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ABSTRACT

While mobile application (app) software is becoming increasingly important in people’s daily 
lives, researchers have the limitation of understanding the details of user operations inside the app. 
With the update of the Android system and application user interface, relying on manually defined 
user operation event templates or modifying the app source code can no longer meet the needs of 
fine-grained user operation analysis in multiparallel applications. In this article, a novel method is 
proposed for effectively analyzing user operations in parallel apps based on the temporal context of 
user operation sequences. The authors provide a general framework in the Android system to parse 
out fine-grained user operations. In addition, the authors build a deep learning model with LSTM-
TextCNN to complete user operations in parallel app from global temporal context and app temporal 
context. The authors collected 240k operations of 12 users over a month. Comparative experiments 
with a baseline show that the proposed method can efficiently and accurately analyze parallel app 
user operations.

Keywords
app Software, app Temporal Context, Global Temporal Context, LSTM, Parallel User Operation Sequence 
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INTRODUCTION

In recent years, with the rapid development of the mobile application market, competition among 
mobile application (app) software has become increasingly fierce. In this context, user-driven software 
evolution has been the focus of researchers. However, most of the current research focuses on user 
reviews, software profiles and other display features that embody user experience. Keertipati et al. 
(2016) found that app reviews contain valuable feedback about what features should be fixed and 
improved. There is some research aimed at improving user experience by mining user reviews. For 
example, Guzman & Maalej (2014) used natural language processing techniques to identify fine-
grained app features in the reviews. Wu et al. (2021) proposed a novel approach that leverages app 
software profiles and user reviews to identify key features of a given app.
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In addition to user reviews and software profiles, Shu et al. (2018) pointed out that user operations 
such as viewing or downloading provide rich information about users’ preferences and usage habits 
of app software, which have great potentials to advance app recommendations. However, the existed 
studies have limitations of processing and analyzing huge app software user operation data efficiently 
and accurately.

In earlier studies, some commercial frameworks were applied to evaluate the usability of mobile 
devices. For example, Flurry Analytics (2012) provided data and analytics tools that captured how 
users use their mobile app devices and how the app performed on different phones. Subsequently, 
Lettner and Holzmann (2012) pointed out that to use these frameworks, developers need to manually 
add source code for different applications, which means that developers have to spend a lot of time 
studying the structure of the framework and the target application. He also noted that these statistics 
reflect how the user generally uses the app software, such as how many times the user uses the app 
software in a week and how much traffic is consumed, but they cannot reflect the details of user 
operations of the app software, such as what functions users often use in the app software and what 
content they focus on and search for.

Balagtas and Hussmann (2009) proposed a method to simplify the analysis of a large number 
of logs with the help of visualization and third-party tools. Lettner and Holzmann (2012) proposed 
a method to automatically collect and analyze logs. This method further simplified the work of 
researchers and can effectively collect usability data. However, McMillan et al. (2015) argued that 
most logs were limited to recording coarse-grained user operations. For example, these log-based 
methods were able to answer which application was opened or closed, but specific details of the user 
operations inside the application were difficult to capture. Users can use WeChat to transfer files, 
update status, participate in group chats or any other functions that wechat contains.

Krieter and Breiter (2018) used a program based on Python script to convert high-quality screen 
recording videos into pictures. Then, they analyzed the user operations in the app through image 
processing technology and defined event picture templates. Based on this method, some studies 
on user operation data analysis are conducted. For example, Liu et al. (2019) defined app software 
functions through screen shots and established the connection between app software functions and 
user operations (A case study of snapchat). However, due to the large differences in the user interfaces 
of different apps, the manual definition of app software functions based on screen captures is not 
universal. Similarly, combined with screen recording, timed screen capture, image comparison 
technologies, Xin (2021) designed and developed the user operation capture function in the app, 
and selected NetEase Youdao Dictionary app as an application case to observe and analyze the user 
operation of 13 user samples for a month. Through semi-automated data analysis, they found that the 
user experience and requirements hidden in the user operation details, thus providing more powerful 
support for product design, development and maintenance. However, Xin (2021) also pointed out the 
disadvantages of this method. For example, high quality video recording on the screen will occupy 
a large amount of mobile storage space, and processing screen shots is time consuming. Xin (2021) 
tried to reduce the processing time by compressing the images, but he found that this reduced the 
accuracy of user operation recognition.

