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ABSTRACT

Traditional methods of extracting finger vein texture changes and orientation features are susceptible 
to illumination, translation, noise, and rotation, and the process has difficulty directly extracting 
structural features through the original image. In this paper, the histogram of competitive Gabor 
directional binary statistics (HCGDBS) is proposed to extract discriminative structural features. 
First, the index of the largest filter value is obtained based on the multidirectional Gabor filter as 
the dominant direction, thereby obtaining the rotation-invariance feature. Second, according to the 
filter response size of each pixel in different directions, the order difference relationship between 
the adjacent three directions is compared, and a highly discriminative competitive Gabor direction 
binary pattern (CGDBP) is constructed. Finally, the CGDBP features are extracted in blocks, and the 
HCGDBS is constructed to overcome image translation. Experimental results show that it improves 
the recognition performance and overcomes illumination, translation, noise, and rotation.
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INTRODUCTION

Finger veins are a body feature that is difficult to forge and is highly secure (Lu et al.,2018). Referencing 
other biometric features, such as fingerprints (Yang et al.,2022), palm prints (Jia et al.,2013), and 
faces (Lei et al.,2010), vein features are used for living body recognition and are not easily damaged, 
so finger vein identification has gradually become a research hotspot.
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The finger vein recognition process usually consists of three stages: (1) preprocessing, including 
extracting a region of interest and image enhancement (Qu et al.,2022), (2) extracting features (Zhai 
et al.,2022), and (3) matching and identification, feature vectors are matched between test samples 
and training samples and then features are efficiently classified and recognized. The most important 
step is feature extraction, which has a great effect on recognition performance.

Recently, many studies have been performed on feature extraction methods for finger veins. Lu 
et al. (2014) proposed the competitive histogram representation, called HCGR, which makes full 
use of the Gabor filter with the ability to acquire image structural features from different directions, 
generates CGM and CGO images, and constructs feature histograms, which help to accurately represent 
finger vein orientation and texture characteristics. Yang et al. (2017) proposed adaptive vector field 
estimation, which is a feature representation method. By designing a spatial curve filter with variable 
curvature and direction, the vein curve is fitted to obtain the curve characteristics. Wang et al. (2019) 
proposed the DCGWLD and constructed a new variable curvature Gabor filter to replace the gradient 
descriptor in the original WLD. The extracted features not only have vein orientation characteristics but 
also reflect the degree of vein curvature. Tao et al. (2020) proposed the discriminative local descriptor 
AWASTP, which constructs an anisotropic Laplacian Gaussian operator, and proposed an anisotropic 
Weber local descriptor, which can obtain richer light-insensitive features and detailed information to 
enhance identification. These methods can extract local discriminative structural information through 
the texture variation and orientation features in finger vein images, but the images captured through 
the device are susceptible to illumination, translation, noise, and rotation. How to extract more 
discriminative structural features from finger vein images will be explored in-depth in the next work.

Inspired by HCGR and LBP, to solve the problems faced by the Gabor filter and LBP, the existing 
method based on the Gabor filter cannot distinguish finger vein images well; that is, the extracted features 
are not discriminative enough to reflect their rich structural information. Moreover, LBP and its various 
improvements cannot effectively solve image noise and rotation problems. This paper proposes an efficient 
image discriminative representation called the histogram of competitive Gabor directional binary statistics 
(HCGDBS). It filters the finger vein image through a Gabor filter and obtains the maximum response 
value as its dominant direction to overcome image noise and rotation. According to the dominant direction, 
the filter value of each direction is cyclically shifted, the LBP is improved by considering the intensity 
sequence difference relationship between the adjacent three directions of each pixel point, and the highly 
discriminative feature of the image is constructed. The experimental results of this paper fully reveal that 
this method outperforms Gabor, LBP, and various improved methods based on them.

These contributions are as follows:

1. 	 The authors proposed extracting the dominant direction of the pixel point on the image based 
on the filtering response value of the multidirectional Gabor filter. According to the dominant 
direction, the local intensity order difference relationship between the adjacent three directions 
of each pixel is encoded in a rotation-invariance and robustness manner to construct the highly 
discriminative competitive Gabor direction binary pattern (CGDBP).

