providing additional information 
about the decision, generating example input/output data, etc. In this research, the interpretability engine 
visualizes the behaviour of the model by analysing the target labels with respect to the input data.

UBI Calculation Engine
This component includes summary and driving behaviour details, start/end time of journey, data/time 
and location of abnormal driving behaviour of all drivers. The data summary is published and is readily 
available to insurance companies to calculate the personalized premium based on driving behaviour.

Implementation of RAD
This section presents a detailed description of the implementation of each component of the proposed 
RAD system, with illustrations. Each component is designed to have an individualized architecture 
and functionality, so that it can be easily adapted to the specific needs of the different applications.

Figure 6. 
Data Flow Architecture
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Real-Time Driving Data Collection
The proposed system supports real-time data collection in three modes such as black box, OBD II 
Dongle and smartphone, the characteristics of which are shown in Figure 7. However, due to the 
merits of smartphone-based data collection such as convenience, flexibility and cost-effectiveness, the 
system employs smartphone-based data collection, either with built-in sensors or Global Positioning 
System (GPS). The merits and limitations of these approaches are summarized in Table 1. As hard-
cornering events are vital in the identification of road rage/aggressive drivers, this research employs 
the smartphone GPS for real-time data collection.

GPS is a satellite navigation system that emits continuous navigation signals and data, which 
allows GPS receivers to calculate location, elevation, velocity and time. GPS signals include longitude, 
latitude, speed, altitude, course and current timestamp. In RAD, an iOS-based app (front end) is 
developed to collect the driving data from GPS signals and wearable devices. Hard acceleration, hard 
braking, hard cornering and speeding events are detected based on the GPS signals and explained in 
detail in section IV. Further, heart rate is captured with a wearable device.

Data Preprocessing
RAD preprocesses the GPS data to eliminate the noise and to consider only the remaining data for 
further processing. The following are the preprocessing procedures used by the proposed system:

•	 All the signals will be passed through preprocessing module/component for normalization.
•	 In case the data collection devices receive multiple GPS signals in a second, the last signal will 

be considered.
•	 Event monitoring is considered for only one minute after the start of the trip (since the frequency 

of initial GPS readings is not consistent and takes a few samples to calibrate).
•	 Missing data is replaced with the most frequent values.

Data Format
In RAD, GPS data comprises summary and trail details for each driver, with a unique identifier 
for driver identification as shown in Table 2. A service is developed to fetch the source address 

Figure 7. 
Devices for Data Collection
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and destination address based on the source latitude/longitude and destination latitude/longitude. 
Likewise, whenever the driver is driving, the app will receive different latitude and longitude points 
almost every second. For each trip, one summary of information and multiple GPS trails based on 
the duration of travel are recorded, and are available for the corresponding driver.

Rage and Aggression Detection
This function requires analysis of real-time driving data to identify events such as hard acceleration, 
hard braking and hard cornering, and speeding incidents. The GPS data are pre-processed and the 
data-flow depicted in Figure 8 is followed to detect the events. Heart rate is captured from a wearable 
device and processed as-is. The generation of events and representation of data are presented in 
Figure 9 with illustrations.

1. 	 Hard acceleration: Hard acceleration is a driver event when more force than normal is applied 
to the vehicle’s accelerator, causing the vehicle to cross the permissible acceleration threshold. 
It is defined as the difference between the final and initial speeds over a period of time as in 
equation (5). A positive value of this computation signifies hard acceleration:

Hard Acceleration
Final Speed Initial Speed

Final Time In
 

  

 
=

−( )
– iitial Time ( )

	 (5)

2. 	 Hard Braking: Hard braking is a driver event when more force than normal is applied to the 
vehicle’s brake, causing the car to slow down more quickly than it would under normal driving 
conditions. It is generally considered to be a warning sign of potential aggressive driving 
behaviour, resulting in damages to the car and affecting the safety of the passengers. Hard braking 
is identified by speed changes over a time interval as in equation (6). Negative values indicate a 
deceleration and the absolute value is used to detect hard braking, compared with a threshold:

Hard Braking
Final Speed Initial Speed

Final Time Initial
 

  

 
=

−( )
–   Time( )

	 (6)

3. 	 Speeding Incidents: A vehicle speeding over the limit can result in a number of incidents such 
as injuries, property damage, accidents and fatalities. GPS data can be used to create the ideal 
vehicle speed profile and flag a vehicle as a potential speed violator. GPS systems in vehicles can 

Table 1. 
Comparison of Built-In Sensors and GPS

Built-In Sensors GPS

Advantage

Less cost and less complexity of implementation to obtain 
the behavioural events such as hard acceleration and hard 
braking.

