Effect Analysis of Nursing Intervention on Lower Extremity Deep Venous Thrombosis in Patients

Xuanyue Zhang, Guangzhou University of Chinese Medicine, China*

https://orcid.org/0000-0003-2050-0566

ABSTRACT

In the modern era, nursing intervention is an increased commitment to patient quality and protection that allows nurses to make evidence-based healthcare decisions. The challenging characteristic of patients such as high deep venous thrombosis (DVT) and respiratory embolisms (RE) are significant health conditions that lead to post-operative severe injury and death. In this article, hybrid machine learning (HML) is used for senile patients with lower extremity fractures during the perioperative time and the clinical effectiveness of early stages nursing protocol for deep venous thrombosis of patients and nurses. A three-dimensional shape model of the user interface is shown the examined vessels, which have compression measurements mapped to the surface as colors and virtual image plane representation of DVT. The measures of comprehension have been validated using HML model segmentation experts and contrasted with paired f-tests to reduce the incidence of lower extremity deep venous thrombosis in patients and nurses.

KEYWORDS

3-Dimensional Shape, Deep Venous Thrombosis, Hybrid Machine Learning, Performance, Specificity

INTRODUCTION: OVERVIEW OF DEEP VENOUS THROMBOSIS IN PATIENTS

In recent times, Deep Venous Thrombosis (DVT) has increased commitment toward patient quality and protection, allowing nurses to make evidence-based healthcare decisions. However, uncommon for a study of an institution’s nursing policies and procedures to find that practices remained unquestioned for years and written internal records were not revised despite new information (Shen et al., 2020). In this study, the authors have made a wider and more nuanced attempt to change practice based on suggestions, expert advice, and an understanding of patients and Nurses (Li et al., 2020). They developed non-invasive Mechanical Modalities methods (MM) for Deep Vein Thrombosis (DVT) prophylaxis (Muthu et al., 2020). Furthermore, the experiences as nurses that MM methods are a long-lasting problem in terms of compliance with application and maintenance (Zhang et al., 2020).
In integration with the literature review, it became clear that a revised MM of the DVT prophylaxis policy was required only for Intermittent Pneumatic Compression devices (IPCs). The rising healthcare expense increased public awareness of preventable medical mistakes, and the highest number of insured Americans in history have all brought attention to the sector’s pressing need for quality enhancement. Care redesign initiatives are currently being assessed to help direct future healthcare quality improvements. These efforts focus on patient outcomes and safety, care coordination, efficiency, and cost-cutting. Deep Venous Thrombosis (DVT) refers to irregular blood coagulation to a high degree of mortality as well as pulmonary embolism and the syndrome of an embolism, which mainly affects the patient’s quality of life (Thakur et al., 2019). Compared to the international community, the country’s medical practitioners are less concentrated on DVT prevention, and obstructive disease prevalence is high, particularly in major orthopedic surgery, including complete hip replacement, complete knee replacement, and surgery for hip fracture (Shakeel et al., 2018). In addition to using an objective risk management approach to classify high-risk patients, healthcare professionals should concentrate on DVT prophylaxis and take proactive steps to minimize morbidity successfully.

The objective tests often validate the symptomatic suggestion of DVT, the most collective test being the duplex ultrasound, which incorporates dark scale, Doppler colored flux, and ultrasound compression (Hasjim et al., 2020). Furthermore, during the venous compressional ultrasound, high superiority strain images have been obtained (Feng et al., 2020). Besides, these images will separate important from chronic DVT if the distortion configuration is monitored carefully. It is scientifically important to make a difference between important and enduring DVT (Jutinico et al., 2019). Heparin is used to treat an acute DVT patient and oral anti-coagulant with persistent DVT alone, as heparin is not used for its larger anti-coagulant and anti-inflammatory activity. Heparin is used for oral therapy. (Saleem et al., 2020). In addition, if necessary, you should stop using heparin (Canty et al., 2020). Heparin is an effective injection-driven anti-coagulant with a greater chance of bleeding than oral anti-coagulants (Kawai et al., 2020). Furthermore, in the first 5 to 10 days of treatment, the risk of heparin bleeding is 11 percent (Jundoria et al., 2020). Therefore, the initial results will be instantly and substantially therapeutic and converted into a stable, replicable DVT imaging procedure.

