
DOI: 10.4018/JDM.321544

Journal of Database Management
Volume 34 • Issue 3

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Neural Super-Resolution in Real-
Time Rendering Using Auxiliary
Feature Enhancement
Zhihua Zhong, Zhejiang University City College, China

Guanlin Chen, Zhejiang University City College, China*

Rui Wang, Zhejiang University City College, China

Yuchi Huo, Zhejiang University City College, China

ABSTRACT

As the demand for high quality and high resolution in real-time rendering grows, superresolution
is on its way to becoming a necessary component in modern real-time rendering applications (e.g.,
video games). The superresolution technique allows graphic applications to save computational costs
by rendering at a lower resolution and reconstructing a high-resolution result. Nvidia introduced
DLSS to the market as the first superresolution application in 2020, and NSRR was published on
Siggraph the same year. Each of these approaches has shown powerful capabilities and is well suited
to the needs of the industrial sector. In this paper, the authors propose the optimization potential of
superresolution algorithms by introducing feature enhancement and feature caching modules and
attempt to improve the current algorithms.

Keywords
Deep Learning, Rendering, Superresolution

INTRODUCTION

The GPU was invented to meet the demands of massively parallel computation tasks from computer
graphics, so a mutual relationship exists between the development of GPU performance and computer
graphics technology. Display devices have developed in recent years, including 4K/8K high-resolution
monitors and virtual reality headsets, which demand higher resolutions and refresh rates than before.
The exponential growth in resolution places a tremendous burden on the GPU, while the GPU
computing power can only grow linearly. Because modern hardware is far from meeting the actual
requirements, it is inevitable to keep rendering at low resolution and obtain high resolution through
some means.

Journal of Database Management
Volume 34 • Issue 3

2

While superresolution is a relatively new topic in computer graphics, there are other methods of
rendering at a resolution different from the target. In fact, when dealing with the aliasing problem, an
approach called Super-Sampling Anti-Aliasing (SSAA) solves it by sampling at a higher resolution
and downsampling to the original resolution. It can be seen that antialiasing and superresolution are
both reducible to undersampling, the same basic graphical problem. Aliasing results from insufficient
sampling, whereas superresolution is expected to reconstruct the result with a much lower resolution.
As a result, advanced antialiasing methods can be modified to solve superresolution problems.

The G-buffers are visual data structures that are packed with various scene information and can
be easily accessed in real-time rendering applications. In most cases, buffers are produced in just a
few milliseconds per frame in a single draw call. Using G-buffers effectively can help the network
predict high-resolution results better.

RELATED WORK

Image and Video Superresolution
Superresolution in traditional image processing is an ill-posed problem. There is no additional
information input between the input low-resolution image and the output high-resolution image.
The algorithm cannot increase the entropy of the data and can only some way guess the pixel color
of the high-resolution image according to the input image data. Neural network machine learning
methods that have emerged in recent years can be seen as an attempt to obtain the network to learn
additional information from the sample and learn a correspondence between low-resolution pixels
and high-resolution pixels.

Most traditional image super-resolution algorithms use interpolation to generate the value of
new pixels using low-resolution pixel information in a certain adjacent area. The most common
interpolation algorithm is to use indirect B-spline convolution kernel interpolation to obtain the spatial
value of new pixels. The higher the order of the B-spline convolution kernel, the larger the perceptual
domain of the convolution kernel, and the more pixels will be used to guide the interpolation result.

The final interpolation result will also become low-frequency accordingly. Among them, 0-order,
1-order, and 3-order B-splines are commonly used B-spline convolution kernel orders, corresponding to
nearest neighbor interpolation method, bilinear interpolation method, and bicubic interpolation method.

The nearest neighbor interpolation method does not attempt to add any detail information and
directly copies the value of the nearest low-resolution pixel point to the new pixel point.