Possibility of unstable location of smartphones and 
identification of hard-cornering events.

Drawback

Maintenance of stable position for the smartphones and 
identifying the hard-cornering event.

Complex implementation and high cost of computation.
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be used to gather data on speeding incidents including speed, time, location, date, etc. Further, 
these incidents can be aggregated to create a database of speeding incidents for analysis and to 
identify potential hotspots.

Table 2. 
GPS Data Structure

Details Code Description Example

Summary ID Driver identification number driverId: 1 
duration: 4824, 
sourceLatitude: 12.922565069610586, 
sourceLongitude: 80.15254106646069, 
distance: 21.31363644561462, 
source: {5, Chinmaya Colony, Sembakkam, Chennai, 
Tamil Nadu 600073, India.} 
destination: {Plot No. 1/G1, SIPCOT IT Park, 
Siruseri, Tamil Nadu 603103, India.} 
destinationLatitude: 12.831494314490886, 
destinationLongitude: 80.2161747053472, 
speed: 9.11578005354186

ST Start time of journey

Dur Duration of journey

TD Total distance travelled

AS Average speed

Slat Source latitude

SLon Source longitude

DLat Destination latitude

DLon Destination longitude

SA Starting point address

EA Ending point address

GPS Trail CD Current date and time date: 24 May 2019 at 9:29:42 AM, 
longitude: 80.16169384975073, 
latitude: 12.922921819504342, 
speed: 11.784402465820312, 
altitude: 18.870113486413672, 
course: 111.660834136339

CLat Current latitude

CLon Current longitude

CS Current speed

Alt Altitude

Cor Course value

Figure 8. 
Event Analysis
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4. 	 Hard cornering: Hard cornering occurs when a driver accelerates or decelerates suddenly in a 
lane, turning a corner at high speed or drifting on the road. Lateral acceleration is an important 
indicator to identify harsh cornering events, expressed as in equation (7) where V  and R  are 
the velocity and the radius, respectively. Cornering events will be detected when this value 
exceeds 21.6 KMPH:

Lateral Acceleration
V

R
 = 2 * 	 (7)

5. 	 Heart Rate Monitoring: Several studies have shown that heart-related events in drivers are 
associated with an increased risk of accidents, due to a sudden heart attack or arrhythmia, causing 
the driver to lose control of the vehicle, and often leading to a fatal outcome (D’Allegro, 2017). 
Further, diabetic events are also found to increase the risk of accidents, as Type 2 diabetes reduces 
the heart rate. The need for monitoring Heart Rate Variability (HRV) has been advocated in the 
works of Zheng et al. (2020) and Minea et al. (2021) for a better understanding of how it can 
be used as an early warning system for detection of high-risk driving behaviour. Hence, in the 
proposed system, heart rate is being monitored along with driving parameters.

Figure 9d shows the data collected from one driver. The x-axis is the GPS data count, and the 
Y axis is the heart rate (beats per second). For this driver, the heartbeat ranges from 60 to 100 beats 
per second. This helps to identify and detect road rage and aggressive drivers.

6. 	 Driver Data Format: The GPS data including speed, latitude, longitude, altitude, course and 
timestamp are received through GPS signals and the heart rate is captured with the wearable 
device. From this data and the predefined threshold values, the parameter values are derived for 
cornering, acceleration, braking, speeding and heart-related events. These parameters for driving 

Figure 9. 
Parameter Analysis a) Acceleration b) Braking c) Speed d) Heart Rate
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instances of two drivers are shown in Figure 10 with driver_id #1 and driver_id #3. It is seen 
that for the same driver, the parameters are different across instances.