Convolutional neural network (CNN) has been used to extract text features and achieve impressive 
results on the task of sentence classification (Yoon, 2014; Dos et al., 2014). Yoon (2014) proposed a 
simple one-layer CNN that achieved comparable results across several datasets. Dos (2014) proposed a 
new deep convolutional neural network to extract character and sentence level information to perform 
sentiment analysis of short texts. In natural language processing, TextCNN model can be used to 
extract deeper semantic structure information (Zhang & Wallace, 2015) and performs well on text 
classification tasks (Zhang & You, 2021; Deng et al., 2020). Long Short-Term Memory (LSTM) is a 
special recurrent neural network (RNN) model. It is competent and capable of learning dependencies 
within time series without the necessity for substantial historical time series data (Karim et al., 2019; 
Greff et al., 2016). Furthermore, LSTM based networks are reported to outperform the state-of-the-
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art techniques on user action recognition and prediction tasks (Wu & Tang, 2021; Muhammad et 
al., 2021). Lastly, joint LSTM TextCNN model has been used to extract richer text features (Wang, 
2016; Liu & Guo, 2019; Li et al., 2020). Li et al. (2020) used TextCNN model to extract the local 
features of sentences, LSTM to extract the global features of sentences, and fused the local features 
and global features to obtain the embedded representation of sentences. Experiments have shown 
that joint LSTM TextCNN model is superior to the traditional single model TextCNN and LSTM in 
capturing text features.

In this paper, the authors propose a general framework to obtain fine-grained user operation 
content of app software. In addition, to obtain the rich temporal context of the user operations and 
further improve the processing efficiency, the authors establish a neural network model with LSTM-
TextCNN. The model has the ability to process the sequence data of parallel app software user 
operations. The global temporal context and app temporal context are extracted from the model to 
complete the user operation sequences in different app. Experimental results show that the proposed 
method can effectively complete the parallel app user operation sequences, and outperform the baseline 
in accuracy and processing efficiency.

In summary, this article makes the following contributions: (1) The authors propose a general, 
unsupervised method for the acquisition of fine-grained app software user operation information on 
Android. (2) The authors propose a model based on LSTM-TextCNN to complete the information 
of parallel app software operation sequences from the context of the global operation sequence and 
the context of the parallel app software operation sequence, which enables the model to process 
multiple parallel app simultaneously. (3) The experimental results show that the method of modeling 
global temporal context and app temporal context provides significant performance improvement 
and accuracy guarantee for the task of completing parallel app software user operation sequences.

The organization of the paper is as follows: In section (Related work) the related research work of 
app software user operation analysis is introduced; In section (User operation parsing) the capturing 
and analyzing process of app user operation data is described; In Section (Parsing fine-grained user 
operations process), the usage scenarios of users in app are first analyzed, and then the completion 
method of parallel app user operation sequence is provided and introduced in detail. In section 
(Training data collection) the description of the training data is provided; In section (Extraction of 
parallel context) the concept and extraction process of parallel app user operation context is presented; 
In Section (Experiments), the experimental setup and results are provided and analyzed; The last 
section summarizes the conclusions and contributions of this paper and outlines the future work.

RELATED WORK

The use of screenshots or screen recordings to gain better insights has always been a common topic 
in human-computer interaction research, but such methods are limited to human-defined events and 
time-consuming to process screenshots and videos. In 2021, a V2S (video to scenarios) model was 
proposed (Havranek et al., 2021). It can convert video recordings of mobile application usage into 
replayable scenarios. Although this model uses a deep learning model to improve the accuracy of 
user operation restoration, the input videos must adhere to the specific constraints.

Window-based user interface systems generate user interface (UI) events as natural products of 
user’s operation. These events have long been regarded as a potentially fruitful source of information 
regarding application usage and usability issues (Hilbert & Redmiles, 2000). A framework is presented 
by Hilbert and Redmiles (2000) to extract usability information from the user interface events. They 
attempted to establish links between user interface events and other forms of usability data. Inspired 
by this work, the authors try to extract app user operation based on Android UI framework. Ma et al. 
(2013) combined the Android application framework to define user operation events and developed a 
toolkit that can be embedded inside the application. They point out that the toolkit requires minimal 
modifications to the source program. One of the benefits of this approach highlighted by Ma et al. 
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(2013) is that it reduces the work of researchers and speeds up data processing. However, the method 
(Ma et al., 2013) still requires modification to the source code of the app software, and the user 
operations obtained by this method are still coarse-grained.