2. 	 Based on the competitive Gabor direction binary pattern, a local feature statistical histogram 
HCGDBS is proposed. The HCGDBS requires no training and is designed to overcome 
illumination, translation, noise, and rotation.

3. 	 Extensive experiments are conducted on four human-collected finger vein databases and compared 
with other related feature extraction methods for finger veins, revealing the discriminative nature 
of HCGDBS.

RELATED WORK

With the continuous in-depth study of finger vein feature extraction, its methods are roughly divided 
into three categories: (1) spatial domain, (2) frequency domain, and (3) deep learning.
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The spatial domain feature extraction method extracts the rich texture variation and orientation 
features of finger veins through global features, local features, vein patterns, and feature learning 
and constructs discriminative feature descriptors. Ma et al. (2014) proposed a new global feature 
extraction method, namely, 2DPCA, which retains finger vein structural information and effectively 
reduces the feature dimension. Sikarwar et al. (2016) proposed encoding edge responses in eight 
directions to obtain different types of local direction patterns (LDPs) to extract features. Yang et al. 
(2017) proposed an innovative identification framework using a new analysis algorithm to further 
refine the vein pattern to obtain the vein network and trunk. Then, the similarity of the two networks 
and trunks is judged based on an ensemble matching strategy. Li et al. (2021) proposed a new fusion 
framework that combines FV and FKP. By the Gabor filter direction vector and image convolution, 
multimodal features are learned to maximize the distance and correlation within the interclass and 
minimize the intraclass distance for fusion recognition.

The frequency-domain feature extraction method uses some linear transformation or filters to 
convert finger vein images to the transform domain and applies some energy criterion to extract 
features. Ma et al. (2021), based on the encoding of discriminative information such as the orientation 
and scale of images in the frequency domain, proposed introducing directional gradients and local 
phase quantization to construct a discriminative pyramid histogram for finger vein recognition. Du 
et al. (2018) introduced the real-valued discrete Gabor transform to transform the extracted features 
into the frequency domain and then extracted the texture features of finger veins in the view of 
space-frequency analysis.

The deep learning feature extraction method uses many images as training samples, adapts to 
sample images captured by different devices, and achieves accurate recognition in a less constrained 
environment. Xie et al. (2019) proposed an improved CNN and supervised discrete hashing for 
finger vein authentication. CNN-supervised discrete hashing based on the triplet loss function not 
only optimizes the CNN model but also significantly reduces the template size. Yang et al. (2020) 
proposed a Lightweight CNN and antispoofing network (FVRAS-Net). The idea of multi-intensity 
lighting is applied to the finger vein recognition system, and the image with the largest amount of 
information is automatically selected for recognition, which effectively improves the identification 
performance. Hou et al. (2019) proposed combining a convolutional autoencoder and a support vector 
machine for verification. The convolutional autoencoder can improve recognition efficiency, mainly 
by reducing redundant information and efficiently learning the main information of finger veins to 
obtain discriminative features. SVM is used for the efficient classification and recognition process.

The frequency-domain feature extraction method of the finger vein has a low feature dimension 
and high computational efficiency. However, the frequency-domain features are easily affected by 
noise, and the finger vein recognition effect is worse than that based on spatial domain methods. Deep 
learning feature extraction methods do not require the manual design of feature descriptors but require 
many samples for training. Compared with the spatial domain method, the number of calculations is 
large, and it is not suitable for applying biometric identification technology. In summary, the spatial 
domain feature extraction method of finger veins is not easily affected by noise and does not require 
many samples for training. The histogram of competitive Gabor directional binary statistics proposed 
in this paper extracts features by airspace to construct a highly discriminative feature representation.