Driving Behaviour Detection
The mechanism for driving behaviour classification is presented in this section. It comprises the 
following two phases:

1. 	 Feature Selection: During feature selection, raw GPS data and heart rate are analysed to remove 
redundant and irrelevant features, and the parameters for detection of events with respect to 
acceleration (A), braking (B), cornering (C), speed (S) and heart rate (H) are derived from the 
raw data. Several analyses with real-time data revealed that the drivers exhibit unique patterns 
with respect to these parameters in different instances. From the insights obtained with the 
analyses, it is evident that all the raw data is correlated with the driving behaviours, and the 
derived parameters are therefore representative of the driver’s actions. Hence, the feature set for 
training and testing the RAD model comprises the A, B, C, S and H parameters.

2. 	 Rage/Aggression Detection: The mechanism for aggression detection is presented in this section. 
It comprises model generation and prediction as illustrated with Figure 11.

Figure 10. 
Event Analysis Parameters a) Acceleration b) Braking c) Speed d) Heart Rate

Figure 11. 
Two Sub Phases of Rage/Aggression Phase
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Model Generation – Modelling Driving Behaviours Using Core ML
The proposed RAD system detects rage/aggressive driving with a machine-learning model. Initially, 
the model is trained by supervised learning with the feature set comprising the derived parameters 
under fivefold cross-validation. The classifier is trained to learn driver behaviours from the feature set 
and to assign one of the target labels—good, unhealthy (UH), road rage (RAD) and always bad—to 
the data sample. The performance of the model is evaluated with the validation dataset under each 
iteration, until the model converges to an accuracy of 99%. The algorithm for model generation is 
given in Table 3 and illustrated with Figure 12.

RAD is implemented as a cloud service because the infrastructure of the system is designed and 
implemented within the cloud so that the data collection and driving behaviours can be conducted 
in the cloud. However, it is known that driving alerts are safety-critical and their application may 
suffer from the network delay. So, for quick inferences from real-time data, the model is implemented 
with On-Device ML. On-Device ML is a popular framework, with APIs designed to support various 
machine-learning tasks on the device itself. On-Device ML is optimized for on-device performance, 

Table 3. 
Model Generation Algorithm

Algorithm: Offline Part – Modelling Driving Behaviour

Input: (1) GPS; (2) Wearable Device (WD)
Output: (1) Model (MD)
1: // Retrieve the driving data from GPS signals 
2: Driving dr ¬ Retrieve (GPS) 
3: // Retrieve the heart rate from wearables 
4: Driving hr ¬ Retrieve (WD) 
5: // Merge the driving and wearables data 
6: Driving data ¬ Merge (dr, hr) 
7: // Preprocessing algorithm to eliminate the noisy data 
8: Driving data ¬ Preprocess (data) 
9: // Generate the model 
10: Model MD ¬ Generate (data) 
11: // Update the model in the device 
12: Update (MD) 
13: // Synchronize the model for every 24 hours 
14: Synchronize (MD)

Figure 12. 
Model Generation
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which minimizes memory and power consumption. Running strictly on the device ensures the privacy 
of user data and guarantees that the local app remains functional and responsive when a network 
connection is unavailable. For every 24 hours, RAD uses On-Device ML to share the generated 
model with the driver’s device.

Prediction – Driving Behaviour Detection
Prediction refers to testing the model with an arbitrary dataset of features captured from a different 
set of drivers considered for training the model. The A, B, C, S and H parameters derived from the 
drivers’ data are fed as input into the trained model. Based on prior training, the model computes the 
classification score and assigns the target label to the data sample. When the target class is RAD or 
UH, live voice alerts are sent to the concerned drivers.

Initially, RAD determines the trip duration by recognizing the beginning and the end of the driving 
events. Once the driver starts the vehicle, RAD receives the GPS data for every one second. From 
analysing the traces collected in real driving environments, GPS data is grouped as a single frame 
for every five seconds. RAD keeps computing the average within the single frame and compares the 
values with the generated model to classify the driving behaviour as shown in Table 4. This process 
is repeated until the trip ends. The process is illustrated with Figure 13.

UBI Calculation
The UBI calculation engine is fed with the classifier decision, derived parameter values and 
classification scores from the interpretable engine for premium computation. The proposed RAD 
framework provides freedom for insurance companies to define their own UBI calculation engines 
based on the policy, driving data and in-house risk assessment. This framework provides well-defined 
user interfaces and reporting mechanisms to collect user data and present trip summaries and details 
to the driver, policymakers, law and enforcement authorities, etc.