Bilinear interpolation is a method of linearly interpolating four adjacent pixels (two points from
a one-dimensional perspective). Compared with the nearest neighbor interpolation method, the
result of bilinear interpolation is more blurred at high-frequency edges. The bicubic interpolation
method proposed by Keys constructs a cubic function to interpolate based on more adjacent pixel
information in an attempt to capture detail information that bilinear interpolation cannot capture.
When the order of the B-spline convolution kernel tends to infinity, the convolution kernel tends to
be a Gaussian function, and high-frequency information is lost more severely. Therefore, indirect
B-spline convolution kernel interpolation methods often obtain blurry results. However, B-spline
convolution kernel interpolation methods with deconvolution operations can prevent high-frequency
information loss during interpolation and obtain high-resolution results with sharp edges although
they cannot supplement missing high-frequency information. Li et al. proposed a super-resolution
algorithm that interpolates based on local covariance coefficients, which can effectively process
high-frequency information and get sharp edges of objects.

Superresolution tasks can generally be divided into two types depending on the type of data:
single-image superresolution (SISR) and video superresolution.

In addition, there are algorithms that accomplish super-resolution without using interpolation.
Irani et al. propose a back-projection method that allows super-resolution results to better retain

Journal of Database Management
Volume 34 • Issue 3

3

information from the original input by accounting for the differences introduced by the upsampling
method. Noting that sharpness in natural images is relatively stable and does not change with
resolution, Sun et al. propose a super-resolution based on the gradient of the image edges method.
Glasner et al. exploit the self-similarity of the image to find similar detail information within the
image to supplement the rest of the insufficient detail. There are also methods that try to avoid the
situation where image details need to be estimated. Avidan et al. noticed that the super-resolution
work can be done by increasing the number of pixels in unimportant regions, by defining an energy
function that gradually adds imperceptible pixels to the image at the lowest energy location for the
human eye, and finally outputs a high-resolution image that stretches the low-frequency regions and
leaves the high-frequency regions unaltered.

The traditional methods to solve the SISR problem are interpolation methods, such as bilinear,
bicubic, edge-directed and other interpolation methods, and methods using self-similarity to
reconstruct the details of high-resolution images. On the other hand, machine learning methods,
from SRCNN (Dong et al., 2015), the earliest three-tier convolutional network, to SRResNet (Ledig
et al., 2017), which began to introduce residual networks, now have a number of ways to solve this
problem. Except for the scenario where some complex networks may learn features directly from
datasets and therefore provide extra information for superresolution, neural networks are essentially
just a higher-order interpolation function. Unlike SISR, video hyperresolution improves the effect of
reconstructing high-resolution images by mining adjacent frames in temporal domains, in addition
to using data in spatial domains.

Real-Time Rendering
The primary objective for real-time rendering is to ensure real-time capability, but both anti-aliasing
and superresolution require a larger number of samples, which adversely impacts the real-time
capability in most cases. Similar to video, real-time rendering relies on the persistence of vision,
playing discrete images in the temporal domain at a rapid rate. The two methods are, however,
fundamentally different in a number of ways.

First, although frames played in video are also discrete in the temporal domain, the information
recorded in each frame is sampled over a certain period of time. The film is exposed to the light on
the scene for a specified period before a frame is depicted. In general, rendering can only draw a
picture in a single instant. Thus, a sense of fluency can be obtained by using a video with 24 frames
per second (FPS). In contrast, it demands at least 30 FPS to avoid obvious frame drops and even
more than 144 FPS to surpass the refresh rate of human eyes. In view of this difference, real-time
rendering is presented with a tougher challenge that requires it to complete more complex tasks in a
much shorter period of time than video.

Second, video records the ground truth directly in the spatial domain. At a certain location in a
video frame, all light is recorded in that area. The rendering process, however, is limited to computing
only one incident light at a time, which means taking a discrete sample in the spatial domain. In
accordance with the Nyquist theorem, the original signal cannot be reconstructed if the sampling rate
is less than twice the maximum frequency component of that signal. This phenomenon is known as
aliasing, and it is precisely for this reason that antialiasing techniques are needed.