HISTOGRAM OF COMPETITIVE GABOR DIRECTIONAL BINARY STATISTICS

This method explicitly encodes finger vein structure information to extract highly discriminative 
features for image classification. A multidirectional Gabor filter is proposed to obtain the dominant 
direction of each pixel of the finger veins. Regarding the dominant direction sequence encoding, the 
relationship between the order intensity difference between the adjacent three directions of each pixel 
is used to construct a competitive Gabor direction binary pattern (CGDBP). Next, the feature image 
was separated into several blocks to calculate the subhistogram of each block and then combined 
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into a histogram, which constitutes the histogram of competitive Gabor directional binary statistics 
(HCGDBS). For the test samples, the normalized correlation coefficient is introduced according 
to the one-dimensional characteristics of finger veins, and then the distance between them and the 
training samples is calculated by NCC for classification and recognition. Figure 1 reveals the process 
of HCGDBS.

Gabor Filter
As a linear filter with adjustable direction, the Gabor filter has a similar frequency and direct expression 
to the human visual system and can approximate the receptive field function of a single cell well 
(Zhao & Zhang, 2020). In addition, the Gabor filter has good two-dimensional spectral characteristics 
of texture and the change characteristics of texture with two-dimensional spatial position. Due to 
these excellent characteristics, the Gabor filter can well describe the characteristics of the image, so 
it is widely applied to finger vein feature recognition. A typical two-dimensional Gabor filter has a 
general form:

G x y
x y

i x y( , , , , , ) exp( ( )) exp( ( cos sinθ µ σ β
πσ σ

π µ θ θ= × −
+

× +
1

2 2
2

2

2 2

2
))) 	 (1)

where m  represents the radial frequency, q  represents the direction of the Gabor filter, s  represents 
the standard deviation of the Gaussian function, and i = −1 . Referring to the introduction of 
competitive coding in the related literature, this paper also uses the real value of the Gabor filter to 
obtain structural features. To extract features more accurately, the Gabor filter is converted to an 
“upside-down” form (Zhang et al.,2017). Therefore, the largest filter response corresponds to the 
smallest convolution value. The transformed Gabor filter is defined as follows:

Figure 1. 
The feature extraction process of the proposed HCGDBS
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Dominant Direction
Due to the effect of the acquisition environment, light changes, finger posture, and other factors, there 
is irrelevant information such as rotation, translation, and noise in the captured image, which affects 
the finger vein recognition performance. Here, a Gabor filter is applied to filter the vein image to 
obtain the dominant direction of the pixel to overcome the rotation of the image. First, the Gabor 
filter bank with the orientation of j jp / ( , ,..., )8 0 1 7=  is used to filter the preprocessed image finger 
vein image. Let G

j
 be the real part of G  with direction of j jp / ( , ,..., )8 0 1 7= . The convolution 

of the image with the filter is:

g x y G I x y
j j
( , ) * ( , )= 	 (3)

where “* ” is the convolution operation, I  refers to the finger vein image, g x y
j
( , )  is the filter value 

of I x y( , )  with G
j
 in the direction of jp / 8 , and ( , )x y  represents the location of I .

Determining the main direction of the finger vein is extremely critical to coding. The Gabor filter 
is less likely to produce a larger filter response, and it is more discriminative to extract the index of 
its maximum filter value as the main direction (Fei et al., 2019). According to the convolution of the 
filter and the image, the filter response values in eight directions are obtained, and the direction with 
the largest filter response value is extracted as the main direction. The maximum filter response is 
used to overcome the effects of noise and rotation and improve the discriminative power of structural 
features (Wu et al., 2021).

Figure 2. 
Calculation process of the dominant direction of the finger vein
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C x y g x y j
j

j
( , ) argmax ( , ),( , ,..., )= = 0 1 7 	 (4)

where C x y( , ) is the dominant direction at a certain pixel point ( , )x y  and represents the index value 
of the maximum filter response.

Loop filter the sequence of values according to the dominant direction until the point indexed 
by C x y( , )  is located at the first position:

g x y g x y g x y g x y g x y g
t C0 1 7

, , , ,( , ), ( , ),..., ( , ),..., ( , ) : ( , ),...,=
77 0 1
( , ), ( , ),..., ( , )x y g x y g x y

C− 	 (5)

where “:=” refers to the elementwise redistribution. Figure 2 is the process of extracting the dominant 
direction of a pixel on the finger vein.