An illustration of trip details given with Figure 14 shows two driver instances covered by an 
insurance company. It is seen that the trip attributes and graphical view can be accessed instantly for 
premium calculation. Multiple views of this data can be presented to enforce access control.

Table 4. 
Prediction Algorithm

Algorithm: Online Part – Monitoring Driving Behaviour

Input: (1) Trip Data (TD); (2) Model (MD)
Output: (1) Driver Classification (dc)
1: // Split the trip data into segments 
2: Segment Seq ¬ Retrieve (TP) 
3: // Predict the driving behaviour 
4: Behaviour beh ¬ Predict (Seq, MD) 
5: if (beh is RAD or UH) then 
6: { 
7: // Retrieve the alert message 
8: Alert alt ¬ Retrieve (beh) 
9: // Convert the text message into voice 
10: Voice msg ¬ TextToVoiceEngine (alt) 
11: // Alert the user 
12: VoiceAlert(msg) 
13: } 
14: // Return the classification of driver 
15: Output dc as driving behaviour classification 
16: dc¬beh
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Generally, insurance companies use enterprise servers to run UBI calculation engines in order 
to log the trips, manage people, raise alerts, schedule activities, implement premium rate changes, 
etc. As part of this research, a web portal is implemented with HTML 5.0 and CSS 3 for monitoring 
the drivers in real time, raising warnings, UBI calculation, analysis, etc. Driver classification over a 
small population grid can be visualized in real time as in Figure 15.

Further, the portal also provides localization of aggressive driving with Google Maps as shown 
in Figure 16. On detection of aggressive driving near Nanmangalam forest, Chennai on June 1, 2018 
at 8:55:07 AM, the voice alert was given by the RAD system installed on the driver’s smartphone, 
and the map was rendered. This feature allows policymakers to investigate the driving patterns in 
different geographical areas, identify the frequent locations of aggressive driving and decide on the 
type of driving insurance to be introduced.

EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the experimental setup for training and testing the models, empirical evaluations, 
performance and interpretability analyses in the following subsections.

Figure 13. 
Driving Behaviour Prediction

Figure 14. 
Trip Details
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Figure 15. Visualization of Driver Classification

Figure 16. 
Rage/Aggressive Driver Detection and Localization

Table 5. 
Trip Count

Trip Count (Before) Trip Count (After)

Description Count % Description Count %

Total 1761 - Total 1649 100

Proper 1570 89.15 Proper 1649 100

Missing 79 4.49 Missing - -

Invalid 112 6.36 Invalid - -
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Dataset and Experimental Setup
The proposed model is trained and tested with real-time data collected from twenty drivers from 
different vehicles. The data is collected from drivers living in different communities following various 
commute routes for daily driving activities that include commuting to work, shopping and so on. 
On average, each driver may drive 20 to 40 kilometres per day and the driving data is collected for a 
period of 24 months including hard acceleration, hard braking, speeding incidents, hard cornering and 
heart rate from all the drivers, for identifying road rage and aggressive driving using smartphones. 
In total, the RAD dataset consists of 1761 trips as shown in Table 5. Out of 1761 trips, 1570 trips 
(89.15%) are proper, 112 trips (6.36%) are invalid and 79 trips (4.49%) have a few missing columns 
as shown in Table 6. In the dataset, the missing columns are replaced with the most frequent values, 
ignoring the invalid trips. In this research three discrete models are employed in RAD, which are 
trained and tested with the valid data subsets as shown in Table 7.

Performance Evaluation
The performance of the RAD model is evaluated with accuracy, precision, recall and F1 metrics from 
the True Positive (TP), False Positive (FP), True Negative and False Negative (FN) values obtained 
on the classification of test data. Accuracy is a measure of the number of correct classifications 
expressed as in (8):

Accuracy
TP TN

TP TN FP FN
=

+( )
+ + +( )

	 (8)

Sensitivity or recall is the number of correctly identified positive samples out of the total number 
of positive samples as given in (9):

Table 6. 
Missing Values

ID Acceleration Brake Corner Speed Heart Rate

2 0.202907 0.554879 3.888889 26.397901 -

3 - 0.188367 4.507761 23.320976 83.290466

3 0.326750 - 4.525773 24.752134 82.943299

1 0.614350 0.555239 - 20.321107 82.651543

Table 7. 
Training and Testing Data Description

Category No. of Trips

Training Testing

Good 752 188

Unhealthy 246 62

Road Rage 132 33

Always Bad 189 47

Total 1319 330
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Sensitivity
TP