Antialiasing
Solve the problem of aliasing, low-pass anti-aliasing filters are used in signal processing, where
the original signal is first low-pass filtered to remove the high-frequency information and then
reconstructed, i.e., the effects caused by aliasing can be avoided. In contrast, in graphical plotting,
an anti-aliasing algorithm is used to low-pass filter the plotted samples to obtain the desired anti-
aliasing results.

Super-Sampling Anti-Aliasing (SSAA) achieves low-pass filtering of the original signal by
increasing the number of samples, drawing multiple times at different locations within a pixel, and

Journal of Database Management
Volume 34 • Issue 3

4

averaging the drawing results. The oversampling antialiasing algorithm solves the aliasing problem
using the simplest way of increasing the number of plots, which makes the plotting workload increase
dramatically, and using the oversampling antialiasing algorithm usually leads to difficulties in securing
real-time performance.

Multi-Sampling Anti-Aliasing (MSAA) also uses the same way to increase the number of samples
to solve the sampling problem, but the Multi-Sampling Anti-Aliasing algorithm goes further to exploit
the characteristics of the sampling problem in the graphics drawing, almost all the sampling in the
drawing occurs at the edges of the object, and the color changes in the same object within a pixel is
not very frequent. Therefore, the multisampling anti-walking algorithm blends the colors of different
objects based on the area of covered pixels only at the edges of the objects, significantly reducing the
number of samples that have no significant impact on the final drawing results.

Fast Approximate Anti-Aliasing (FXAA), on the other hand, accomplishes the anti-sampling
work by post-processing without increasing the drawing effort. The Fast Approximate Anti-Aliasing
algorithm generates an approximate antialiasing result quickly by detecting the edges of the object and
blending the nearby pixels based on the characteristic that the aliasing occurs at the edges of the object.

Temporal Anti-Aliasing (TAA), inspired by the optical flow method in images, takes advantage
of the nature of high frame rates with little variation between consecutive frames applied in real time,
and reprojects samples from historical frames to the current frame for blending. The time-domain
antialiasing algorithm and its various variants are the current SOTA antialiasing algorithms. The
time-domain antialiasing algorithm solves the aliasing problem well while not increasing the number
of samples additionally. However, the time-domain inverse sampling algorithm also suffers from
ghosting and flickering due to the lack of information in the occluded region of the historical frames.

This kind of algorithm takes advantage of the temporal coherency of rendering application
results, where continuous rendering results in the temporal domain mostly remain continuous, with
only a few occasions where high-frequency variations occur. Even though this rarely occurs, it can
seriously undermine the functionality of real-time applications. An extensive number of heuristics
have been proposed to mitigate the negative effects of this situation, but these approaches affect the
details of the results to a certain extent. Since the rendering application still preserves the original
virtual scene, extra information such as depth map and motion vector can be acquired for a much
lower cost than video, in which the scene information has already deteriorated.

The QW-Net proposed by Thomas et al. in 2020 uses a neural network to accomplish the mixing of
current and historical frames in TAA, allowing more flexibility in balancing error correction strength
and detail loss when reusing historical frames The QW-Net introduced by (Thomas et al., 2020) uses
a neural network to accomplish the blending of current and previous frames in TAA, allowing more
flexibility in balancing error correction strength and detail loss when reusing previous frames. This
method proposes a new quantized image reconstruction neural network, which improves the quality
of the reconstructed images while ensuring real-time performance.

Real-time Superresolution
The need for higher resolution and more photorealistic results necessitates the reduction of the real-
time sampling rate and some means of mitigating its drawback. The industry was introduced to a
new technique in 2016 known as CheckerBoard Rendering, which renders only one pixel for every
four pixels and then interpolates the result of those pixels. In 2020, Unreal Engine updated temporal
antialiasing upsampling (TAAU) as its superresolution solution. In the same year, Deep-Learned
Supersampling 2.0(DLSS) was released by Nvidia, as well as Neural Supersampling for RealTime
Rendering (NSRR) (Xiao et al., 2020), both of which use machine learning to enhance superresolution.

