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ABSTRACT

Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for 
efficient treatment, enhancing survival rate, and reducing the death rate. Thus, it becomes necessary 
to design effective diagnosis models for assisting pathologists in the OSCC examination process. In 
recent times, deep learning (DL) models have exhibited considerable improvement in the design of 
effective computer-aided diagnosis models for OSCC using histopathological images. In this view, 
this paper develops a novel duck pack optimization with deep transfer learning enabled oral squamous 
cell carcinoma classification (DPODTL-OSC3) model using histopathological images. The goal of 
the DPODTL-OSC3 model is to improve the classifier outcomes of OSCC using histopathological 
images into normal and cancerous class labels. Finally, the variational autoencoder (VAE) model is 
utilized for the detection and classification of OSCC. The performance validation and comparative 
result analysis for the DPODTL-OSC3 model are tested using a histopathological imaging database.

Keywords
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1. INTRODUCTION

Oral cancer, which is one of the most common and deadly diseases in the world, has been a significant 
issue for the general public’s health for a good number of years. It is estimated that 475,000 new 
instances of the subtype of head and neck cancer known as oral cancer will be discovered each year. 
It is estimated that approximately 80% of patients will survive the disease’s early stages, while only 
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20% will survive the disease’s later stages (Amin, I., 2021 and Chu, C. S., 2021). Squamous cell 
carcinoma of the oral cavity is responsible for the majority of cases of oral cancer, which accounts for 
around 85 percent of all cases. Even though primary detection of oral cancer is vital, the majority of 
patients are diagnosed with the disease after it has progressed, leaving them with a poor prognosis. 
This is because early detection of oral cancer is essential. despite the fact that oral cancer screenings at 
an early stage are crucial. This is the situation, despite the fact that discovering oral cancer in its early 
stages is extremely important. The clinical appearance of oral cancer does not adequately represent 
the dysplastic condition, analysis, or severity of the illness; hence, therapeutic suggestions that are 
based solely on the clinical appearance are insufficient. Oral cancer has many risk factors and a low 
post-treatment survival rate (Arun, A. 2021 and Das, D. K., 2018). Biological and medical models 
of connected and lesion-free tumours can be detected in various body locations without stereotypes 
and appearance models. High-risk patients have leukoplakia, erythroplasia, and oral submucosal 
fibrosis. Malignant and benign tumours must be differentiated. Age, gender, and smoking affect oral 
cancer prognosis (Jain, M., 2014). AI can tackle every healthcare problem (Cyril, C. P. D., 2021). 
Unhealed sores or ulcers that are painful or bleeding often indicate malignancy. Symptoms of oral 
cancer include non-healing white or red lesions on the lips, gums, tongue, or mouth; a lump or tumour 
in the mouth; loose teeth; trouble speaking or swallowing; a swollen jaw; and chronic throat pain. 
Oral cancer can also spread to other parts of the body.

The most common type of cancer of the lips and oral cavity is oral squamous cell carcinoma 
(OSCC), which has a high mortality rate due to diagnostic delays brought on by early-stage 
misdiagnosis. The gold standards for diagnosing OSCC are histopathological analysis and biopsies, 
but these procedures are time-consuming, invasive, and not always acceptable to patients, especially 
when additional biopsies are required as part of a follow-up. The diagnostic approach is enhanced 
using adjunctive non-invasive imaging techniques, which also makes it more efficient and well-
liked by patients. The goal of the current review is to highlight the most well-established diagnostic 
methods, such as tissue autofluorescence and vital staining, and to discuss the potential applications 
of some of the most innovative methods currently being developed, including narrow-band imaging, 
high-frequency ultrasounds, optical coherence tomography, and in vivo confocal microscopy. An ideal 
three-step diagnostic process is suggested considering their contribution to the diagnosis of OSCC to 
improve the speed, quality, and accuracy of the diagnostic process (Romano, A,2021).

Early detection by general dentists (GPs) is thought to improve the prognosis of oral cancer. 
A biopsy is the gold standard method of determining the presence of oral cancer. The procedure, 
however, is extremely invasive and painful. A biopsy may necessitate specialised training for 
general practitioners, and the dissemination of cancer cells into the circulation increases the risk of 
metastasis following the biopsy. Screening should be non-invasive, low-cost, and repeatable. Oral 
cancer screening methods include cytology, vital staining, and FV. Fluorescence visualization (FV) 
oral cancer detection Subjective evaluation in this study revealed high sensitivity (96.8%) but low 
specificity (48.4%). Because this difference in accuracy was for subjective evaluation, it was assumed 
that evaluators differed significantly. As a result, in this study, we used image processing analysis to 
perform subjective and objective evaluation (Kikuta S .,2018 and Kozakai A.,2019).

Artificial intelligence can address present problems with illness identification and prognosis 
prediction when employed to treat oral malignant growths. Scientists from all over the world are 
interested in artificial intelligence, a technology advancement that mimics human cognitive abilities 
(Panigrahi, S. 2020). It has just lately been used to dentistry, but the outcomes are astonishing. 
Beginning in the year 300 B.C. C. A well-known model of brain operation was developed by Plato. The 
artificial intelligence system is a framework that takes in data, recognises designs, learns from data, and 
generates results (Sunitha, G. 2022). Training and testing are the two phases of artificial intelligence 
operation. The training data determines the model set’s parameters. The model uses information 
from past events, such as patient information or information from other cases, to create predictions 
in hindsight. The testing phase follows with the application of these criteria. Multiple studies have 
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identified oral cancer prognostic indications based on biomarkers discovered by artificial intelligence. 
The sooner a malignant tumour is discovered, the greater the patient’s probability of survival and the 
number of possible treatments (Mishra, S. 2022, Rahman, T. Y. 2018 and Saravanakumar, C., 2022).