TP FN
=

+( )
	 (9)

Precision refers to the number of correctly identified positive samples out of the total number 
of positive samples predicted by the model as in equation (10):

Precision
TP

TP FP
=

+( )
	 (10)

F1 score is the harmonic mean of precision and recall expressed as in (11). It is used as a reliable 
measure to evaluate the models trained with unbalanced datasets. The F1 score is more robust to 
the imbalance in the training data than accuracy, precision or recall, as the harmonic mean is used 
to balance the contribution of precision and recall, which prevents the metric from being overly 
influenced by either of them:

F
Precision Recall

Precision Recall
1 2=

+
*

* 	 (11)

Figure 17. 
Confusion Matrices for Rage/Aggressive Driver Detection

Table 8. 
Classification Performance Metrics
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The metrics evaluate in [0 1], signifying best classification performance when the values are 
closer to 1. The DT, RF and SVM classifiers are trained and tested with the dataset described in the 
previous section. The performance metrics evaluated for four-class classification are shown in Table 8.

Further, the classification results are visualized with the confusion matrices, which depict the 
correct classifications and misclassifications under each category. The confusion matrices for the 
three classifier models are shown in Figure 17.

It is seen that best overall classification accuracy is achieved with the RF model, which 
exhibits a smaller number of misclassifications compared to DT and SVM. While the number of 
misclassifications is 3 for RF, the DT and SVM models make 5 and 9 wrong predictions, respectively. 
A closer observation of the results shows that a greater number of erroneous predictions are evidenced 
from the good to unhealthy categories, viz. 2, 3 and 6 for RF, DT and SVM classifiers. Further, it 
is seen that all the data samples under the unhealthy category are correctly classified by the three 
models. Further, road rage cases are also identified perfectly by RF and DT, and 1 misclassification 
is evidenced with SVM. This result shows that the models are sufficiently trained to discern the driver 
categories. However, the highest number of misclassifications from the good to unhealthy categories 
in each model signifies more FPs that must be eliminated.

Explainable Analysis
Conventional machine-learning models are seen as black box models, the predictions of which are not 
easily interpretable (Alwosheel et al., 2021). In order to understand how a machine-learning model 
works and to identify which factors influence the predictions, it is often necessary to interpret the model 
behaviour. Explainable analysis facilitates such interpretations by enabling the user to understand the 
input features that the machine-learning model uses to make the predictions. Explainable analysis is 
significant in the context of this research, as the insurance companies need to provide a user with an 
intuitive explanation of the factors that lead to driver categorization, to establish trust. Further, this 
analysis also helps to identify and eliminate trivial features, and debug and optimize the model. Two 
significant works on explainable analysis with respect to travel domain are presented by Alwosheel 
(2020) and Barbado and Corcho (2021).

The explainable analysis pipeline for RAD detection is shown in Figure 18. This analysis is 
performed with the DT, RF and SVM classifiers employed in this research to analyse their behaviour 
with respect to input features. This analysis presents insights on which of the derived parameters 
influence the classifiers’ decisions and also helps to guide the drivers towards modifying their 
behaviour to minimize their risk of being classified as aggressive.

Interpretable machine-learning models possess one or more of the following features for analysing 
their behaviour. In this context, the capabilities of the RAD model are illustrated with Figure 19.

•	 Text explanation: Ability to generate textual explanations from the model predictions.
•	 Visual explanation: Ability to provide visual interpretation of model behaviours for post-hoc 

analysis.
•	 Local explanation: Ability to segment complex solution spaces into smaller subspaces and 

provide explanations in terms of solutions to less complex problems.
•	 Explanations by example: Ability to extract data samples related to the result to understand 

the whole model.
•	 Explanations by simplification: Ability to build a whole new system posing less complexity 

from the trained model.
•	 Feature relevance: Ability to clarify the inner functioning of a model by computing a relevance 

score for its managed variables for post-hoc analysis.

The interpretable analysis for four driving instances is given in Table 9. The class score for each 
target class is given with values of the derived parameters. It is seen that driver #9 is classified always 
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Figure 18. 
Interpretable Machine-Learning Model

Figure 19. 
Interpretability

Table 9. 
Interpretability Analysis
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bad with respect to B, S and H parameters. This analysis alerts the driver to correct the braking and 
speeding activities and take care of their health.