DLSS uses deep learning technology to upscale images from a lower resolution to a higher one
while maintaining the same level of visual quality. It’s a type of video rendering technique that looks
to boost framerates by rendering frames at a lower resolution than displayed and using deep learning
algorithms to upscale them back to the native resolution. FidelityFX Super Resolution(FSR) which

Journal of Database Management
Volume 34 • Issue 3

5

is an upscaling technology developed by AMD that uses advanced optimization techniques to help
boost frame rates in some games without requiring users to upgrade their graphics card and can run
on any graphics card. In addition, Intel released Xe Super Sampling (XeSS) which is an upscaling
feature of Intel Arc Alchemist graphics cards. It works by rendering your game at a lower resolution
and then upscaling it using machine learning and dedicated AI hardware found inside the GPU. XeSS
can run on dedicated XMX cores or on general hardware that supports DP4a instruction.

Neural Networks for Reconstruction
The application of neural networks to rendering problems has gained increasing attention in recent
years. A particular area of development has been the denoising of Monte Carlo renderings, which is
aimed at eliminating the effects of distributed noise. (Chaitanya et al., 2017) introduced a technique
that directs the extraction of the denoised image using a network based on U-Net (Ronneberger et al.,
2015). They were the first to demonstrate interactive results at a temporally stable rate by introducing
persistent connections within a UNet network. Due to the U-Net system’s multiscale architecture, the
system offers an expansive receptive field at an affordable price, and this is important for denoising
sparsely sampled images.

During real-time applications, inputs to reconstruction techniques such as TAA are denoised via
filters specialized for effect types. The use of neural networks for image reconstruction has previously
been demonstrated by Marco Salvi using a UNet with warped feedback loops. A recurrent U-Net was
also employed by (Kaplanyan et al., 2019). to reconstruct the peripheral image for foveated rendering
from relatively sparse samples. The computing and storage costs of neural networks are greatly
reduced when they are quantized to use reduced-precision arithmetic. In the case of HDR images, a
quantized network can result in a significant loss in image quality. (Thomas et al., 2020) introduced
QW-Net, a quantized neural network for image reconstruction, which guarantees high-quality output
while using quantization to reduce computational consumption.

METHOD

In this section, we will describe our improved superresolution algorithm. We will first discuss the
main solution ideas for real-time superresolution algorithms and explore potential improvements
from past work. Next, we will present our proposed network structure and improvement scheme.

Problem Setting
Similar to the Anti-Aliasing problem, in real-time rendering, superresolution needs to address the
issue of how to recover high-quality, high-resolution results while maintaining a low sampling rate
for the current frame. TAA provides an important idea for solving this problem: reusing samples
captured in historical frames to complement the undersampling of the current frame.

The 2020 work NSRR follows this idea by using historic frame information to reconstruct the
current frame high-resolution results. By combining with machine learning methods, which have
become popular in recent years, NSRR projects each frame of information into hidden space and
upsamples it to the target resolution. A reweighting network will then adjust the warped history
frame data in hidden space. In the end, all the feature maps are fed into a reconstruction network
to obtain the final result. The NSRR pioneered the use of neural networks to resolve the dilemma
of ghosting and missing details in traditional heuristic methods. However, the dataset that NSRR
uses is primarily based on VR headset input, with relatively small and smooth camera movement
characteristics. Therefore, the NSRR does not perform as well when faced with the challenge of
more complex camera movements.In rendering, it is the shading task that is the greatest burden for
each pixel, which can be shown by the successful use of MSAA. This reveals that in addition to the
motion vector and depth map, there is additional information available at low cost that can be utilized
by the network to improve its performance.