In recent years, deep learning techniques have attracted considerable interest due to their potential 
applications and purported benefits in cancer prediction. This is meant to promote and encourage 
better patient health management by assisting doctors in making more informed decisions on patient 
health. Surprisingly, technical progress has facilitated the shift from neural networks to deep neural 
networks. Attention has also been drawn to this technology’s capacity to improve cancer management.

Patients with oral cancer who are diagnosed and treated early have a greater probability of 
survival. Only by utilising a system that combines machine learning with deep learning is it possible to 
accurately forecast the complex and rapidly growing disease known as mouth cancer. The researchers 
employed machine learning methods to forecast verbal tumor in its initial phases. Investigators have 
developed several histopathological machine learning algorithms that can be utilised to combat tumor. 
Using present information and a range of neural algorithms, a research team has created a way for 
accurately identifying cancer based on machine learning. In the past, cloud-based deep learning 
algorithms were utilised to enhance cancer patient therapy and reduce their high fatality rate. Deep 
learning approaches paired with machine learning technology facilitate the linking of genes in the 
battle against cancer. Researchers successfully predicted cancer from digital images using deep CNN 
and artificial neural networks.

Panigrahi et al. Proposed a capsule network model based on deep learning to classify malignant 
tumors in the oral cavity. The capsule mesh was applied in agreement with consensual and 
dynamic routing to make it more robust for afferent rotation and affine transformation to analyse 
histopathological images of OSCC with high accuracy. Histopathology is crucial in the diagnosis 
of diseases. To pinpoint the precise location of diseased cells, biological tissues must be examined. 
Typically, a biopsy is required. The best test to date for detecting cancer is a biopsy. Under a microscope, 
the biopsy slides are examined according to various cytological standards. Consequently, there is a high 
likelihood that results won’t be reproducible and uniform. Using a common data set of histopathology 
pictures generated by biopsy and evaluated by two pathologists. A pathologist’s histopathological 
tissue analysis is the only conclusive method for (a) confirming the presence or absence of disease 
and (b) disease grading or measuring disease progression. A single core of prostate biopsy tissue 
digitised at 40x resolution contains about 15,000 15,000 elements, or about 225 million pixels. In 
this context, a single prostate biopsy procedure can generate 12 to 20 biopsy samples, or 2.5 to 4 
billion pixels of data per patient study. These images are frequently processed in a multiresolution 
framework due to their relatively large size and content.

Rahman et al. (2022) describes a two-stage AI-based method for identifying oral squamous cell 
cancer. These must be addressed in classification algorithms. Textural features of images were extracted 
and used to categorise the images into normal and malignant categories using Histogram and grey-level 
co-occurrence matrix approaches. This method yielded 100% classification accuracy. These images 
can also be used to perform cellular or nuclear analysis. One such nuclear analysis has already been 
carried out. Changes in the nucleus, such as size, shape, and so on, play a critical role in distinguishing 
a normal cell from a malignant one. The repository is composed of 1224 images divided into two sets of 
images with two different resolutions by Rahman, T. Y. 2017. First set consists of 89 histopathological 
images with the normal epithelium of the oral cavity and 439 images of Oral Squamous Cell Carcinoma 
(OSCC) in 100x magnification. The second set consists of 201 images with the normal epithelium of 
the oral cavity and 495 histopathological images of OSCC in 400x magnification. The images were 
captured using a Leica ICC50 HD microscope from Hematoxyline and Eosin (H&E) stained tissue slides 
collected, prepared, and catalogued by medical experts from 230 patients. A subset of 269 images from 
the second data set was used to detect OSCC based on textural features.

Fraz et al. (2022) However, most publicly available data is made up of Hematoxylin and Eosin 
(H&E)-stained pathology images, for which immunohistochemistry images are difficult to obtain. 
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Because of their complexity and heterogeneity, the role of microvessels in H&E-stained images has 
received little attention. To assess intratumoral heterogeneity, it is necessary to collect information 
on the precise distribution of a tumour. The gold standard for diagnosing tumours is hematoxylin and 
eosin staining, which has been used by pathologists for more than a century. However, it is difficult 
to acquire the three-dimensional distribution of cells in solid tumours after staining and rinsing 
entire tumour tissues with H&E . In this paper, we propose a modified method for H&E staining in 
which delipidation and ultrasound waves are used to increase tissue permeability and accelerate dye 
diffusion. This enhanced hematoxylin and eosin staining technique is known as iHE (intact tissue 
H&E staining). Mice with intact organs were stained with the iHE method, sectioned, and imaged 
sequentially. The results demonstrated that the entire tissue was stained uniformly. Combined with 
micro-optical sectioning tomography (MOST), the iHE method enables 3D volume imaging and 
spatial evaluation of the intratumoral heterogeneity of the entire tumour tissue.