The Word2vec model has been widely used to obtain distributed word embeddings with semantic 
context (Mikolov et al., 2013). Wang et al. (2021) proposed treating the text content in app software 
documents as sequences and using Word2vec to obtain app software word embeddings. Similarly, 
Grbovic and Cheng (2018) defined user operations on Airbnb, which were clicks, queries, reservations 
and purchases, and used an improved Word2vec model to obtain word embeddings with contextual 
semantics. Based on these studies, the authors hope to establish the semantic context through fine-
grained app software user operation content to obtain a better representation of user operations.

In the current research on user operation analysis of app software, both log-based analysis methods 
and image processing-based analysis methods ignored the temporal context of user operations, 
especially when multiple app software ran in parallel. Zhang et al. (2021) proposed using an LSTM-
based neural network model to obtain the temporal process of user trajectories and thereby strengthen 
the temporal representation of user trajectories.

Inspired by the above methods, the authors propose a novel method to obtain and complete 
parallel app software user operation sequences. To make the model universal to all applications 
of the Android system, the authors no longer rely on any manually defined user operation event 
templates. Instead, the original app software user operations are captured according to the Android 
UI framework and application program interface (API) in Android system. In addition, the model 
can parse the raw information to obtain a fine-grained app software user operation sequence. Finally, 
the global temporal context and app temporal context are extracted by LSTM-TextCNN model and 
used to complete the software user operation sequence of the app.

USER OPERATION PARSING

Row Data Collection
The traditional user operation analysis method is to obtain system logs or generating custom logs and 
screen recording videos by embedding the program in the source code in app software. Krieter and 
Breiter (2018) defined 30 user operation event picture templates and combined image recognition 
technology to restore the user operations behavior in the video. Lettner and Holzmann (2012) used 
the logs output by the system to analyze the user hit rate in different functional activities of the 
app. In this paper, app software user operation events (AccessibilityEvent) and node information 
(AccessibilityNodeInfo) were captured based on the user interface framework in real time through 
the accessibility service interface developed by Google. Table 1 shows the difference between the 
data obtained by the proposed method and traditional methods that can be used to analyze the user 
operations of app software. The differences between different data types will be explained from 4 

Table 1. Data used by different methods for app software user operation analysis

Data Real-time Generality Granularity Analysis 
Difficulty

System Log √ √ Coarse-grained Easy

Generative Log √ × Coarse-grained Difficult

Video × × Fine-grained Difficult

AccessibilityEvent √ √ Fine-grained Easy

AccessibilityNodeInfo √ √ Fine -grained Easy
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perspectives. They are real-time, generality, granularity and analysis difficulty. Real-time refers to 
whether the data can be obtained in real time. Generality refers to whether the method is common to 
other Android applications. Granularity refers to the degree to which data explain the app software 
user operation. Analysis difficulty refers to the difficulty of acquiring and processing data.

As shown in Table 1, the method of obtaining system logs is general and real-time, but previous 
studies have shown that system logs cannot support the analysis of fine-grained app software user 
operations. The generated logs improve the granularity of the data, which enriches the content of user 
operations. However, this method requires researchers to design embedding programs for different 
app software, which means that it is not general to other app software. In recent years, the method 
of analyzing video data, as an improvement to the method of generating logs, has the advantage of 
supporting the analysis of fine-grained user operation content of app software through manually 
defined user operation templates and image processing technology. However, the analysis process 
is divided into two steps of saving the video data and analyzing the video data, which results in the 
data not being analyzed in real time. In addition, researchers need to design different user operation 
event templates for different app software user interfaces, which greatly increases the difficulty of 
data processing. Based on these issues, the authors hope to find a general method that can obtain 
real-time data that supports fine-grained software user operation analysis through a simple process. 
In the proposed method, the authors can obtain user operation events (AccessbilityEvent) and user 
interface node information (AccessibilityNodeInfo) without manually defined templates and any 
source code modifications. Furthermore, AccessbilityEvent and AccessibilityNodeInfo can be used 
to parse fine-grained app software user operations. This article will discuss how to parse fine-grained 
app software user operations in Section Parsing fine-grained user operations process.

Fine-Grained Operation in App
Ideally, researchers would like to obtain semantic information of user operations that can be 
independently interpreted without user involvement. However, the reality is that, due to the different 
functions and depths of internal activities in different applications, the user operation inside the app 
cannot be well explained based only on the captured raw user operation information. Therefore, a 
more detailed description of the user operations inside the Android system application software is 
necessary. Ma et al. (2013) pointed out that the core content of the Android user interface framework 
is Activity (interface) and View (component). An Activity is an application component that provides 
a screen that the user can interact with to accomplish a certain task. A View can be regarded as the 
components that make up the screen, such as windows, menus, and buttons. However, relying only 
on activities and views, fine-grained user operations cannot be obtained.