CGDBP
Local binary patterns and their many variants are discriminative in extracting vein features (Luo et 
al.,2016). However, most local descriptors are encoded by comparing the local differences between 
the central pixel and its neighbours, which do not fully consider the local intensity order relationship 
between the adjacent directions of the pixel. For this problem, the researchers further propose to 
obtain the dominant direction referring to Gabor filtering and then encode the intensity sequence 
difference relationship between the adjacent three directions of each pixel point on the vein image 
to improve the discrimination of extracted features.

According to the filtered response values of the eight directions of the Gabor filter, the researchers 
evenly distributed the points in the cyclic sequence on the circle (Figure 3). According to the above 
mentioned dominant direction, the sequence is sorted (Formula (5)). Eight directions are used in this 
paper, so there are eight groups, namely:
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where g jj
−

=( , ,..., )0 1 7  is a vector whose elements are the filtered value of the certain pixel in the 
direction of j .

Next, the researchers sorted the three filtered values in each group:
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where d jj
−

=( , ,..., )0 1 7  is a vector whose elements are the filtered value in descending order.
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Finally, based on Formula (10), the researchers encode according to the intensity order difference 
relationship between the filtered values in the three directions in each group. The formation process 
of CGDBP is displayed in Figure 3.

CGDBP s d d d d
j j j j

j

j= − − −
=
∑ (( ) ( ))

, , , ,1 2 2 3
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2 	 (10)

s g
g

g
( )

,

,
=

>
≤






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1 0

0 0
	 (11)

In Figure 3 (a) The ROI image of the preprocessed finger vein, (b) eight filter response values of 
a pixel on the finger vein image convolved with the Gabor filter, (c) the filter results in eight directions 
are cyclically shifted according to the maximum value of the filter response, (d) grouping, dividing 
each direction and adjacent two-direction filter values into a group, (e) ordering filtered values within 
each group, (f) calculating the sequential intensity difference relationship between each direction of 
each pixel and adjacent directions, (g) calculating the CGDBP value corresponding to a certain pixel 
of the image according to Formula (10).

HCGDBS
To improve the identification effect, the local description extraction method based on histograms can 
overcome image translation to obtain discriminative features. The feature map is divided into blocks, 
local block features are extracted, and then a joint feature histogram is formed by concatenation. First, 
the feature map is divided into small cells (M N´ ). Then, several cells are formed into a block (
K L´ ), the CGDBP of all cells in a block is calculated, and the size of the cell is used as the moving 
step. According to Formula (10), the value range of the CGDBP is [0, 255], and 4 is used as the 
moving step in [0, 255], which can make the extracted feature dimension from 255 to 64. The HCGDBS 
feature dimension of a finger vein image (H W´ ) is

Figure 3. 
Formation process of the CGDBP
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Length H K M W L N( ) (( ) / ) * (( ) / ) *HCGDBS = − + − +1 1 64 	 (12)

This paper proposes a feature representation called HCGDBS, which has the following properties. 
First, it is robust to finger vein image rotation by referring to the main direction, and the discriminative 
feature obtained by computing the CGDBP using the local sequential difference relation is robust to 
illumination. Second, the HCGDBS extracts image features by blocks, which not only obtains rich local 
detail information but also overcomes image translation and improves the recognition performance. 
Third, HCGDBS enriches local features, including local dominant directions, local adjacent three 
directions, and their sequential difference relationships. None of these are explored in Gabor and LBP.

Matching and Identification
In recognition experiments, the researchers use NCC to evaluate the similarity between two finger 
vein images. A a a a

n
= ( , ,..., )

1 2
 and B b b b

n
= ( , ,..., )

1 2
 are the feature vectors of the training set and 

test set, respectively.

NCC

a b

l

i A i B
i

n

A B

=

− −

× ×
=
∑( )( )µ µ

σ σ
1 	 (13)

where m m
A B
( )  refers to the mean of A B( ) , s s

A B
( )  represents the standard deviation of A B( ) , and 

l  is the length of A  or B . Judging by the NCC value, if its value is equal to 1, it means that the two 
samples are likely to be the same; otherwise, they are considered different.