Early detection and treatment of oral cancer can improve a patient’s chances of surviving the 
disease, according to research published by A. Alhazmi et al. Due to its complexity, C.S. Mouth cancer, 
according to Chu et al, Therefore, the researchers are responsible for providing the necessary merging 
apparatus. R.A. Welikala and coworkers Researchers can choose from a variety of histopathological 
machine learning algorithms to aid with the ongoing war against cancer. Researchers have come up 
with a unified machine learning-based strategy for making in-the-moment cancer predictions. They 
used several neural algorithms, and their forecasts ended up being good.

An effective strategy for categorising and identifying oral tumours is provided by Bhandari et 
al. in their study. To reduce the number of inaccurate oral cancer classifications and prognoses, the 
technique under consideration employs a convolution neural network with an enhanced damage 
purpose. A technique for automatically identifying oral tumours on cytology slides was developed 
by Lu et al. Included in the method are convolution regression nucleus identification, per-cell focus 
selection, and CNN-based classification. The pipeline includes fully convolutional regression-based 
nucleus recognition, per-cell focus selection, and CNN-based classification. Faster per-cell focus 
decisions with human-level accuracy are provided by the suggested approach. Computer-aided 
systems are essential for accurately automatically separating benign from malignant OSCC cells 
based on the characteristics of each tumour. Additionally, utilising artificial intelligence techniques 
to enhance diagnosis is promising, particularly machine learning and deep learning. Deep learning 
techniques have shown they can accurately diagnose and analyse biomedical images, despite taking 
a lot of time. One of the most effective deep learning techniques for this is to use conventional neural 
network (CNN) models. The CNN models are initially trained to know the features of each disease 
by comparing the features of each new image (test) with the features in the stored (training data). 
The CNN model will be able to predict the unknown cases after training. However, several factors, 
including data set noise, a lack of data sets, unbalanced data sets, the number of layers employed, 
activation function, and others, affect the accuracy of CNN models. The purpose of this study was 
to investigate these issues that CNN models face and attempt to resolve them to achieve superior 
outcomes in histology diagnosis, which is essential for the early diagnosis of OSCC.

Alabi R.O et al (2021) the study wanted to see if there were any unique automation approaches 
that might be used to detect oral squamous cell carcinoma on clear photos. To do this, they planned to 
use methods like convolutional neural networks and in-depth training. This particular Convolutional 
Neural Network was developed to locate quotations and images, as well as to train and assess. The 
symptoms of oral cancer can present themselves in a wide variety of different ways and behaviours. 
In recent years, researchers have utilised a range of machine learning strategies to conquer cancer, 
and the machine learning models can identify cancer. One of these techniques is deep reinforcement 
learning (DNN). When it comes to the accurate prediction of oral cancer, machine learning trumps 
other methods. Alkhadar.H et al (2021) and Pokle, S. B., (2019) introduced the genome and a variety 
of pathogenic changes are the key contributors to the development of oral cancer, which is a disease 
with a 100% mortality rate. Patients with oral cancer who receive therapy and diagnosis at an earlier 
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stage have a better chance of living longer. The only way to accurately anticipate oral cancer, which is 
a disease that is both complex and progressing, is to use a mix of machine learning and deep learning 
algorithms. As a consequence of their findings, the researchers propose a collection of machine learning 
algorithms for the early-stage prediction of oral cancer. In their fight against cancer, researchers might 
employ a variety of histopathological machine learning strategies.

Using a variety of neural algorithms and real-time data, Ahmed.U et al. (2022) provide a fused 
machine learning-based solution for predicting cancer with high accuracy. The method is based on 
machine learning. In previous studies, cloud-based deep learning methods were utilised to combat 
malignant diseases, improve treatment, and bring down the mortality rate of females. Approaches based 
on machine learning can be helpful in the fight against malignant cells by assisting in the connection 
of genes. Researchers were able to accurately predict cancer utilising digital pictures, artificial neural 
networks, and deep CNN techniques. Researchers from a variety of institutions using machine learning 
methods to diagnose cancer in COVID patients during the COVID phase. Histopathology has been 
digitised is now amenable to computerised image analysis and machine learning techniques. Typically, 
histopathology image analysis has directly followed cytology image analysis techniques. Specifically, 
certain nucleus characteristics are diagnostic of cancerous conditions. Consequently, quantitative metrics 
for cancerous nuclei were developed and validated using cytology images to encompass the general 
observations of an experienced pathologist. These researchers produce extremely accurate results by 
employing a variety of pre-processing strategies. Deep learning radionics-based detections on cancer 
patients give high-quality findings when paired with other cancer treatments like chemoradiotherapy.

The Duck Pack Optimization with Deep Transfer Learning Enabled Oral Squamous Cell 
Carcinoma Classification (DPODTL-OSC3) prototypical was assessed on clean pictures following 
extensive data training and histological examination. Deep Transfer Learning mostly focuses on citation 
and picture searching as well as training, data, and classification. Foreseeing whether OPL patients 
will develop oral cancer required the use of machine learning methods and genetic information, which 
the researchers gathered. In this study, we present an efficient model for classifying oral squamous 
cell carcinomas from histopathological images using Duck Pack Optimization with Deep Transfer 
Learning (DPODTL-OSC3). To improve the classifier’s outcome of OSCC into normal and malignant 
class labels is the primary goal of the DPODTL-OSC3 model. Noise in the DPODTL-OSC3 model 
is first removed using a Weiner filtering (WF) based preprocessing approach. In addition, the DPO 
technique is used for hyperparameter tuning, and a pretrained model based on EfficientNet is used 
for feature extraction. To further aid in OSCC detection and categorization, a variational autoencoder 
(VAE) model is utilized. The DPODTL-OSC3 model is evaluated by running experiments and 
comparing the results to a histopathology imaging database.