The remainder of this article is structured accordingly. Section II gives an overview of the most advanced field research. Section III offers an HML framework for the theoretical solution, explaining the sample, methods, and simulation effects. Section IV outlines the findings and directions for potential study. Section V is the conclusion of the HML Framework.

RELATED WORKS AND STRUCTURES OF THIS RESEARCH ARTICLE

The author discussed the philosophy of nursing has evolved from “Patient-Centered (PC)” illness. This research investigates the therapeutic implications of perioperative treatment for Elderly hip fractured patients under quick-track nursing surgery (Yuan et al., 2018). The group of 84 patients admitted to the clinic with hip fracture (42 cases) and the group with rapid-stage surgery, 42 cases, are separated randomly to assess the psychiatric state, serum inflammatory, hip function pain degree, coagulation, and occurrence of acute, lower extremity venous thrombosis between groups before and after the nursing programmer (Yang et al., 2020). In this article, the author suggested Total Knee Arthroplasty (TKA) to analyze whether patients with primary TKA schizophrenia, such as (1) more extended hospital stay period (LOS); (2) higher risk of readmission; (3) higher complications for medicine; (4) higher complications linked to the implant; and (5) higher costs for treatment relative to controls (Yin et al., 2020).

The author suggested that post-operative nursing treatment for patients undergoing computer-based Continuous Passive Motion (CAS-TKA) with simultaneous cry therapy and Continuous Passive Motion (CPM) remains inadequate for post-operative pain and range of motion (Li et al., 2020). A forward-looking randomized controlled experiment has been conducted using a purposeful survey process. The intervening group (n=30) and control group (n=30) were randomly allocated 60 patients
intended for a unilateral CAS-TKA in the medical facilities (Yuhua et al., 2019). The intervention group used scheduled cry therapy and CPM for an hour, yet the control group did not return to the ward on surgery day (Wei et al., 2019). Establish strategies to fulfill the identified needs, and provide specific nursing interventions to address the recognized needs of a client based on the client’s health care status and present or potential health concerns.

The pain, intimacy, and swelling data on post-operative days (POD) were analyzed using mixed model comparisons to the NR Scale 4. The author suggested Fast Track Surgery Nursing Program (FTSNP) is the negative feelings, discomfort in patients with hip fracture has been successfully removed, inflammation decreased, coagulation strengthened, and hip after procedure minimized. The risk of more profound venous thrombosis after surgery decreased (Guo et al., 2019).

In the study, the author discussed the Theory of Deep Venous Thrombosis (T-DVT) is the risk after Achilles tendon breakup treatment is decreased when the leg is immobilized (Dickerson et al., 2019). A second objective has been to assess whether there was an impact on the risk of DVT on weight-bearing and daily measures (Zhang et al., 2019). An objective measure of vein compressibility is obtained by segmenting the vein in intersectional ultrasound images and by calculating the pressure exerted by the ultrasound transducer when compression of the venous cross-sectional area (Bao et al., 2019). The elliptical cross-section and an expanded Kalman filter remove elliptical parameters in real time with frames of 16Hz and higher. This is applied in this framework. The author discussed Intracranial Aneurysm Clipping (IAC), which will help the post-operative healing outcome, lower the body immunoglobulin level, facilitate early regeneration and release after the procedure, and alleviate family burden (Schubert et al., 2019). The care should be performed using the pre-operative nursing programmer (Wei et al., 2019). At the same time, it is important to avoid post-operative problems and maximize patient efficiency (Liu et al., 2019). This study discusses the history and process of the lower limb vein compression ultrasound along with evidence of its application in patients in these clinical conditions at high risk for DVT.

The author suggested the Deep Venous Thrombosis (DVT), Lung Embolus Frequency (LEF), and morbidity are high. However, initiatives are advised to improve DVT monitoring of resource-limited (Jundoria et al., 2020). Furthermore, the first-line examination of choice for DVT, the venous duplex ultrasounds, has replaced venography with improved efficiency and decreased patient sensitivity to radiation and intravenous comparison (Bahar et al., 2019). An abbreviated ultrasound where DVT is derived from imperfect venous compressibility has the same precision as a venous duplex that needs less time and experience for an emergency, vital, and anesthesia clinician to allow its widespread usage (Baker et al., 2019). The author investigated the early functional mobilization (EFM), increased patient satisfaction with immediate post-operative weight bearings, and ankle mobility relative to immobilization of ATR patients if EFM will minimize DVT incidences; however, it is not established (Ellis et al., 2019). The theory has been that EFM minimized the frequency of DVT during ATR treatment during leg immobilization.