Further, local explanations for the four classes of drivers are shown in Figure 20. The ideal 
values of the parameters is given for each class for a clear understanding of the driving behaviours 
in real time. Visualizing these parameters on the dashboard can help the driver to control the driving 
behaviour to avoid adverse outcomes.

Comparative Analysis and Discussions
Experimental results show that the proposed RAD system exhibits best classification accuracy with 
the test dataset. Since the existing models are trained with different datasets, the RAD system cannot 
be compared with them based on quantitative metrics alone. For a fair comparison, a comparative 
analysis with the state-of-the-art systems is presented in Table 10, highlighting the merits and 
limitations of these systems.

This analysis shows that the proposed RAD system is unique among its kind for aggressive 
driving detection for personalized insurance computation that considers behavioural, environmental, 
physiological and emotional factors. The proposed RAD system has a distinct edge over other systems 
as it considers the various parameters that affect the decision making process, enabling insurance 
companies to identify high-risk drivers at an early stage to avoid accidents. The alert mechanisms 
incorporated into the system can further reduce risk-proneness, as the system is implemented in the 
cloud, raising the possibilities of real-time monitoring and preventive measures.

Further, unlike other systems, the proposed model does not use the raw data captured directly 
from sensors. The DT, RF and SVM classifiers are trained with features characterising adverse driving 
events, derived from raw data and heart rate, resulting in a highest classification accuracy of 98% for 
the RF classifier. This result is indicative of the fact that the RF classifier is able to learn the complex 
patterns associated with the driving behaviour data and can be effectively used for the detection 
of rage/aggressive driving. Basically, RF poses some advantages such as flexibility, minimized 
overfitting, fast learning and ability to capture the nonlinear patterns in the data compared to other 
machine-learning models. Further, the RF-based rage/aggressive driver detection model shows good 

Figure 20. 
Interpretable Machine-Learning Model – Local Explanation
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generalization performance on unseen data due to its ability to randomly select a subset of features at 
each iteration during the learning process. The machine-learning models can be tuned to specifically 
detect the behaviour that is of interest, and this can lead to better detection performance.

However, certain limitations of the proposed RAD system listed below must be addressed in future:

Table 10. 
Comparative Analysis with State-of-the-Art

Ref No. 
(Year)

Detection 
Model

Model Description Classifications Performance 
Metrics

Advantages Limitations

(Yu et. al., 
2016)

D3 Fine-grained classification 
of four abnormal driving 
behaviours is performed 
with SVM and NN 
classifiers.

Fast U-turn, 
sideslipping, 
sudden braking, 
weaving, 
swerving, and 
turning with a 
wide radius

Accuracy - 95.36% 
(SVM) 
Accuracy - 96.88% 
(NN)

Models are trained with 
features extracted from 
6-month driving traces 
collected from real driving 
environments.

152 features are 
used in training. 
The system is 
available only for 
Android version.

(Zhang et al., 
2017)

SafeDrive Online unsupervised and 
status-aware approach to 
detect abnormal driving 
behaviours from large-
scale vehicle data using 
state graph (SG) to detect 
seven anomalies.

Rapid acceleration, 
sudden braking, 
over speed, rapid 
swerving and 
neutral taxiing

Accuracy - 93% Does not require labelled 
data.

Environmental 
and behavioural 
factors are not 
considered.

(Shi et al., 
2015)

Personalized 
Driving 
Model

Personalized models are 
constructed for each driver 
based on vehicle and road 
condition. Driving styles 
are quantized from ESD 
analysis.

Abnormal and 
steering abnormal 
rates

AR-106 
SAR-32

Suitable for drunken 
driving detection, vehicle 
calibration and intelligent 
transport systems.

Raw vehicle data 
is not sufficient 
for evaluation.

(Liu et al., 
2017)

DSAE-based 
visualization 
model

Deep Sparse autoencoder 
(DSAE) is used to extract 
hidden features for 
visualization of driving 
behaviour. Visualization 
method called a driving 
colour map maps the 
extracted features to the 
RGB space.

Simple 
behaviours: High 
speed, forward 
stopping, right rear 
reversing and left 
rear reversing

Average F Score for 
modelling complex 
driving behaviours 
- 0.626

Models simple and 
complex driving 
behaviours. 
Supports numerical 
evaluation of visualization 
with SVM classifier.