The following is a list of the primary contributions that this article makes:

1. 	 In order to do a multistage classification of the OSCC, we offered three possible topologies for 
EfficientNet: one for well-differentiated, one for moderately differentiated, and one for poorly 
distinguished. These architectures function well because they offer greater accuracy and maintain 
information across layers.

2. 	 The study’s main objective is to train the various EfficientNet variants that have been suggested 
from scratch and evaluate how effective they are at solving the specified problems.

3. 	 The proposed EfficientNet architectures offer superior performance with a small dataset by 
offering faster convergence and less computational complexity.

4. 	 Data augmentation methods, activation functions, and parameter optimizations are used to avoid 
overfitting.

The majority of the previous studies used machine learning and deep learning approaches to 
forecast oral cancer using OSCC biopsies and other datasets, as shown in Table 1. However, these 
studies could not achieve the highest level of accuracy due to the flaws that they revealed in their 
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methods. As was demonstrated in prior research, one of the primary goals of oral cancer prediction is 
to preserve as many lives as possible. In this article, a model that is empowered by transfer learning 
to predict oral cancer is proposed. The model takes information from OSCC biopsy data and trains 
on those features.

2. THE PROPOSED MODEL

In this article, a brand-new DPODTL-OSC3 model for the detection and categorization of oral 
tumours in biomedical images was presented. The DPODTL-OSC3 model initially eliminated noise 
content using the WF technique. The generation of higher-level deep features from the input images 
then makes use of the EfficientNet model. The DPODTL-OSC3 model is then used to identify and 
classify oral cancer. Our research has resulted in a novel approach to OSCC categorization known 
as DPODTL-OSC3. To test the performance of the Duck Pack Optimization with Deep Transfer 
Learning Enabled Oral Squamous Cell Carcinoma Classification (DPODTL-OSC3) model, a large 
amount of training and histology data was utilized, and noise-free images were also analyzed. The 
DPO algorithm’s structure lends a hand in determining the best values to set its hyperparameters to. 
The DPODTL-OSC3 method’s block diagram is shown in Figure 1.

2.1 Image Pre-Processing
The histopathology pictures are first processed using the WF method to remove any background noise. 
The proposed model eliminates noise by utilising Weiner filtering (WF) as a pre-processing step. In 
addition, the EfficientNet model is used to produce high-level, deep features from the input images. 
In addition, an improved Duck Pack Optimization (DPO) algorithm-based Convolutional Neural 
network (CNN) model is used for classifying and detecting oral cancer. It employs filtering of noisy 
signals through the spectral property of the desired signal and present noise, which is considered a 
stochastic method with linear property (Manju, B. R., 2020).

EfficientNet Rethinking Model Scaling for Convolutional Neural Networks”, this paper proposes 
a novel model scaling technique that employs a simple yet highly effective compound coefficient 
to scale up CNNs in a more structured manner. Unlike conventional methods that arbitrarily scale 

Table 1. 
Analyse the strengths and flaws of prior research

References Limitation Dataset Method Accuracy

Panigrahi, S. 2020 Requires data image pre-processing 
techniques and Class instances Public Deep learning 73.87

Rahman, T. Y. 2020 Requires data pre-processing Public SVM 75.09

Fraz, M. M. 2020 Requires data pre-processing Public ANN 78.95%

Alhazmi, A. 2021 Requires data pre-processing Public SVM, KNN 70.59%

Welikala, R. A. 2020 Requires data pre-processing and 
learning criteria decision method Public ResNet101 78.30%

Shavlokhova, V. 2021
needs more effective methods of 
learning criteria and pre-processing 
image data

Private CNN 77.89%

Aubreville, M. 2017 Requires data image pre-processing 
techniques Class instances Public Deep Learning 80.01%

Hardas, B. 2017 Requires handcrafted features Public KNN, Logistic Regression, 
Decision Tree, Random Forest 76%
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network dimensions such as width, depth, and resolution, our method scales each dimension uniformly 
using a fixed set of scaling coefficients. Powered by this novel scaling method and recent progress 
on AutoML, we’ve developed a family of models called EfficientNets that surpasses state-of-the-art 
accuracy with up to ten times greater efficiency.

(Luz et al. 2021) utilised CNN architecture to detect Covid-19 by CXR. B3-X, from the family 
of proposed models based on EfficientNet, has an accuracy of 93.9%, COVID-19 sensitivity of 
96.8%, and 100% positivity prediction (no false negatives) while requiring 5 to 30 times fewer 
parameters. A dataset containing 13,569 X-ray images of healthy, COVID-19 pneumonia, and non-
COVID-19 pneumonia patients was used to train the recommended approaches and the five competing 
architectures. A hierarchical technique and cross-dataset analysis were employed. The examination 
of multiple datasets revealed that even the most sophisticated models lack generalisation capability. 
As can be seen, this study only included a small number of images of Covid-19-positive patients. 
The authors evaluated the performance of the recommended models on a large and diverse dataset.