HML Framework for the Theoretical Solution

This paper discusses a currently under review strategy that proposes a cost-effective way to help individuals improve and control their health behavior in nurses. This method is seen in Fig. 1. It is a device consisting of many apparatuses (or building blocks) that “close the loop” between statistics achievement and operation. These apparatuses convert knowledge in a series of capsules from the real world to quantify actions that are accessible (powerful or uttered), directly detectable, or concealed (activities not observable, for example, physiological responses) and which can be calculated indirectly.

In this article, the researchers explain the framework of this study’s Health Effect analysis of the nursing intervention concept and cover some factors that underpin it. One of the main elements to achieve this aim is the development of multi-scale computational models that take on characteristics of behaviors on a different scale, fluctuating from the collection and treatment of rare sensor data such as leg movement dimension in Hybrid Machine Learning (HML). Nursing interventions are the steps a nurse takes to carry out the care they have planned for a patient. These may include administering medications, performing procedures, or providing educational opportunities. These models offer
forecasts that produce leads and measures to optimally induce and promote behavioral improvement for each person at the right time. The relationship between captors and several computer models enables them to unobtrusively track and measure Nurse Behavior, infer and forecast individual health problems and possible behavior, and execute an idea in a time operation. Nurses can immediately examine your electronic health data and make critical decisions about your care. To provide you with the highest quality care, nurses have access to your entire medical record, including findings from diagnostic tests, x-rays, and reports written by other healthcare team members.

Methods and Effects of Simulation in HML

Considering maximizing just-in-time adaptive acts as a control-theoretical challenge, the behaviors must be continually or at least regularly analyzed and predicted. This includes the constant use of behavioral computing, including behavioral, cognitive sensing, estimation, and inference, as shown in Fig 2. Furthermore, sensor data has been calculated for actual fine-grain phenomena; computer multi-state models must be used to draw assumptions about the behaviors. Raw sensor data provide fine-grain information, such as instant physical acceleration, events that may have to be translated into simple motions and behaviors, which, in turn, may offer information about activities and health-related behavior, such as exercise. The rest of this section discusses the various structure blocks for statistics translation into operation and patient status calculations. The conceptual framework differentiates between the independent and collaborative roles that social and biological factors play in determining health outcomes for specific individuals. The framework investigates the interplay between the social and the biological.

Before explaining the specifics of the multi-state simulation, the researchers note that chronic Nurse Behavior and physiological analysis are capable of revolutionizing not just treatments, psychiatric reviews, and treatment by presenting evidence about subtle improvements, patterns, and variability assessments. The first step in quantifying actions is the various sensors and their corresponding data sources. In specific, participants may include information that is used in statistical models to measure Nurse Behavior or patient status by responding to queries, findings of careers or physicians as recorded in the electronic health record, the experience of a person using a telephone or buying history or related forms of behavioral knowledge. The goal of Skinner’s approach for
modifying behavior based on behavior analysis is to change habits by using an activity’s subsequent positive and negative consequences to either break bad habits or reinforce good ones. The framework instructs community health nurses on their fundamental responsibilities in the healthcare system, the categorization of their patients’ populations, the skills required of community nurses, and the importance of student-centered education.

Furthermore, to solemnize a measuring procedure as a $I - \rho$ translation which maps occurrences, $\rho \supseteq \mu$ objects or states in a numerical set Z related to health and behavior. The Map $I - \rho$ provides a symbolic meaning for elements of incidents or acts in the following Eq 1,

$$z(u) = I(\rho)(u)$$

(1)

For instance, the $I - \rho$ transition transforms acceleration while walking or riding a vehicle to the measured noise-polluted acceleration using an accelerometer connected to an individual’s tail. The regulation of the nursing profession is facilitated by using conceptual frameworks in educational programs. With these structures in place, they know that all nurses are taking the same precautions and doing the same things when caring for our patients. It is necessary to note that a transformation of the sensor always depends on the measurement background in Eq 2.

$$Z = I(\rho; D)$$

(2)

Where D indicates the observation context, with the background identified as the collection of environmental and circumstance aspects that influence key measurements and observations interpretation of Nurse Behavior. For example, accelerometers must differentiate between data collected when running on rugged yet periodical ground from those collected while driving in a vehicle. In the same way, detecting heart rate variations and cardiac variability in estimating energy consumption (power) values, compared to seeing an entertaining film, may require an operation in deep venous thrombosis. Blocking is a technique used in the statistical theory of experimental design

Figure 2.
HML Behavioral, cognitive sensing
in which experimental units are grouped into blocks of homogeneous units. Using a sex block, for instance, would eliminate a potential source of error by excluding half the population based on gender.