Journal of Database Management
Volume 34 • Issue 3

6

Basic Idea
In modern real-time rendering applications, G-buffer are data prepared by the rendering pipeline
before shading, which are rich in various scene information and can be easily accessed. G-buffers
include various data information needed for rendering, which can include material information such
as albedo, metallicity, roughness, and specular, as well as geometric information such as position,
surface and shading normal, depth, and motion vectors. Despite being rich in information, G-buffers
can be readily available at a very low cost for real-time rendering. All these G-buffers can usually
be produced simultaneously in a single draw call, at the cost of just a few milliseconds per frame.
G-buffers are generated and saved in many deferred rendering applications, and even with forward
rendering many real-time rendering applications still generate G-buffers for various purposes.
Therefore, providing networks with reliable and cheap G-buffers can help networks better reconstruct
high-resolution results almost for free. It is important for the network design to comprehensively
extract useful features from the additional auxiliary G-buffer inputs, which can be much beneficial
for synthesizing high-resolution results from these fertile geometric and material information.

To acquire G-buffers, rendering application first project all the vertices into the NDC space
(normalized device coordinate space) by a perspective transformation, and scatter the vertex
information from rasterized triangle meshes of the scene into their corresponding projected pixels
by interpolation. In this way, material information attached by UV mapping to each mesh vertex is
accessible by each pixel via the same interpolation. Then rendering application cache, the information
required in lighting stage into several writeable texture in GPU. These operations are highly accelerated
in modern GPU, which can be performed in parallel by numerous GPU rendering cores in a very
short time. The computational cost of generating G-buffers is associated with the complexity of the
geometry features of the scene.

In contrast to the very cheap G-buffer acquisition process, the subsequent lighting (or shading) stage,
is very time costly, because modern rendering pipelines strive for synthesizing photo realistic rendering
appearance, which requires a lot of complex light transport computations and simulation of physically
based material reflections and refractions. The computational cost in lighting stage is also relevant to the
amount and property of light sources, which determine the final visual quality of rendering result. So, in
modern rendering scenes, artists design more complicated light sources to produce more photographic
realistic result, which burdening lighting stage rather than G-buffer generating. In this paper, we propose
to accelerate this costly lighting stage by superresolution. By using superresolution method enhanced by
cheap auxiliary feature, the computational cost in lighting stage, which is the main rendering cost in modern
scenario, can be cutdown sharply. Enhanced by superresolution, the rendering pipeline only needs to render
a low resolution image and feeds it into the superresolution framework to synthesize final rendering results
with high resolution and visual quality. The acceleration ratio is proportional to the superresolution ratio. In
this paper, we provide 2x2 and 4x4 superresolution ratios, which can help to reduce the rendering cost by
4 times or even 16 times respectively. The overhead of our superresolution framework is far less than the
saved high resolution rendering time, due to the cheapness of G-buffer acquisition and the lightweight of
our designed neural network. Our experiments show that with the help of auxiliary G-buffer information
as the neural network input, the superresolution framework can produce more high-quality results. Our
method outperforms all the baseline superresolution methods with a lower cost to achieve state-of-the-art.

Network Architecture
Our network structure is improved on the basis of NSRR. Figure 1 is an overview of our network
structure. With reference to NSRR’s framework of feature-reweighting network and reconstruction
network implemented with U-Net, we propose a feature enhancement module and an historical
feature caching acceleration module. The feature enhancement module provides inexpensive and
reliable feature information extracted from G-Buffer for reconstructing the network, while the feature
caching acceleration module provides acceleration by caching the historical feature maps to reduce
the repetitive operations of the network.

Journal of Database Management
Volume 34 • Issue 3

7

Feature Enhancement
To add the G-buffers information to the network, we designed an additional feature extraction
network on top of the NSRR network. By feeding the G-buffers information into the network, the
information on which the high-resolution results of the network output are based is increased. We use
UE4’s builtin G-buffers, including base color, metallic, normal, roughness, and specular, as shown
in Figure 2. The feature extraction network for G-buffers utilizes the same structure as the one used
for low-resolution samples.

As the feature maps are extracted from the G-buffers, they will be concatenated and sent to the
reconstruction network along with the upsampled feature maps of low-resolution samples and the warped
feature maps of previous frames. In the end, the reconfiguration network produces the final result.