In this paper, the authors further extend the content of user operations inside the app. The 
expanded user operation content is shown in Table 2. In addition to Activity and View, the authors 
also pay attention to more details.

Table 2. Fine-grained user operation and its meaning

Feature Name Meaning

Package Name of the app software

Activity Functional interface of the application

Class Interactive components on the user interface

Type User operation type

Content The text contained in the interactable component

Date Date of user operation
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Fine-grained operation content can help us better analyze app software user operations. In previous 
work, user operations were treated as mutually independent content, which means that the relationship 
between the content of operations cannot be established. In this section, the interpretability relationship 
within each user operation is established through fine-grained operation content, which consists of 
six main components. Table 3 is an example of a fine-grained user operation. An operation of the 
user in the app can be clearly interpreted from these components. The data in Table 3 indicate that 
at 10:13:27 am on December 17, 2021, the user edited a message with the content “Good morning” 
in the text component using the input method in WeChat.

Through the fine-grained operation content, the authors can establish the semantic relationship 
between user operation content. For example, the authors found that when a user performs a “Click” 
operation in the “Main Activity” of a music player application, the probability of the user interacting 
with “Button” with the content “My Favorite” is very high. Analyzing the semantic relationship 
between the operation contents can help us better explain the user operation in app.

Parsing Fine-Grained User Operations Process
Based on the fine-grained user operation content in an app, the authors propose an automatic parsing 
method. The Accessibility Services Interface was originally developed to help people with disabilities 
use smartphones more easily. Based on the accessibility interface, the authors have designed a general 
service that can capture the raw user operation event information triggered by user operations in 
real time, and this service is common to all Android apps. It is worth noting that the authors did 
not enumerate and define all user operation events, which is almost impossible. Instead, the authors 
proposed a general framework based on the Android interface framework and event distribution 
mechanism to parse the fine-grained user operation content from the original information. Figure 1 
shows the process of automatically parsing fine-grained user operation content by the proposed method.

It is important to note that the authors have especially considered the privacy of users. Users 
can selectively turn the service on or off when using smartphones. In addition, the service runs in 
the background and has little impact on users’ daily use.

The running data obtained by the Android open UI include the relevant information of the 
currently running application, such as the name of the application and the size of the memory occupied. 
Additionally, according to the Android UI framework, the authors can record different interactable 
elements from the UI, such as Text Field and Button. It should be noted that since the combination of 
the above two types of information is not considered, the previous method cannot support obtaining 
fine-grained user operation content of app software. Therefore, additional data support is necessary.

The raw user operation information captured by the service is stored in AccessibilityEvent 
and AccessibilityNodeInfo. Raw information contains much information that the authors do not 
need and cannot interpret. According to the running data and user interface elements, the authors 
can filter out the invalid information in AccessibilityEvent so that the authors can obtain valid user 

Table 3. An example of fine-grained user operation in app

Feature Name Data

Package com.tencent.mm

Activity android.inputmethodservice.SoftInputWindow

Class android.widget.EditText

Type TextSelection

Content ‘Good Morning’

Date 2021-12-17 10:13:27
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operations, such as Package, Activity, Class, Time, and Content. However, different app security 
settings and user interface designs can cause some data to be empty. He et al. (2021) emphasized 
the relationship between user operations and mobile application UI in their research and pointed out 
that the semantics of various attributes of UI components can be represented by a tree-based view 
hierarchy. To further obtain the fine-grained user operation content of the app software, the authors 
further parse the AccessibilityNodeInfo. The authors found that AccessibilityNodeInfo contains a 
similar tree structure to store the relationship of components in the view, which is a special layout 
of Android views. Based on this structure, the authors can obtain content descriptions, resource IDs, 
component classes, and component text fields, which are supplementary content for fine-grained 
app software user operations.

COMPLETION OF PARALLEL APP USER OPERATION SEQUENCE

In Section User Operation Parsing, the fine-grained app software user operation content has been 
obtained. However, it is not enough to rely only on these contents to analyze the user operations of 
app software, the real usage scenarios have to be considered.

App Software Usage Scenario
Figure 2 shows a more realistic distribution of user operation sequences in a parallel app. A user 
may interact with multiple app software within a period of time. The authors collected the operation 
behaviors of 12 users over a month, and obtained 240,000 app user operations. Through the collected 
data, the authors found that users generally interacted with more than two apps every three minutes. In 
the example shown in Figure 2, “T” refers to a period of time, and “Ti” refers to a certain time period. 
The user interacts with app1, app2, and app3 successively at T1, while only interacts with app1 at T3.