Since this sensor detects torso acceleration, it aims at inferring facets of the behavior and nurse ρ. If \tilde{I} is invertible and noiseless, the characteristics of the behavior could be inferred by turning the changeover \tilde{I} as shown in Eq 3. The World Health Organization reports that the prevalence of chronic diseases is expanding quickly across the world’s health care systems due to the aging population.

$$\rho = \tilde{I}^{-1}(z, D)$$ (3)

However, $\tilde{I} -$ is uncertain in the majority of procedures and must be approximated. In any situation, as much ethical knowledge on transition as practicable should be provided in nursing. Regarding accelerometers, energy costs, in conjunction with the consequences of detecting the sensor, are controlled by Newton’s law. It is challenging to integrate basic concepts and approximate the transition in some instances using data-driven methods. Furthermore, in these cases, expectations that limit the growth are helpful. For, e.g., if \tilde{I} has been approximated by a linear method and Gaussian Random Variable Suspicions, then the Kalman filter method or its different extensions may be used to estimate the state. Awareness of \tilde{I} or its projections is usually helpful when enhancing the states’ projections, which are not immediately measurable.

Every firing occurrence means that an individual walks across his field of vision. The pace of walking has been determined by these fired periods in nurses. It revealed that when the sensors were stationary, each sensor error had to be modeled in time and space to achieve accurate walking speed estimates in the Deep Venous Thrombosis (DVT) platform. HML-detector must then be shot a pair described in Eq 4,

$$\left(y_j - \exists_y, u_j - \exists_u \right)$$ (4)

Where $y_j -$ indicates the location, $u_j -$ event for firing time in jth sensor, $\exists_y, \exists_u -$ indicates the uncertainty of random variables in corresponding dimensions. The explanation for this portrayal is that the time volatility is not enough to accommodate the variations in the current signal of a touching human body based on factors such as physique temperature and quantity of garments. As this illustration indicates, the principal modeling of sensed data includes the sensor functions of the measurement mechanism in the HML Model, in this case, the individual’s behavior. The medical industry typically uses the metric system and employs a pricing strategy known as “High minus Low” (HML) to determine prices. Accurate unit conversion skills, both inside and between the metric and customary systems, are essential for anyone working in healthcare.

One of the Nurse Behavior knowledge technology is the capacity to understand the behaviors of people (training, farming, etc.), which vary from healthcare to robotic architecture that communicates with people. Awareness of behaviors during the day gives valuable knowledge to develop effective behavioral techniques for behavior change management. Furthermore, this knowledge offers help, where appropriate, for treating older adults throughout their day-to-day lives. Identifying irregularities and abnormal incidents, such as errors or deviant actions in monitoring and surveillance systems, often requires action recognition. The issue of perception of behavior normally requires interpretation of Nurse Processes that commonly include gestures or encounters with artifacts or other human beings. Ideally, this deduction dilemma includes classifying movements, as described in the previous section, from estimations of motions and behavior extracted from the sensors. While the action recognition system is comparable to the sensor conversion system, the activity recognition domain is more comprehensive and involves calculations and classifications based on sensor inferences. While it has been approaching
that include “branch figure modeling,” most approaches include data-based approaches in conjunction with State modification modeling, context-free static syntax, and space-time pathway.

Regarding the benefits of video activity measurement, a variety of previous studies on older adults have used passive infrared gesticulation detectors for the expense, control, and data quality tracking and identification. The knowledge from these sensors is a series of firing events seen in pair order in Eq 5.

\[
T = \{(t_1, u_1), (t_2, u_2), \ldots, (t_o, u_o)\}
\]

(5)

Where \(t_o, u_o \) — indicates the firing time and identity sensor, respectively. The inference HML method is aimed at allocating labels to \(T \) components. Simultaneously, this method of behavior identification may define the limits between behaviors (segmentation) and groups. Furthermore, usually done through a range of simulation strategies to train clustering and recognition algorithms under control and unregulated, as shown in Fig 3.