Feature Caching
The NSRR network structure converts only the current frame to the YCrCb color space, which
entails that the feature extracted from the current frame is exclusively available in the current frame
superresolution process. With the help of the feature enhancement module, we can significantly
improve the quality of the results. By extracting in the same color space, it may be possible to use
the extracted feature information as the historical information of the next frame. In addition, the
redundant processing of accumulative backward warping in NSRR can also be removed after the
historical feature map cache has been established.

The feature cache contains only four copies of the feature maps in the previous screen space,
as shown in Figure 3. The superresolution process can be initiated by simply backward warping the
feature maps once at the same time, thereby providing the feature maps in the current screen space.
Afterwards, the latest three feature maps from the warped results are cached in the feature cache in
conjunction with the current frame feature map.

The feature caching module enables a superresolution workflow, as shown in Figure 4, to consist
of only feature extraction, backward warping, reassignment, and finally reconstruction. Consequently,
a large number of redundant operations are reduced while integrating parts of the operations into a
more compact structure.

Implementation and Datasets
The datasets we prepare are from the cinematic scene INFILTRATOR, which is publicly available
for UE4. INFILTRATOR consists of a dark indoor scene in the first half and an open city scene in
the second half. The first half of the film, which we are using as the training and validation dataset,

Figure 1. Network architecture of our approach

Journal of Database Management
Volume 34 • Issue 3

8

features a large amount of metallic materials and fast camera movements. The city scene, which we
use as the testing dataset, in the second half contains detailed vistas with slow camera movement.
We render 5120 × 2880 pixels with 8xMSAA and downscale to 1280 × 720 as a reference. For
the lower resolution inputs, MSAA is turned off, and a bias is added to the mip level of the texture
sampler, as indicated by equation 1. For training, we divide the images into overlapped patches
with a resolution of 512 × 512 pixels, whereas for validation and testing, we use full frames with
a resolution of 1280 × 720 pixels.

Our networks are trained using PyTorch. Training optimization is conducted using the ADAM
method (Kingma et al., 2014) with default hyperparameters, a learning rate of 1e-4, a batch size of
16, and 100 epochs. Each network takes approximately a day to train on 8 Tesla V100 GPUs.

′ = + ()b b R R
r n

log /
2

	 (1)

Figure 2. Built-in G-buffers in UE4 and corresponding low-resolution samples as well as high-resolution reference

Journal of Database Management
Volume 34 • Issue 3

9

where b and ¢b are the Native bias and the final Mip bias, while R
r
 and R

n
 represent the rendering

resolution and the Native resolution, respectively.

RESULT

In this section, we evaluate the performance of our method according to the obtained results.
Furthermore, we examine how the high-resolution Gbuffers information helps the model to better
predict the final high-resolution results.

Figure 3. Cached feature map

Figure 4. Workflow of our approach

Journal of Database Management
Volume 34 • Issue 3

10

Quality Evaluation
As shown in Figure 5, we compare our method with the state-of-the-art real-time superresolution
method NSRR. The NSRR network was re-implemented and trained on the same datasets as our
method and uses the same training procedure as in our original method.

Two widely used photometric quality metrics are adopted to evaluate the results: the peak
signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) (Wang et al., 2004). For an
assessment of a single image, PSNR and SSIM are well known. The higher the value, the better the
image quality is.