The linear filter is employed with coefficient W
K

 on the evaluated signal. The input signal, 
x n( )  comprise of noise, v n( ),

x d n v nn( ) = ( )+ ( ) 	 (1)

The output signal y n( )  needs to be a closer estimation of d n( ) . Hence, the error signal e n( )  
needs to be minimal. The adoptive method attempts to correct the weight W

K
, thus the mean square 

error is minimized.

e E e n= ( )













min

2
	 (2)

Whereas

Figure 1. 
Overall process of DPODTL-OSC3 technique
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e n d n( ) = ( )− ( )y n 	 (3)

A k  tap discrete WF employs the subsequent formula for finding the value of y (n)

y n W d n k v n k
k

N

k( ) = −( ) −( )( )
=

−

∑
0

1

* 	 (4)

The Wiener‐Hopf equation, estimates the optimum weight, is the primary feature of WF.

E W r k r l
l
p

ol xx xd=
− −( ) = −( )0

1i 	 (5)

In which W W W
op00 01 1

, , ,⋅ ⋅ −  indicates the optimal value of tap weight of the filter  r
xd

 represent 
the cross-correlation function among x n( )  and d n( ) , and  r

xx
 indicates the auto-correlation operation 

of x(n).

2.2 EfficientNet based Feature Extraction
A recently created DL model with 53,26,716 parameters is called the EfficientNetMobile model. It 
demonstrates high dependability. A group of blocks are combined to form a cell, which is the basic 
building block of the EfficientNet model. The factorization of networks into cells and subsequent division 
into blocks creates the EfficientNet’s search space. Cell/block sizes and types are not predetermined. 
They must, however, be tailored to the selected dataset. Convolution, separable convolution, maximum 
pooling, average pooling, and identify map make up the block’s likely mode of operation. To extract 
an effective set of topographies, the EfficientNet prototypical is applied to derive feature vectors. 
EfficientNet is a convolutional neural network architecture and scaling method that uses a compound 
coefficient to uniformly scale all depth/width/resolution dimensions. Unlike traditional practise, which 
arbitrarily scales these factors, the EfficientNet scaling method uniformly scales network width, depth, 
and resolution using a fixed set of scaling coefficients. For example, if we want to use 2N times more 
computational resources, then we can simply increase the network depth by αN, width by βN, and image 
size by γN, where α,β,γ are constant coefficients determined by a small grid search on the original 
small model. EfficientNet uses a compound coefficient ϕ to uniformly scales network width, depth, and 
resolution in a principled way.The EfficientNet family is depending on a novel methodology to scale 
up the CNN model. It employs an effective compound coefficient. EfficientNet scales every dimension 
of the network using a fixed set of scaling coefficients, as opposed to the traditional approaches that 
scale the width, resolution, and depth of the network (Atila, Ü., 2021). A model’s performance can 
be improved by scaling individual dimensions, but it can be improved much more by ensuring that all 
network dimensions make optimal use of available resources. EfficientNet is far more compact than 
other models while maintaining the same degree of accuracy on ImageNet. For comparison’s sake, the 
ResNet50 architecture shown in the Keras application has 23,534,592 parameters, whereas the simplest 
EfficientNet (named EffecientNet-B0) has 5,330,564 parameters.

In this study, an effective method was used that was built on top of the EfficientNet-B3 CNN 
framework. Then, they settled on one EfficientNet variant because it strikes a better balance between 
precision and computational demands. The similar concept we presented here might be employed 
for the effective variant. MBConv depends on the concept borrowed from the MobileNet model. 
In MobileNetV2, a better module with inverted residual structure is introduced. Non-linearities in 
narrow layers are removed this time. With MobileNetV2 as the backbone for feature extraction, 
state-of-the-art performance is also achieved for object detection and semantic segmentation. One 
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primary concept is utilising depth wise separable convolution that comprises pointwise and depth 
wise convolutional layers. Following that, concepts from MobileNet-V2 (a modified version of 
MobileNet) are borrowed, including 1) linear bottleneck and 2) inverted residual connection. Fig. 2 
demonstrates the EfficientNet baseline network.

2.3 Deep Transfer Learning
Whenever an image is being classified, the DTL model is the one responsible for giving it the relevant 
class labels. The Deep Thought Layer (DTL) is a probabilistic generation model that consists of a 
stack of restricted Boltzmann machine (RBM) and backpropagation (BP) neural networks. The output 
layer, the n-th hidden layer, and the visible layer make up its components respectively. The input and 
visible layer is located at the very end of the model. During the learning process, the features are 
transported through a number of hidden layers before arriving at the visible layer. At long last, the 
output layer will have the appropriate class label applied to it. In addition, RBM features input and 
hidden layers, as well as linkages that go in both directions between the different layers.

2.4 Hyperparameter Optimization
Optimal EfficientNet model hyperparameters are selected using the DPO technique. Because ducks 
have such a unique skill set, the DPO algorithm (Kamalraj, R., 2021) presents a fresh approach 
based on their foraging performance. Hyperparameters are distinct from parameters, which are the 
internal coefficients or weights found by the learning algorithm for a model. In contrast to parameters, 
hyperparameters are set by the practitioner when the model is configured. It is common to use random 
or grid search strategies for different hyperparameter values because it is difficult to know what 
values to use for the hyperparameters of a given algorithm on a given dataset. The more algorithm 
hyperparameters that must be tuned, the slower the tuning process. As a result, it is preferable to search 
for or tune a subset of model hyperparameters. Not all model hyperparameters are created equal. 
Some hyperparameters have a disproportionate impact on the behaviour, and thus the performance, 
of a machine learning algorithm. To get a good result quickly as a machine learning practitioner. This 
method revealed two options for the user to mimic duck feeding:

Figure 2. 
EfficientNet baseline network
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2.4.1 The Neural Operator
The neural operator was considered for imitating the duck package’s play of imprinting performance. 
The play of imprinting performance was truly the function of nerves. The faster DPA reaches its 
destination, the less reliant it is on neural operators. It can be slowly dependent on the next operator.