Despite improvements in the detection of operation, many problems exist. Most of the main challenges using current methods such as action machine learning the challenges in collecting classified data are sorting. A second issue is to measure critical operation characteristics Templates. Though the device dynamics are continuous, all the mechanisms are sampled in a series at separate times, as shown in Eq 6.

\[
U_o = \{u_1, u_2, \ldots, u_o\}
\]

(6)

Though the device dynamics are continuous, all the apparatuses are tested in a series at discrete times in Eq 7.

\[
R(U_o), B(U_o), W(U_o)
\]

(7)

The researchers need the state change to render forecastsDynasties as shown in Eq 8,

\[
W\left(u_{o+1}\right) = H\left(R\left(U_o\right), B\left(U_o\right)\right)
\]

(8)

Figure 3.

Derivation of HML Method
Predictive analytics are used by clinicians, healthcare organizations, and health insurance companies to communicate the likelihood of patients getting specific medical illnesses. These conditions include cardiovascular disease, diabetes, stroke, and chronic obstructive pulmonary disease.

The sequence of Random Observation, in Eq 9

$$w(u) = S(R(U_o))$$ \hspace{1cm} (9)$$

Ideally, social, analytical, and theoretical studies will establish the state space and state change mechanisms. Unfortunately, most 3-dimensional shape models and behavioral improvements were not defined, with some exceptions to describe processes at various time scales and allow for consistent, objective observation and forecasts of the individuals necessary for successful therapies.

This phase converts raw sensor data into the parameters of physiological significance. The next move is to split the data into immobile and temporary parts, which are additionally categorized in physiological action, physiological recuperation, stress, and other states according to their physiological parameter values. This phase converts physiological vector data moment-by-moment into physiologically and comports mentally functional states. Lastly, the secret state data should be translated across the whole surveillance cycle to offer a more detailed description of the health and behavior of the person, including average energy consumption, total physical and activity amounts, and stress and recovery control in the HML Method.

RESULT AND DISCUSSION

The researchers demonstrated the capacity to incorporate data science into a cohesive framework for sensor simulation, action, meaning, and actions and to include approaches to inspire and involve participants. However, several things do need to be tackled. Ease of access and meaningfulness of communications remain a concern for specific groups such as older adults. Input from the research and implementation would be expected to extend access to marginalized and underserved communities in HML Model.

Figure 4.
HML and 3-dimensional shape model
Furthermore, restricted approaches to privacy models and priorities for data exchange the Accuracy, performance, and Efficiency in the HML method, as shown in Table 1. The clear exchange of confidential knowledge involves an experience that sometimes prevents new participants. Therefore capable of predicting expectations and do our utmost to convey detailed knowledge in a helpful yet confidential way. The DVT diagnosis is a small handheld device transducer that is softly moved over the skin by a healthcare provider when the test is performed. It is possible to perform follow-up ultrasounds over several days to detect any new blood clots or monitor the development of an existing clot.

The researchers initially defined a view in behavioral data science, where unobtrusive forms of knowledge have been used to track, evaluate, predict and interfere with measuring, control, and enhance Nurse Behavior, and accuracy is improved by HML methods, as shown in Fig 5. In terms of the advancement in sensor processing, data science, computer engineering, inferences, action management, and machine-assisted coaching systems, this mission needs many obstacles to overcome. For HML, the beta coefficient might be either positive or negative. If a portfolio’s beta is positive, it suggests it exhibits the same behavior as a portfolio that is heavily weighted toward value companies the value premium. If your portfolio’s beta is negative, it will have growth stock portfolio characteristics.

The inconsistency of individuals’ well-being habits is one of the outstanding issues. It is fundamentally challenging to build generalizable performance inference algorithms that need a new preparation collection and to improve the performance in HML Method, as shown in Fig 6. While results have been made, universal teaching methods across and among populations without a “small reality” need to be strengthened. Activity-related comportments (exercise, sleep, physical activity) are reasonably detectable and can be assessed by existing sensor technologies; technological problems (e.g., quality of life, consumer recognition, and tracking observation) and inter and intra-indivisible variability in the behavior habits are the difficulties of utilizing such sensor in the long term monitoring phase. Several essential health patterns exist logically and unobtrusively, measurable and quantified. Diät and use of resources Measurement of cognitive and relational behavioral factors have benefited from better estimation and evaluation methods.