Figure 5. Representative frames in our dataset, where the first two frames are from the validation dataset and the last frame is from
the test dataset. We compared the NSRR with our 4x4 superresolution results, compared them with the low-resolution input and
reference. In each frame we have selected two areas of interest in the results, which are framed in blue and orange. In addition,
we show the PSNR metrics and SSIM values of the full figure in the lower left corner of the result

Journal of Database Management
Volume 34 • Issue 3

11

Analysis
Frame 1 is a slowly advancing shot containing a wealth of detail. The area of interest in the blue box
demonstrates the low sampling rate of the 4x superresolution low-resolution sample in the face of a
high-frequency light source at medium distance, resulting in a large amount of detailed information
being lost. At this point, it is difficult to recover this high-frequency information by relying only on
the NSRR of low-resolution samples. In contrast, the network in our method can recover these high-
frequency data through high-resolution G-buffers information. The orange area of interest demonstrates
the network’s ability to handle high-frequency geometric details at medium distances. The region of
interest is a guardrail with a large number of holes, which are smaller than the size of a pixel in the
low-resolution sample, so these details are completely lost in the low-resolution sample. Instead, this
detailed information is preserved in the high-resolution G-buffers.

Frame 2 is a scene where the shots change more rapidly and there is more high-frequency
information in the far field. How the network copes with the undersampling of material information
is shown in the blue area of interest. NSRR resembles the result of bilinear interpolation due to the
absence of other more reliable information. Our method, on the other hand, can recover some of the
detailed information from the high-resolution material feature maps to some extent. The situation
in the other area of interest is similar to that in the orange area of scene 1, the difference being that
the object in Frame 1 itself has rich geometric detail, while in this scene, it is caused by the object
being too far from the camera.

Frame 3, a close-up scene with multiple figures, shows how the high-resolution G-buffers
information helps the network recover geometric edge information. In particular, the first region of
interest also shows how the additional information helps the network to correct for color bias errors.
In the NSRR results, the figure’s helmet is tinted with some cyan blue on nearby pixels and has jagged
edges similar to the low-resolution sample. In our results, on the other hand, the original color and
contour of the scene can be restored due to the original material information.

CONCLUSIONSAND FUTURE WORK

Although 4x superresolution can bring a good performance improvement, the results are not stable.
Relatively good results can be obtained when the camera movement is relatively flat, but when the
camera and scene objects move violently, the quality of the results drops dramatically. This is because
violent motion causes a dramatic decrease in the reliability of historical frame information, as a large
number of historical frames are reprojected outside the viewport of the current frame. and violent
motion also causes the shading result on the surface of the object to change rapidly, especially high
frequency information, specular reflection for example. In addition, the backward warping error
caused by the excessive difference between the rendering resolution and the local resolution is also
responsible for the unstable performance of the 4x superresolution.

Jittering Samples. In the TAA (Karis, 2014) algorithm, jittering sampling is used to obtain
more informative samples. When the rendered content is still or does not change much, jittering
sampling can capture more different samples within a pixel range, according to a low-discrepancy
sequence (Christensen et al., 2018). Superresolution allows for more efficient sample acquisition
using a similar approach. In addition, dithering on low-resolution samples would specifically dither
to different high-resolution pixels, which might be combined with zero upsampling to provide the
network information on which samples must be generated.

G-Buffers Feature Extraction. Even though high-resolution G-buffers provide rich high-
resolution information at a low cost, they will create a performance bottleneck in each process prior
to reconstruction. By using pooling to generate low-resolution compact feature maps from high-
resolution G-buffers, we will be able to perform subsequent steps more efficiently.

Motion Vector. Occlusion may cause pixels to be projected onto other objects, resulting in
objects from different objects being projected onto the same pixel, causing a misinterpretation

Journal of Database Management
Volume 34 • Issue 3

12

by the network. Additional processing of the motion vector with other information, such as
spatial position and depth, produces a more efficient motion vector (Zeng et al., 2021), which
allows the network to use more reliable warped information and thus focus on reconstructing
high-resolution results.

ACKNOWLEDGMENT

This work is supported by the Zhejiang Science and Technology Plan Project of China (No.
2020C03091) and the Zhejiang Provincial Central Government Guided Local Science and Technology
Development Project (No. 2020ZY1010).