In the authentication experiments, the class labels of the finger vein images are known. The 
researchers evaluated the experimental performance by conducting a genuine-imposter matching 
analysis on four different finger vein databases.

EXPERIMENTAL ANALYSIS

In this section, the researchers performed extensive experiments on four finger vein databases, 
including PolyU (Kumar & Zhou, 2011), SDUMLA-FV (Liu et al.,2014), FV-USM (Asaari et 
al.,2014), and FV-TJ (Hu et al.,2018).

Database Introduction
On the PolyU database, finger vein images were collected two times, the shortest time interval was 
one month, and the longest time interval is more than six months. The first-stage database was used 
in the experiment. A total of 156 subjects provided vein images, each provided 2 fingers, and each 
finger provided 6 samples. By default, finger vein images captured by different fingers of a person 
are considered as different classes, namely, 312 (156 objects and 2 fingers) categories, with 6 samples 
in each category. The image undergoes a series of preprocessing operations, and the size of the image 
is 150 96´ . In the experiments, samples 1, 3, and 5 are selected for training, and samples 2, 4, and 
6 are used for testing.

On the SDUMLA-FV database, which contains images collected from 106 individuals, each 
provides 6 fingers, and each finger provides 6 image samples. Similar to PolyU, by default, images 
captured by different fingers of the same person are considered to be of different classes, namely, 
636 (106 objects and 6 fingers) classes with 6 samples per category. The image undergoes a series 
of preprocessing operations, and the size of the image is 150 96´ . In othe experiment, samples 1, 
3, and 5 are selected for training, and samples 2, 4, and 6 are used for testing.
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On the FV-USM database, which contains 4 different fingers from 123 different subjects, 6 
images are collected for each finger. As above, by default, the FV-USM database contains 492 (123 
subjects and 4 fingers) classes with 6 samples per class. The size of the image is 300 100´ . In the 
experiment, samples 1, 3, and 5 are selected for training, and samples 2, 4, and 6 are used for testing.

The FV-TJ database contains finger vein images obtained from 64 different individuals, and 15 
images were collected for each finger, with a total of 64 categories. The sample images in the database 
are all preprocessed, and the image pixels are 172 76´ . In the experiment, the first 5 images of each 
class of samples are selected for training, and the rest are selected for testing.

Figure 4. 
The finger vein database of Hong Kong Polytechnic University (PolyU)

Figure 5. 
The finger vein database of Shandong University MLA Laboratory (SDUMLA-FV)

Figure 6. 
The finger vein database of the University of Technology Malaysia (FV-USM)
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Parameter Test
In this experiment, the researchers investigate the effect of the proposed method for finger vein 
recognition under different parameter values, including frequency u  and standard deviation s . To 
make the histogram of competitive Gabor directional binary statistics achieve the optimal effect in 
finger vein identification, the effects of different u  and s  on the recognition performance are analysed 
in four databases. The researchers employ two metrics, RR and EER, to evaluate HCGDBS 
performance. RR is an abbreviation for recognition rate, and EER is an abbreviation for equal error 
rate. FAR denotes the false acceptance rate, FRR denotes the false rejection rate. Formula (14) and 
Formula (15) show how FAR and FRR are calculated.

FAR
Number of matching scores in false acceptance

Number of
=

  matching scores
	 (14)

FRR
Number of matching scores in false rejection

Number of 
=

mmatching scores
	 (15)

When the two are equal, the value is EER.
First, the researchers evaluate the effect of the frequency u  in the Gabor filter on the identification 

effect and choose the best value for subsequent experiments. The frequency u  varies from 0.0085 
to 0.0435 in 0.005 intervals. It can be observed in Table 1 that when u =0.0385, the experimental 
effect on the databases is optimal. When the frequency u  parameter is fixed, according to Table 2, 
the standard deviation s  has a significant impact on the recognition performance. Through the 
comparison of the following eight groups of experiments, when the standard deviation is s =12.2998, 
the PolyU database RR reaches 99.89%, and the EER reaches 0.5342%. The SDUMLA-FV database 
has an RR of 99.11% and an EER of 0.8386% when u =0.0385 and s =13.2998. Compared with 
PolyU, SDUMLA-FV has fewer clear finger vein (FV) images, so the RR decreases. The FV-USM 
database is less affected by parameters; the RR is 99.73%, and the EER is 0.2710%. The FV images 
in the FV-TJ database are clear, the RR can reach 100%, and the EER can reach 0%.