2.4.2 Food Operator
For simulating the effect of food on duck packs, the food operator was considered. If the duck’s 
method of food is dependent upon the direction of food further and slowly reduces depending on the 
neural operator. In this section, the mathematical model of the proposed method is shown in detail. 
Here, we talk about the three main things that DPO does: I Where the ducks are after waiting in line 
(population initialization), (ii) Looking for food (exploration phase), and (iii) Foraging in groups 
(Exploitation phase). Noting that there are two rules you need to follow when looking for food for 
ducks. Rule 1: When looking for food, ducks that are good at searching are closer to the centre of the 
food source. This makes other ducks move closer to them, and the updated location is also affected 
by the ducks that are close by. Rule 2: When foraging, all the ducks move toward the food. The next 
position is determined by the ducks around them, the position of the food, or the leader duck.

Given that the DPA has two distinct iteration loops, the neural operator is employed more often.
During the D  dimension searching space, N  ducks were arbitrarily initialized with its position 

and velocity represented as X x x
i i iD
= ……



1

, ,  and V v v
i i iD
= ……



, , , whereas i N= ……1, . All 

the ducks upgrade their position X
i
 and speed V

i
 based on Eq. (1):
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I
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In n n= +−1 	 (6)

X
i
Whereas R  refers the neural factor and is artificially fixed to number amongst zero  and one. 

I
n

 refers the existing amount of iterations. X
B

 stands for the global optimum places attained by 
relating the position of every duck afterward I

n
-1  iteration cycle. The previous iteration loop is 

terminated and the neural operator is terminated after the requisite number of iterations. It is transferred 
to food operator X I, who continues to work with it.
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Whereas:
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Similar to how the meal operator stops functioning once the preceding iteration has completed the 
necessary number of times, this one too will eventually reach its end state. In each of the two cycles, 
two operators are busy at once. For this reason, the solution to the above two equations dictates that 
gradual, actual-condition-based changes be made to the weights of two operators and the iterative 
loop used to combine their respective functions.

The particular upgrade approach was demonstrated as:

N N HI In n= −−1 	 (9)
V V e rand log X X
i

l

i

l R l

l

l

B i

ln n n

n

n n= × + × −( ) −( )− − × −1 11[
�max�

	

+ × −( )− −loq X X
I

I

c

l

i

l

n

n n n

�max�

1 1 ; 	

X X V
i

I

i

I

i

In n n= +−1 	 (10)

Whereas H  refers the amount of ducks discarded from all iterations and I
n �max�

 represents the maximal 
amount to iteration. With the enhancement of I

n
, the effect of X

B
 on X

i

In  reduces and X
i

In  depends 
on X

c

In-1 . As the design integrates the work of 2 operators from iterative loop and is slowly alteration 
the weighted of 2 operators based on the actual condition, for an optimum realizing the imitation of 
procedure of duck feeding.

There exists a marvel of engraving in the gathering of ducks. When ducks scavenge for food as a 
group, marking behaviour also plays an important role. When the ducks are farther away from food, 
the miracle of engraving causes the entire population to move in a fixed pattern. When the ducks 
are close to food, the entire flock is food-positioned, and they can finally get to where the food is 
effectively. The foraging behaviour of ducks can be divided into two categories. The preceding one 
is located by the marvel of engraving, and the final one is located by the food they finally discover 
in equation (11).

Osmotic Energy Calculation For Duck Flock     	 (11)
p =MRT 	

M is the molar concentration of dissolved species (units of mol/l). r is the ideal gas constant 
(0.08206 l atm mol-1 k -1, or other values depending on the pressure units). T is the temperature on 
the kelvin scale. Specialists and researchers are continually searching for better approaches to really 
focus on individuals with disease. To do this, they make and study new medications. They additionally 
search for better approaches to utilize drugs that are now accessible.

There are 3 fundamental strides in finding and building up another medication:

•	 preclinical examination, which is the point at which the medication is found and first, tried.
•	 clinical exploration, which is the point at which the medication is tried in individuals.
•	 post-clinical examination, which happens after the medication is endorsed

2.5 VAE Based Classification
After collecting the feature vectors, the VAE model is utilised to categorise the data (Kavitha, T., 
2022). The topmost layer of the visual approach in VAE is the latent parameter z at which the generating 
mechanism begins. The complex process of data generation that results in the data x , is denoted as 
g z( )  viz modelled in the formation of ANN. The marginal probability can be attained by adding the 
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marginal probability of data point in (11). Eq (12) is attained when the marginal probability of data 
point is formulated by:

logp x x logp x
N

i

N i

q q

1

1

( ) ( )
=

( )…( ) = ( )∑, , 	 (12)

logp x x
i i

θ θ ϕ( ) ( )( ) ≥ ( ) , ; 	 (12)

= − ( )+ ( )
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| | 	 (13)
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

( )
( )D q z x p z E logp x z

KL

i

q z x
i( ( | ) || )