Krieter and Breiter (2018) found that even though the definition of user operation events was 
manually defined in some applications, the model still produced some erroneous log information when 
analyzing the image when the application was switched and closed. Lettner and Holzmann (2012) 
pointed out that most of the current methods or frameworks for automatically obtaining user operation 

Figure 1. The process of parsing fine-grained user operations
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data in applications do not consider contextual information, which may directly affect the usability of 
the method. Therefore, the authors propose temporal contextual features of user operation sequences.

However, simply relying on a context is not enough. According to the user interface design 
of the Android system, the system only processes and responds to the top application, which may 
result in the lack of user operation data at different time periods for some parallel applications at the 
bottom layer. However, the missing part of the data should also be considered part of the sequence of 
user operations at the same time. For example, when a user uses a dictionary application to look up 
words, he accepts a video chat request initiated by a WeChat friend, and the dictionary application 
also runs in the background while the user is chatting in WeChat. However, while WeChat occupies 
the screen, the data of dictionary application will not be recorded. These missing data can cause 
errors in the analysis of the user operation of the app software, especially in the methods based on 
log and video analysis.

Parallel App Software User Operation Sequence Completion Process
To complete these missing data, the authors propose the method shown in Figure 3. The authors first 
obtain training data through preprocessing and pretraining. Then, the authors further propose that 
the app software user operation sequence should be completed from two temporal contexts, which 
are the global temporal context and the app temporal context. The authors use an LSTM-based deep 
learning model to extract these two temporal contexts and obtain parallel temporal context through 
the TextCNN model. The parallel temporal context will be used to complete the parallel app software 
user operation sequence.

This article has introduced the global distribution of parallel software user operation sequences. To 
fully consider the real parallel app software user operation scenarios, the authors further propose that 
the temporal context of user operations in each app software should also be considered. For example, 

Figure 2. An example of user operation sequences in multiple parallel running apps over a period of time

Figure 3. Parallel app software user operation sequence completion process
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when a user gives comments on an update posted by a friend in WeChat, it always goes through a 
series of contextual operations (i.e., open WeChat, view the update, post a comment), regardless of 
whether other parallel apps occupy the process user interface. Figure 4 shows the sequence of user 
operations for different apps running in parallel over a period of time. The authors can see that users 
operate in different parallel app software at different times. For example, in Figure 4, at T3, the user 
performs three operations on app1, while app2 and app3 are still running in the background. To 
complete the missing user operations on app2 and app3 at T3, the authors need to consider not only 
the global temporal context of user operations but also the temporal context of each app.

Considering the temporal context of app is a critical step for the proposed method. The authors 
found that regardless of whether a system log, screen recording or the proposed method is used, due to 
the particularity of the Android user interface and event response mechanism, some app user operation 
data will always be lost. When completing this part of the data, in addition to considering the global 
temporal context of user operations, the temporal context of user operations in each app is particularly 
important. However, previous work does not take contextual information into account, which also 
makes it difficult for previous methods to analyze the user operation sequences in multiple parallel 
apps. Furthermore, by considering the app temporal context, the proposed method can process parallel 
app user operation sequences simultaneously, which greatly improves the efficiency of the model.

Training Data Collection
Through the method implemented in section User operation parsing, the authors have obtained the 
fine-grained content of user operations. To consider both the global temporal context and the app 
temporal context, the authors need two copies of the data, one for global temporal context extraction 
and another for app temporal context extraction.

First, the authors use the open source word embedding corpora (Song et al. 2018) to transform user 
operation data into word embedding representation. Then, a pre-trained model based on Word2Vec is 
used to establish the relationship between user operations. The authors choose the skip-gram model 
for pretraining. It is worth noting that fine-grained user operation content can help us obtain better 
user operation representation. Next, the authors divide the user operation data by hours to obtain 
training data. In particular, as shown in Figure 4, the data copies used to extract the app temporal 
context will be grouped by app software.