Classification and Recognition
Finger vein recognition is a classification matching process that determines the labels of test finger 
vein images at this stage. Usually, the class label of the training sample is known. By comparing 

Figure 7. 
The finger vein database of Tianjin Key Laboratory (FV-TJ)
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the training sample and the test sample, the class label with the greatest similarity with the training 
sample is used as the class label of the test sample.

Table 3 summarizes the vein recognition effects of spatial domain feature extraction methods 
on the PolyU, SDUMLA-FV, FV-USM, and FV-TJ databases. LBP and HOG are widely used local 
descriptors that are simple to calculate and robust to illumination but are susceptible to noise. Global 
WLD are easily affected by illumination, translation, and rotation, so their recognition performance is 
not as good as block WLD. DBC and DBD extract local features through feature-learning methods. 
Compared with LBP, WLD, and HOG, the performance has been significantly improved, but they 
not only include the process of feature extraction but also feature learning. Relatively speaking, the 
time is not as good as other traditional times. DCGWLD takes into account variable curvature, and 
the effect is significantly improved, but the collected vein images are easily affected by rotation, and 
considering that the curvature of the vein alone is not enough to reflect its discriminating information, 
it does not achieve the best effect. BMULBP considers the scale change in vein images and effectively 
extracts local texture features by introducing multiscale circular neighbourhood LBP. Compared 
with the above descriptors, the recently proposed SRRLR uses low-rank representation to reduce the 
structural feature dimension and improve extraction efficiency.

Table 1. 
Test results of parameter u  on finger vein databases

m PolyU SDUMLA-FV FV-USM FV-TJ

RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%)

0.0085 93.91 4.2422 95.60 3.2219 99.53 0.4353 98.91 0.6250

0.0135 96.47 2.7095 96.91 2.2358 99.66 0.4605 99.38 0.6250

0.0185 97.76 1.9388 97.75 1.9392 99.59 0.4605 100 0.4629

0.0235 99.04 1.4473 98.32 1.6965 99.66 0.3388 100 0.1147

0.0285 99.15 1.0684 98.43 1.2935 99.73 0.2710 100 0.1353

0.0335 99.57 0.6410 98.74 1.1619 99.66 0.2710 100 0.0568

0.0385 99.89 0.5342 99.11 0.9434 99.66 0.2710 100 0

0.0435 99.79 0.8547 99.11 1.0330 99.73 0.3388 100 0

Table 2. 
The test results of the parameter s  when u =0.0385 on finger vein databases

s
PolyU SDUMLA-FV FV-USM FV-TJ

RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%)