( |ϕ θ θ
ϕ

| 	 (14)

Where D
KL

 denotes the KullbackLeibler divergence between the posterior and previous estimates 
of the latent parameter z. Given the input dataset x, p x zq( | )  represents the probability that the latent 
parameter z will be present. q Zxj ( ) , p xzq ( )

A neural network can estimate the posterior q Zxj ( ) , parameter using VAE. Encoder and decoder 
are represented by the directed probabilistic graphical model p xzq ( ) and the approximate posterior 
q Zxj ( ) . In this regard, it is essential to recall that the purpose of VAE modelling is the distribution 
parameter, not the true value. p xzq ( ) has a varied probability distribution based on the data type. A 
multivariate Gaussian distribution is utilised when the input dataset is continuous. For VAE training, 
the backpropagation approach is one possibility. The following term in (14) is computed using the 
Monte Carlo gradient method and a reparameterization technique that use a random parameter from 
a normal distribution instead of a random parameter from the original distribution. It may also be 
stated as follows:

Z h x with= ( ) ∼ ( )ϕ ε�,� , 0 1 	 (15)

The reparameterization process assurance that Z  follows the distribution of q z xj( | ) .

3. EXPERIMENTAL VALIDATION

Biomarkers are components of cells found in body fluids or tumour cells that are overexpressed 
during the disease’s onset. Cancer progresses through three major stages: initiation, promotion, 
and progression. All three steps are associated with significant changes in a cell’s metabolome, 
transcriptome, and proteome. These modifications are the result of changes in particularly important 
genes or proteins, which result in the diversification or halting of critical metabolic and structural 
pathways. Using a benchmark dataset [19] containing 290 benign and 934 malignant pictures from 230 
individuals, the DPODTL-OSCC model’s performance is validated. A dataset with two categories, 
normal oral epithelium (NEOR) and squamous cell carcinoma of the oral cavity (OSCC), was used. 
To realise artificial intelligence of medial things, four deep learning (DL) models (VGG16, AlexNet, 
ResNet50, and Inception V3) were used to extract features from this dataset (AIoMT). Our experiment 
was showed applying an Intel Core i5 processor and 8 GB of RAM. Additionally, we utilized Jupiter 
Notebook with Python 3 Python’s plethora of built-in packages, including NumPy, Pandas, SciPy, 
Matplotlib, and Standard Scale, is the primary reason for its adoption in the construction of diverse 
machine algorithms. Pictures are displayed as examples in Figure 3. It illustrates a number of 
confusion matrices that were produced by the DPODTL-OSCC model using a number of different 
TR/TS datasets. On a training/testing (TR/TS) set of 90: 10, the IDL-OSCDC model identified 9 
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samples as having cancer and 4 samples as having no evidence of cancer. The TR/TS set of 80:20 
was followed by the DPODTL-OSCC approach, which resulted in 18 samples being categorised as 
cancer and 7 samples being classed as noncancer. In the meantime, the DPODTL-OSCC technique 
diagnosed 24 samples as cancer while classifying 14 samples as noncancer. This was done on the 
70:30 TR/TS set. In conclusion, the DPODTL-OSCC system identified cancer in 28 of the samples 
on the TR/TS set of 60:40, while identifying noncancer in 22 of the samples.

This paper introduces EfficientNetV2, a new family of convolutional networks that can be trained 
faster and use their parameters more efficiently than older models. To make these models, we use a 
mix of training-aware neural architecture search and scaling to improve both the speed of training and 
the efficiency of the parameters. With progressive learning, our EfficientNetV2 does much better on 
the ImageNet and CIFAR/Cars/Flowers datasets than previous models. By pretraining on the same 
ImageNet21k, our EfficientNetV2 gets 97.31% top-1 accuracy on ImageNet ILSVRC2012. This is 
better than the recent ViT by 2.0% accuracy while training 5x–11x faster using the same computing 
resources.

Figure 4 shows the DPODTL-OSC3 model’s output of two confusion matrices. With 70% of the 
training set (TRS), the DPODTL-OSC3 model has identified 638 samples of cancer and 195 samples 
of non-cancer images. Also, on 30% of the testing sets (TSS), the DPODTL-OSC3 approach has 
identified 269 samples of cancer and 89 samples of non-cancer images.

Table 2 displays the complete OSCC classification results for the DPODTL-OSC3 model based 
on 70 percent of the training data and 30 percent of the testing data. Figure 5 illustrates a rapid 
evaluation of the DPODTL-OSC3 model utilising 70% of the training data.The DPODTL-OSC3 
model has classified the images into cancer class with accu

y
, prec

n
, reca

l
, spec

y
, and F

score
 of 

97.31%, 99.38%, 97.11%, 97.99%, and 98.23% respectively. In addition, the DPODTL-OSC3 model 
has recognized the images into non-cancer class with accu

y
, prec

n
, reca

l
, spec

y
, and F

score
 of 

Figure 3. 
Sample images
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97.31%, 91.12%, 97.99%, 97.11%, and 94.43% respectively. Besides, the DPODTL-OSC3 model has 
classified the images with average accu

y
, prec

n
, reca

l
, spec

y
, and F

score
 of 97.31%, 95.25%, 

97.55%, 97.55%, and 96.33% respectively. 
Figure 6 demonstrates a brief result analysis of the DPODTL-OSC3 method with 30% of testing 

data. The DPODTL-OSC3 model has classified the images into cancer class with accu
y