Figure 4. An example of considering the user operations sequence from the perspective of app software
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Extraction of Parallel Context
Studies have shown that significant events with gaps and delays in time series can be analyzed and 
predicted using the LSTM (long short-term memory) model. LSTM models have achieved superior 
performance in the task of extracting contextual semantics from temporal data (Li et al., 2015; Greff 
et al., 2016). Therefore, the authors use an LSTM-based neural network model to extract the global 
temporal context and app temporal context of user operation sequences from parallel app software user 
operation sequences. Since user operation sequences can be viewed as simple short text sequences, 
the authors do not discuss more complex variant LSTM models in this paper. Compared with a 
single app running environment, one of the characteristics of the data of parallel app software user 
operation is that users may interact with multiple apps to achieve their goals. Therefore, the weights 
of the two temporal contexts cannot simply be designed manually but should be based on data from 
user operations. Studies have proven that TextCNN has a strong ability to extract text shallow features 
(Zhang & Wallace, 2015), especially in the processing of short texts, which means that TextCNN is 
suitable for the completion of parallel app software user operation sequences. Compared to manually 
setting fixed weights, TextCNN can help us better extract more accurate semantic information from the 
data. Therefore, the authors propose a TextCNN-based neural network model for extracting parallel 
temporal context from global temporal context and app temporal context. In summary, as shown in 
Figure 5, the authors propose a neural network model based on LSTM-TextCNN to extract parallel 
temporal context and complete parallel app software operation sequences.

As shown in Figure 5, since the authors need to extract the global temporal context and the app 
temporal context through the LSTM layer, the authors use the two copies of the training data for 
extracting different temporal contexts as the input of the model. During training, each user operation 
sequence will be regarded as a short text of length 6. In the LSTM layer, the temporal context of the 
user operation sequences is stored in the last latent vector. Through the LSTM layer, the authors can 
obtain the global temporal context and the app temporal context. It is worth noting that in the training 
process, to avoid training too many neural network models, the authors did not set neural network 
models for all of the parallel apps to extract the app temporal contexts but concatenated different app 

Figure 5. Parallel temporal context extraction based on the LSTM-TextCNN model
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software operation sequences. In this way, the authors only need to train a neural network model to 
extract the app temporal context, which can further improve the efficiency. However, some errors 
will inevitably occur in this way. The authors try to reduce these errors by varying the training stride 
in the LSTM layers. The authors found that setting the stride of the LSTM layer to 3 had the lowest 
error. Then, the global temporal context and APP temporal context obtained through the LSTM layer 
will be regarded as the input of the TextCNN layer. The authors set the convolution window size to 2 
and the convolution kernel to 128. Finally, through the fully connected layer, the authors can obtain 
the completed parallel app software user operation sequences.

EXPERIMENTS

Krieter and Breiter (2018) proposed a method called “Mobile screen recordings to log file (MSRTLF). 
In recent years, MSRTLF has proven to be a more effective way to analyze app user operation. They 
use screen recording software to record the user operations and process the video frame by frame 
into pictures through Python scripts. Then, these pictures are matched with predefined user operation 
event picture templates through image processing technology. However, MSRTLF also has some 
problems, which will be discussed in detail in the analysis below. In this section, the authors conduct 
comparative experiments from multiple perspectives to illustrate the superiority of the proposed 
method on the task of completing parallel app software user operation sequences.

Accuracy on User Operation Sequence Completion
First, the authors designed a method that can capture and parse fine-grained user operations of app 
software in real time, which has been introduced in Section User Operation Parsing. The authors 
collected the operation behaviors of 12 users over a month, and obtained 240,000 app user operations. 
Since the video data occupy a large amount of mobile phone memory, the authors recorded 20 
times during this period, and the duration of each recording was 30 seconds to 10 minutes. The 
effectiveness of the method is evaluated by manually comparing the average precision of processing 
the corresponding user operation data over this time period.

Table 4 shows the accuracy of the proposed method and the MSRTLF method on the task of completing 
user operation sequences with different granularities. In the MSRTLF method, the log format set by the 
researchers has four properties consistent with the proposed method, namely, “Package”, “Time”, “Class” 
and “Type”. The authors use “G” to denote the granularity of user operation sequences. For example, 
“GTC” represents a sequence of user operations considering “time” and “category”. The authors set up 
two scenarios, a single app running scenario and a multiparallel app running scenario. Experiments show 
that the proposed method leads to huge accuracy improvements in both cases. Furthermore, the proposed 
method is more stable on the task of completing fine-grained user operation sequences.