6.2998 99.15 1.2433 98.17 1.4980 99.46 0.7389 100 0.1563

7.2998 99.36 1.0099 98.43 1.4151 99.53 0.5092 100 0.0863

8.2998 99.47 0.9615 98.32 1.2583 99.73 0.4123 100 0.0899

9.2998 99.68 0.8547 98.69 1.2871 99.66 0.3388 100 0.1563

10.2998 99.68 0.6410 98.69 1.0482 99.66 0.3388 100 0.1632

11.2998 99.68 0.6410 98.90 1.0507 99.73 0.3388 100 0

12.2998 99.89 0.5342 99.11 0.9434 99.66 0.2710 100 0

13.2998 99.89 0.6410 99.11 0.8386 99.73 0.2730 100 0



Journal of Database Management
Volume 34 • Issue 3

12

From Table 3, the proposed HCGDBS outperforms the listed spatial domain finger vein feature 
extraction methods. This method not only weakens the influence of image illumination, translation, 
and rotation but also considers the order difference relationship between the response values of the 
Gabor filter in the adjacent three directions and obtains a highly discriminative local feature histogram. 
Compared with several other spatial domain feature extraction methods, the HCGDBS proposed 
on the PolyU database has a 1.8283% EER lower than the average EER of several other methods. 
Because the sample images on the PolyU database have translation and rotation, the HCGDBS 
proposed in this paper can solve this problem well, so the experiment has a good effect. For the 
SDUMLA-FV database, compared with spatial domain finger vein feature extraction methods, it is 
improved, but the EER increases by 0.0524% compared to the DCGWLD method. Because the images 
in the SDUMLA-FV database are blurry and severely deformed, the variable curvature Gabor filter 
constructed by DCGWLD considers the degree of curvature of the vein curvature and enriches the 
line features of images. In later experiments, the researchers will consider the degree of curvature 
of the vein and the convexity and concavity of the vein curve to extract highly discriminative vein 
structure features. The HCGDBS proposed in this paper on the FV-USM and FV-TJ databases reduces 
the EER by 1.3671% and 0.5349%, respectively, compared with other listed spatial domain feature 
extraction methods. Among them, the vein recognition effect on the FV-TJ database is remarkable, 
the RR reaches 100%, and the EER is reduced to 0%. In summary, on the PolyU, SDUMLA-FV, 
FV-TJ, and FV-USM databases, the proposed method is not only more robust to image noise but also 
compared with similar spatial domain feature extraction methods. It has good robustness to images 
with translation and rotation and can overcome the differences between similar samples and extract 
highly discriminative features. Figure 8 shows the ROC curve of finger vein feature extraction in the 
spatial domain. Through analysing the above experimental data and the observation of the ROC curve, 
the results indicate that the HCGDBS proposed in this paper has a good finger vein recognition effect.

Table 4 lists three finger vein feature extraction methods based on the frequency domain, with 
a low feature dimension and a small number of calculations, but the recognition effect is poor 
compared with the feature extraction method in the airspace. It is concluded from Table 4 that the RR 
of the proposed method on the four finger vein databases is significantly improved compared with 
other frequency-domain feature extraction methods. On the PolyU database, the RR of HCGDBS 
is 5.87% higher than that of DCT and 3.55% higher than that of PLPQ. The quality of finger vein 

Table 3. 
Comparison between the proposed method and spatial domain method on databases

Categories Methods
PolyU SDUMLA-FV FV-USM FV-TJ

EER(%) EER(%) EER(%) EER(%)

Spatial

LBP (Ojala et al.,2002) 2.0299 1.8302 0.6775 0.1106

HOG (Dalal & Triggs, 2005) 1.8162 2.1488 4.2683 0.0025

global WLD (Chen et al.,2009) 7.5536 3.4379 2.3124 2.3482

block WLD (Luo et al.,2016) 1.9627 1.4675 0.3388 0.3125

DBC (Xi et al.,2017) 1.4400* 0.8800* - -

DBD (Liu et al.,2017) 0.6900* 1.8900* - -

DCGWLD (Wang et al.,2019) 0.7479 0.7862 0.3413 0.2755

BMULBP(Hu et al.,2020) - - 1.8900* 0.1600*

SRRLR(Yang et al.,2021) 2.6600* 3.7500* - -

Proposed method HCGDBS 0.5342 0.8386 0.2710 0

*EER are cited from the original literature.
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images collected on the SDUMLA-FV database is poor, and the features extracted by RDGT are 
not sufficiently discriminative. The proposed method can overcome this defect well, and the RR is 
improved by 3.04%. The improvement effect of the recognition rate on FV-USM and FV-TJ databases 
is not as good as PolyU and SDUMLA-FV, but it is improved overall, with an average increase of 
1.78% and 0.78%. In summary, it is improved.