Journal of Database Management
Volume 34 • Issue 3

13

REFERENCES

Akeley, K. (1993). Reality engine graphics. Proceedings of the 20th annual conference on Computer graphics
and interactive techniques, 109–116. doi:10.1145/166117.166131

Chaitanya, C. R., Kaplanyan, A. S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai, D., & Aila, T. (2017).
Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Transactions on Graphics, 36(4), 1–12. doi:10.1145/3072959.3073601

Christensen, P., Kensler, A., & Kilpatrick, C. (2018). Progressive multi-jittered sample sequences. Computer
Graphics Forum, 37(4), 21–33. doi:10.1111/cgf.13472

Dong, C., Loy, C. C., He, K., & Tang, X. (2015). Image super-resolution using deep convolutional networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295–307. doi:10.1109/TPAMI.2015.2439281
PMID:26761735

Games, E. (2020). Unreal engine. Retrieved from https://www.unrealengine.com/

Kaplanyan, A. S., Sochenov, A., Leimkühler, T., Okunev, M., Goodall, T., & Rufo, G. (2019). DeepFovea:
Neural reconstruction for foveated rendering and video compression using learned statistics of natural videos.
ACM Transactions on Graphics, 38(6), 1–13. doi:10.1145/3355089.3356557

Karis, B. (2014). High Quality Temporal Supersampling. Retrieved from https://advances.realtimerendering.
com/s2014/

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., & Acosta, A. (2017). Photo-realistic single image
super-resolution using a generative adversarial network. Proceedings of the IEEE conference on computer vision
and pattern recognition, 4681–4690. doi:10.1109/CVPR.2017.19

Liu, E. (2020). DLSS 2.0 - Image Reconstruction for Real-time Rendering with Deep Learning. GPU Technology
Conference (GTC). Retrieved from https://developer.nvidia.com/gtc/2020/video/s22698-vid

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image
segmentation. International Conference on Medical image computing and computer-assisted intervention,
234–241. doi:10.1007/978-3-319-24574-4_28

Salvi, M. (2017). Deep Learning: The Future of Real-Time Rendering? Retrieved from https://openproblems.
realtimerendering.com/s2017/index.html

Thomas, M. M., Vaidyanathan, K., Liktor, G., & Forbes, A. G. (2020). A reduced-precision network for image
reconstruction. ACM Transactions on Graphics, 39(6), 1–12. doi:10.1145/3414685.3417786

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility
to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. doi:10.1109/TIP.2003.819861
PMID:15376593

Xiao, L., Nouri, S., Chapman, M., Fix, A., Lanman, D., & Kaplanyan, A. (2020). Neural supersampling for
real-time rendering. ACM Transactions on Graphics, 39(4), 142–1. doi:10.1145/3386569.3392376

Yang, L., Nehab, D., Sander, P. V., Sitthi-Amorn, P., Lawrence, J., & Hoppe, H. (2009). Amortized supersampling.
ACM Transactions on Graphics, 28(5), 1–12. doi:10.1145/1618452.1618481

Zeng, Z., Liu, S., Yang, J., Wang, L., & Yan, L.-Q. (2021). Temporally Reliable Motion Vectors for Real-time
Ray Tracing. Computer Graphics Forum, 40(2), 79–90. doi:10.1111/cgf.142616

http://dx.doi.org/10.1145/166117.166131
http://dx.doi.org/10.1145/3072959.3073601
http://dx.doi.org/10.1111/cgf.13472
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://www.ncbi.nlm.nih.gov/pubmed/26761735
https://www.unrealengine.com/
http://dx.doi.org/10.1145/3355089.3356557
https://advances.realtimerendering.com/s2014/
https://advances.realtimerendering.com/s2014/
http://dx.doi.org/10.1109/CVPR.2017.19
https://developer.nvidia.com/gtc/2020/video/s22698-vid
http://dx.doi.org/10.1007/978-3-319-24574-4_28
https://openproblems.realtimerendering.com/s2017/index.html
https://openproblems.realtimerendering.com/s2017/index.html
http://dx.doi.org/10.1145/3414685.3417786
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1145/3386569.3392376
http://dx.doi.org/10.1145/1618452.1618481
http://dx.doi.org/10.1111/cgf.142616