Table 4. Average accuracy comparison on user operation sequence completion at different granularities

app(s) Models
Average Accuracy (%)

GT GTP GTPO GTPOC

With Single Running 
app

MSRTLF 45.9 34.9 30.5 28.5

The proposed Method 96.2 95.8 94.6 92.4

With Parallel Running 
apps

MSRTLF 24.8 18.5 14.5 12.8

The proposed Method 92.7 91.9 90.4 90.2

Note: “GT” represents a user operation sequence including the operation time; “GTP” represents a user operation sequence including the operation 
time and the name of the package; “GTPO” represents a user operation sequence including operation time, the name of the package and operation object; 
“GTPOC” represents a user operation sequence that includes operation time, the name of the package, operation object and the text of operation content.
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Discussion
In fact, the experimental results of the MSRTLF method are consistent with the work in (Krieter & 
Breiter, 2018). They pointed out that although the method based on image processing technology can 
effectively analyze the user operations data in the app, this method has some limitations. First, due 
to the limitation of relying on manually defined event templates, the MSRTLF method is often only 
effective for user operation data analysis in a single app. When faced with more complex scenarios, 
when the user interacts with multiple applications at the same time, the researchers need to add or 
redefine the user operation event templates, which will greatly affect the efficiency of this method. 
Conversely, the proposed method does not require researchers to define user operation templates 
individually, which greatly simplifies the researchers’ work. Second, the MSRTLF method restores 
the user operation after it has ended, which will inevitably cause data inconsistency. For example, 
when MSRTLF parses video into pictures, it will miss some millisecond-level user operations. The 
proposed method can capture the user operations in the app in real time, which fundamentally solves 
this problem. Finally, Krieter and Breiter (2018) pointed out that the MSRTLF method encounters 
difficulties as the Android system and application user interface are updated. Unless relying on 
manual updating of more detailed user operation event templates, the accuracy of the method will 
drop significantly when analyzing user operations in other updated apps. It is worth noting that the 
proposed method provides a general framework on the Android system, which guarantees accuracy 
and stability for researchers to analyze a wide range of app software user operations.

Performance on Processing Efficiency
Krieter and Breiter (2018) found that the number of event templates and the size of the original video 
are two important factors that affect the processing time. In addition, factors that affect the number of 
event templates are the number of applications running in parallel and the granularity of user operation. 
For example, if the user interacts with three app software in a period of time, the researchers must 
design user operation event templates for different app software when using the MSRTLF method. To 
compare the efficiency of the methods, as shown in Table 5, the authors compare the time consumed 
by MSRTLF and the proposed method in analyzing videos of different lengths and corresponding 
user operation data. Similarly, the authors also set up two scenarios: a single app running and multiple 
apps running in parallel. The authors set three different levels to mark the length of the video: short 
(30 seconds), normal (180 seconds), and long (600 seconds). The results show that the proposed 
method has a large improvement in efficiency compared to the MSRTL method, especially when 
multiple applications run in parallel.

Discussion
Krieter and Breiter (2018) tried to improve the processing efficiency of the MSRTLF method by 
reducing the video quality, but this would greatly reduce the recognition accuracy of user operation. 
Compared with MSRTLF, the proposed method uses a neural network model to process text data, 

Table 5. Time consumption comparison of processing different sizes of data

app(s) Models
Time Consumption(sec)

Short Normal Long

With Single Running app
MSRTLF 105 910 2946

The proposed Method 10 12 13

With Parallel Running app
MSRTLF 196 1152 4200

The proposed Method 11 12 13
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which is more accurate and efficient. In addition, since there is no need to design user operation 
templates for each app software, the proposed method can efficiently process parallel app software 
user operations. Experiments show that compared with the MSRTLF method, the proposed method 
can quickly process large-scale parallel software user operation data. In particular, pretraining with 
Word2vec can make the model converge quickly, which can save approximately 0.3 seconds per 
1000 user operation data.

Contribution of Temporal Context
The process of using app software for users is often more complicated. During a period of time, 
users may interact with multiple parallel app software packages in different forms, which makes 
it difficult for traditional methods to analyze parallel app user operations. Based on this fact, 
using multidimensional temporal context becomes especially important when analyzing parallel 
app software user operations.

Based on the data, the authors list four typical scenarios of user operations: frequent, sparse, 
concentrated, and scattered. Frequent and sparse are used to describe the quantitative feature, which 
is the number of user operations over a period of time. Concentrated and scatted are used to describe 
the distribution of user operations in different app software. The authors design an automatic tagging 
method. For example, when the number of user operations in 1 hour is greater than the average 
number of user operations, they are considered frequent; otherwise, they are considered sparse. The 
authors extracted 3 sets of data from 240,000 user operation data, each with a number of 30,000, and 
calculated the average number of user operations per hour, which is 106. Second, for the distribution 
characteristic, the average highest proportion of parallel app software within an hour is 50.66%. 
Similarly, when the proportion of user operations of a single app software within 1 hour is higher 
than the average highest proportion, the user operations are considered concentrated; otherwise, they 
are considered scattered.