False alarm exhaustion is another significant concern in tracking low-risk incidents and is a significant issue in behavioral computer science. The well-performing detectors are expected to produce a large share of false alarms under constant or regular surveillance, as shown in Fig 7. Furthermore, a sensitivity and accuracy fall detector of 99%. This efficiency standard can be deemed very strong for most detection activities. However, considering the low likelihood of a reduction in the hourly corresponding to this incident, continuous observation will classify thousands of accelerometer or acceleration activities to report every hour. Given the device’s efficiency, fabricated alarm fatigue must be resolved before normal usage is accomplished. The importance of predicting a significant occurrence of a crash against the uselessness of a fabricated alarm is an interesting approach to minimizing the problem.

Table 1. Comparison of parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Accuracy (%)</th>
<th>Performance (%)</th>
<th>Efficiency (%)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TKA</td>
<td>88.23</td>
<td>78.25</td>
<td>92.12</td>
<td>81.28</td>
<td>92.12</td>
</tr>
<tr>
<td>LOS</td>
<td>87.68</td>
<td>82.35</td>
<td>93.25</td>
<td>86.25</td>
<td>90.45</td>
</tr>
<tr>
<td>CAS-TKA</td>
<td>89.24</td>
<td>84.26</td>
<td>91.36</td>
<td>84.67</td>
<td>91.24</td>
</tr>
<tr>
<td>FTSNP</td>
<td>91.25</td>
<td>86.24</td>
<td>97.28</td>
<td>88.21</td>
<td>94.65</td>
</tr>
<tr>
<td>HML</td>
<td>97.62</td>
<td>95.26</td>
<td>99.26</td>
<td>94.65</td>
<td>97.98</td>
</tr>
</tbody>
</table>
Figure 5.
Number of Trial vs. Accuracy (%)

Figure 6.
Number of trials vs. performance (%)
The cost-benefit analysis of an experiment and the participants’ attendance are closely related problems. The dilemma of reducing potential gains in conjunction with immediate costs is strongly related, as shown in Fig. 8. For example, if an activity is not considered to have immediate results, the athlete will not conform to the coach’s agreed expectations and practices. Preventive healthcare typically has difficulty growing the importance of potential rewards by rendering them more tangible profits. Future studies in this field shall include a range of resources and strategies to enhance the well-being of all, especially the aged, the underserved, and others who reside in rural areas. An action’s costs and benefits can be quantified and compared using a cost-benefit analysis.

To revolutionize healthcare delivery through efficient, prompt, tailored treatments, the new computational modeling method for evaluating behavior, physical, cognitive, and affective conditions are anticipated, as shown in Fig 9. Furthermore, the social advantages of behavioral computer technology reach beyond healthcare to influence technical sectors, such as robots, automation, and control, to wide fields of schooling, environment, and psychology, including (connected brain and behaviors). Medical facilities rely heavily on computers for various purposes, including patient record keeping, X-ray processing, and real-time patient monitoring. Hospitals also use computers to set up laboratory equipment, monitor patients’ vital signs, etc. The percentage of specificity is improved to 98.6%. In addition, a new wave of students will be motivated to operate in this sector of behavioral education research, engineering, nurse behavioral, and social sciences. Challenge convergence is necessary.

CONCLUSION

The study leads the author of this theory that multi-state HML models spanning from indicators to behavioral changes are an essential precondition for designing approaches that allow citizens to understand and stick to healthier health behaviors. In the research process, the article continues only to
Figure 8.
Number of Trial vs. Sensitivity (%)
scratch the surface of the issue of having citizens better their well-being. Major initiatives are required to cope with complex problems in advancing health behaviors, including sensor growth, simulation, application design, and clinical assessment. A trait particularly relevant for freehand external loading is responsiveness to outside information. The technique is illustrated by computational and tissue-comparable models and tests on an HML Model scale. These findings indicate that the pliability reconstruction has been a functional complement to triplex scanning for human HML identification, diagnosis, and point.
REFERENCES

Xuanyue Zhang received her bachelor’s degree from South College of Sun Yat sen University in 2021. She is currently studying for a master’s degree in Guangzhou University of traditional Chinese medicine. Current research interests include rehabilitation nursing of integrated traditional Chinese and Western medicine and traditional Chinese medicine nursing.