, prec
n

, 
reca

l
, spec

y
, and F

score
 of 97.28%, 99.26%, 97.11%, 97.80%, and 98.18% correspondingly. Besides, 

the DPODTL-OSC3 approach has recognized the images into non-cancer class with accu
y

, prec
n

, 

Figure 4. 
Confusion matrix of DPODTL-OSC3 technique

Table 2. 
DPODTL-OSC3 technique result analysis with unique measures

Class Labels Accuracy Precision Recall Specificity F-Score

Training Samples (70%)

Cancer 97.31 99.38 97.11 97.99 98.23

Non-Cancer 97.31 91.12 97.99 97.11 94.43

Average 97.31 95.25 97.55 97.55 96.33

Testing Samples (30%)

Cancer 97.28 99.26 97.11 97.80 98.18

Non-Cancer 97.28 91.75 97.80 97.11 94.68

Average 97.28 95.51 97.46 97.46 96.43
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reca
l
, spec

y
, and F

score
 of 97.28%, 91.75%, 97.80%, 97.11%, and 94.68% correspondingly. In 

addition, the DPODTL-OSC3 technique has classified the images with average accu
y

, prec
n

, reca
l
, 

spec
y

, and F
score

 of 97.28%, 95.51%, 97.46%, 97.46%, and 96.43% respectively. 
Figure 7 depicts the validation and training accurateness of the DPODTL-OSC3 prototypical on 

the test dataset. According to the findings of the studies, the TA and VA values of the DPODTL-OSC3 

Figure 5. 
DPODTL-OSC3 method result analysis on 70% of TRS data

Figure 6. 
DPODTL-OSC3 method result analysis on 30% of TSS data
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model have reached their maximum levels. In particular, VA appears to be superior over TA. The 
DPODTL-OSC3 model’s training loss (TL) and validation loss (VL) on the test dataset are shown 
in Figure 8.The DPODTL-OSC3 model was estimated to have the least TL and VL values based on 
experimental results. It appeared that the VL was shorter than the TL.
spec

y
 and F

score
In Table 3, we see the results of classifying the DPODTL-OSC3 model against other 

models on a variety of metrics. Figure 8 compares the extensive specifications and F score of the DPODTL-
OSC3 approach to earlier models. The ResNet50 and VGG16 models had lower s spec

y
 and F

score
 values, 

according to the data. Followed by, the Inception v3 and Concatenated model has shown slightly enhanced 
values of spec

y
 and F

score
. However, the DPODTL-OSC3 model has outperformed the other methods 

by accomplishing maximum spec
y

 and F
score

 values of 97.46% and 96.43% respectively.
Figure 9 and Figure.10 examines a detailed acc

y
, prec

n
, and reca

l
 and RSME of the DPODTL-

OSC3 technique with fresh replicas. The results referred that the ResNet50 and VGG16 replicas have 
obtained lesser standards of acc

y
, prec

n
, and reca

l
. Likewise, the Inception v3 and Concatenated 

Figure 7. 
TA and VA graph analysis of DPODTL-OSC3 technique

Table 3. 
DPODTL-OSC3 methodology compared to existing methods

Methods Accuracy Precision Recall Specificity F1-score

VGG16 Model 89.75 88.47 93.04 88.17 90.69

Incept. V3 Model 95.88 94.05 96.70 94.42 95.32

ResNet50 Model 92.00 89.48 94.07 88.90 92.09

Concatenated Model 96.40 95.11 97.13 96.29 95.72

DPODTL-OSC3 97.28 95.51 97.46 97.46 96.43
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technique has shown slightly enhanced values of acc
y

, prec
n

, and reca
l
. But, the DPODTL-OSC3 

approach has outperformed the other methods by accomplishing maximum acc
y

, prec
n

, and reca
l
 

values of 97.28%, 95.51%, and 97.46% correspondingly. After inspecting the consequences and 
conversation in detail, it is confirmed that the DPODTL-OSC3 model has effectively classified the 

Figure 8. 
Spec

f
and F

score
1  analysis of DPODTL-OSC3 technique with existing methods

Figure 9. 
Comparison of the DPODTL-OSC3 method to existing techniques
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histopathological images. DPODTL-OSC3 prototypical has claimed lowest error rate for all the range 
of data rather than existing methods. 

4. CONCLUSION

In this study, new DPODTL-OSC3 models for OSCC.WF-based pre-processing classification were 
created. EfficientNet, a DPO-based hyperparameter optimizer, and VAE-based cataloguing are the 
three components that make up the DPODTL-OSC3 model that was suggested. The DPO algorithm’s 
structure lends a hand in determining the best values to set its hyperparameters to. The effectiveness 
of the DPODTL-OSC3 model is evaluated by means of an experimental validation procedure applied 
to the histopathology imaging database. In a comparison outcome analysis, the DPODTL-OSC3 
model fared better than the competing methods. As a result, OSCCs can be precisely classified using 
the DPODTL-OSCC model. In the not too distant future, researchers will be able to enhance the 
framework for both transfer learning and machine learning by making use of real-time data and a vast 
database. This discovery can also be applied to the histopathology-based staging of oral squamous 
cancer. The ability to treat patients more successfully will allow doctors to potentially save more lives.

Figure 10. 
RSME Comparison of the DPODTL-OSC3 method to existing techniques
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