In this subsection, to further illustrate the effectiveness of the multidimensional temporal context, 
the performance of the four contextual features in different user operation scenarios is shown in Table 
6. The authors designed 4 user operation scenarios: ‘FC’, ‘FS’, ‘SC’, and ‘SS’.

Table 6. Completion of parallel software user operations based on different contexts and user operation scenarios

Context
User Operation Scenarios

FC FS SC SS

1 Hour

Only Semantical 59.1% 57.3% 60.0% 55.3%

Global 70.4% 68.1% 67.8% 59.6%

app 79.8% 77.5% 82.5% 54.7%

Parallel 86.4% 85.4% 85.9% 79.2%

2 Hours

Only Semantical 59.2% 58.4% 74.7% 59.6%

Global 71.5% 71.5% 70.3% 63.7%

app 80.3% 77.8% 82.7% 57.2%

Parallel 86.1% 84.9% 86.5% 82.6%

Note: ‘FC’ stands for frequent, concentrated user operations. ‘FS’ stands for frequent, scatted user operations. ‘SC’ stands for sparse, concentrated user 
operations, ‘SS’ stands for sparse, scattered user operations.
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Discussion
As shown in Table 6, first, the authors found that the overall effect of user operation completion 
for two hours is better than that within one hour. Based on data from parallel app software user 
operations, the authors find that it takes longer for users to interact with a parallel app than with 
a single app. Second, concentrated user operations are always easier to complete because they 
are closer to user operation in a single app, especially for sparse, concentrated user operations. 
The method that only considers the semantic context of user operations ignores the temporal 
feature of user operations, which leads to a generally low completion accuracy rate. After taking 
the global temporal context feature into account, the completion accuracy rate is improved by 
approximately 10%, especially when the user operates frequently. However, the global temporal 
context is not applicable for completing sparse and scattered user operations. In addition, the app 
temporal context is more suitable for concentrated user operation completion. Compared with 
the global temporal context, the app temporal context focuses on the user operation sequence 
of each app. However, for the completion of sparse user operations, the app temporal context 
does not bring an improvement in accuracy; in contrast, it drops by approximately 5% when user 
operations are sparse and scattered. The authors found that when user operations are sparse and 
scattered, users may open the app software abnormally or use the functions of the app software 
incorrectly, which reduces the usability of the app temporal context, because the app temporal 
context focuses more on the use of independent app software functions. Based on the above 
analysis, the authors propose a method that combines global temporal context and app temporal 
context for the completion of parallel app software user operations. The experimental results 
show that the proposed method can achieve high accuracy in different parallel app software 
user operation scenarios, which indicates that the parallel temporal context is suitable for the 
completion of parallel app software user operations.

CONCLUSION

In this paper, the authors build a general, powerful framework for analyzing user operations in 
apps. In analysis, the proposed method supports obtaining fine-grained sequence data of user 
operations without relying on any manual definition and modification of application source 
code. In addition, the authors propose that user operations should be pretrained as short texts 
to obtain better training data, which can improve the training speed and accuracy of the model. 
Furthermore, the authors divide the temporal context of the user operation sequence into the 
global temporal context and the app temporal context. The experimental results show that 
the global temporal context and the app temporal context of the user operation sequence can 
be effectively extracted through the LSTM model. In addition, with the TextCNN model, the 
authors can effectively combine the features of these two temporal contexts. According to the 
experimental results, compared with the baseline, the proposed method has greatly improved 
in terms of accuracy, stability and efficiency. In summary, the proposed method is general and 
efficient, which solves some difficult problems of analyzing user operations in the multi-parallel 
app environment and simplifies the work of researchers. The proposed method provides support 
for the large-scale analysis of app user operations. Therefore, the analysis of app software user 
operations no longer limited to few app software case studies. Based on the proposed method, 
future researchers can further explore the value of app user operations, such as analyzing the 
relationship between normal user operations and abnormal operations. It should be noted that 
the authors collected the operation behaviors of 12 users over a month, and obtained 240,000 
app user operations which contains 82 app software most commonly used by users and more 
than 500 app software functions. These data are representative and can generally reflect the 
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details of user operation. However, the number of user samples is limited, which means that 
there are few user operations have not been considered and analyzed. Finally, the completed 
app software operation sequence is fine-grained and contains rich context information. The 
author is exploring and establishing the relationship between app user operations and other 
data reflecting usability.
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