Visualization 
result can 
yield different 
visualization 
results for the 
same data due to 
rotational degree 
of freedom 
between feature 
spaces.

(Daptardar et 
al., 2015)

HMM and 
Jerk Energy-
based model

HMM are used to detect 
lateral manoeuvres 
and Jerk Energy-based 
technique to detect 
longitudinal manoeuvres

Turns, lane 
changes, hard 
accelerations and 
hard braking

95% accuracy (Event 
Detection) 
90% accuracy (Driver 
Profiling)

Detection of lateral and 
longitudinal manoeuvres.

Complex events 
and profiles are 
not modelled.

(Yin & Chen, 
2018)

Multiple 
kernel 
learning 
model

An integral model is 
trained on vehicle, driver 
and lane attributes with 
Adaboost algorithm 
for three-level risk 
classification.

High, middle and 
low level risks

Varies between 20% - 
100% with number of 
kernels

Accuracy of risk 
assessment increases with 
multiple-type attributes.

Accuracy of risk 
assessment is 
not expressed 
quantitatively.

(Arun 
Kumar & 
Yellampalli, 
2018)

Black box Binary logistic regression 
model for binary risk 
classification.

Risk and NoRisk Accuracy - 51% Logistic regression is 
simple and fast.

Low prediction 
accuracy.

(Brahim et 
al., 2022)

GBDT 
LSTM

Six discrete models are 
trained on data fused 
from multiple sensors in 
smartphone for four risk 
levels.

Intermediate, 
aggressive, 
dangerous and 
normal

Accuracy: 
CatBoost - 80% 
XGBoost - 82% 
LightGBM - 88% 
LSTM - 70% 
LSTM-CNN - 76% 
LSTM-FCN - 79%

Fusion of data results 
in better classification 
accuracies.

The models are 
trained and tested 
on simulated 
data.

RAD 
(Proposed)

DT 
RF 
SVM

Three models are trained 
discretely to classify 
drivers into four classes.

Good 
Unhealthy 
Road rage 
Always bad

Accuracy: 
DT – 96% 
RF – 98% 
SVM – 93%

Behavioural, 
environmental, 
physiological and 
emotional factors are 
considered. 
Explainability Analysis is 
provided to understand the 
behaviour of the model.

Driving data is 
collected from a 
cohort.
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1. 	 Aggressive driving behaviour is a complex phenomenon that requires extensive behavioural, 
environmental, physiological and emotional factors to be considered. These factors are often 
dynamic and are not always consistent. Thus, the proposed model is not a complete and robust 
system, but can be used as a preliminary tool for proactive driver risk assessment. This drawback 
can be overcome by training the models with grid-wide data, considering the changes in factors 
and driving behaviours over time.

2. 	 The dataset used in this paper is obtained from a single cohort in India. The accuracy of the 
dataset might be different in other countries and cultures. For this reason, the model developed 
in this paper should be validated with datasets from other sources.

CONCLUSION

The objective of this research is to deploy an automated system for detection of aggressive driving 
behaviour using a machine-learning model capable of detecting driving behaviours at four levels of 
aggressiveness—namely, good, unhealthy, road rage and always bad. The proposed RAD system 
features an integral framework comprising a classifier model, interpretability engine and alerting 
mechanism. The classifier model is trained with behavioural, environmental, physiological and 
emotional factors, facilitating differential profiling and personalization of the driving behaviour, 
essential for risk-based insurance pricing. The proposed system is tested with DT, RF and SVM 
models demonstrating the best classification accuracy of 98% for the RF classifier.

The proposed system can be extended to accommodate the dynamics in telematics data, sensor 
capabilities and evolving smartphone technologies in detecting the driving behaviours. Particularly, 
the effects of pandemics are highly pronounced in road safety due to stringent regulations imposed 
by governments, changing the mobility frequencies and commuting distances of road users. The 
traffic data captured is minimum, when the travel restrictions are in place. This scenario makes it 
difficult for UBI models to assess risks and make inferences on driving behaviours using this data.

The proposed RAD system can be finetuned to accommodate the changing context of road user 
mobility and behaviours by analysing time-dependent changes in data to enhance insurance pricing 
and risk management.
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