Deep learning feature finger vein extraction method: Gabor & CNN adaptively learns the 
parameter of the Gabor filter by the CNN, which solves the problem that the Gabor filter parameter is 
hard to adjust. The multitask learning model improves feature discrimination by optimizing the ROI 
and feature extraction process. The CycleGAN-based method improves the recognition performance 

Figure 8. 
ROC curves of finger vein databases

Table 4. 
Comparison between the proposed method and frequency-domain method on databases

Categories Methods
PolyU SDUMLA-FV FV-USM FV-TJ

RR 
(%)

RR 
(%) RR(%) RR(%)

Frequency

DCT (Dale et al.,2009) - - 96.41 98.44

RDGT (Du et al.,2018) 94.02 96.07 99.39 100

PLPQ (Ma et al.,2021) 96.34* - 98.05* -

Proposed method HCGDBS 99.89 99.11 99.73 100

*RR are cited from the original literature.
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when using unobserved finger vein data. According to Table 5, compared with the other three deep 
learning feature extraction methods listed, the EER of the proposed method is significantly reduced 
on the PolyU, SDUMLA-FV, FV-USM and FV-TJ databases.

Ablation Experiment of HCGDBS
To further clarify the effectiveness of HCGDBS and verify that the proposed CGDBP has high 
discriminative power, the authors performed the following experiments. (1) The eight-direction 
response values after the dominant direction is determined are sequentially encoded according to 
the magnitude relationship between the adjacent two directions, and an eight-bit binary sequence is 
obtained, which is recorded as CGDBP1. (2) The eight-direction response values after the dominant 
direction is determined are sequentially encoded according to the magnitude relationship between 
the adjacent three-direction differences to obtain an eight-bit binary sequence, which is recorded 
as CGDBP2. (3) The eight-direction response values after the dominant direction is determined 
are sequentially encoded according to the magnitude relationship of the adjacent three-direction 
descending differences, and an eight-bit binary sequence is obtained, which is recorded as CGDBP3 
(HCGDBS). In the above representations, three local binary statistical feature histograms are formed. 
In this research, to better prove the effectiveness of the HCGDBS, the authors conducted a wide test 
on the four different databases mentioned above.

From the comparison results, the authors can draw observations. On four finger vein databases, 
CGDBP3 (HCGDBS) outperformed CGDBP1 and CGDBP2. This result suggests that HCGDBS 
improves the discriminative power by encoding the order difference between adjacent three directions. 
The RR of CGDBP2 on the PolyU, FV-USM, and FV-TJ databases is higher than that of CGDBP1. 
For the SDUMLA-FV database, the EER of CGDBP2 is 0.1612% lower than that of CGDBP1, which 
indicates that extracting three-direction difference features is more discriminative than extracting 
adjacent two-direction features.

Table 5. 
Comparison between the proposed method and deep learning method on databases

Categories Methods
PolyU SDUMLA-FV FV-USM FV-TJ

EER (%) EER (%) EER (%) EER 
(%)

Deep learning

CNN (Zhang et al.,2019) 1.6700* 1.0900* 0.5700* -

Multi-task(Hao et al.,2020) - 1.1700* 0.7400* -

CycleGAN (Noh et al.,2021) 0.5800* 2.1700* - -

Proposed method HCGDBS 0.5342 0.8386 0.2710 0

*EER are cited from the original literature.

Table 6. 
Comparison of three local descriptors

Local Descriptors
PolyU SDUMLA-FV FV-USM FV-TJ

RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%)

CGDBP1 99.25 0.9071 98.85 1.2112 99.66 0.3632 100 0.1200

CGDBP2 99.36 0.5342 98.74 1.0500 99.66 0.4065 100 0

CGDBP3 (HCGDBS) 99.89 0.5342 99.11 0.8386 99.73 0.2710 100 0
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Finger Vein Verification
In finger vein authentication, each image is matched one-to-one with other images in the same 
database according to the class label of the image. Then, a true-false matching analysis is employed 
to evaluate the experimental effect. Genuine matching is the feature matching between the same type 
of finger veins, and imposter matching is the feature matching between different types of finger veins.

The authors compute genuine and imposter matching scores by the HCGDBS. Referring to 
matching the distribution of scores, the performance of the algorithm can be qualitatively measured. 
Figure 9 (a)-(d). shows the distribution of matching scores about genuine and imposter on the PolyU, 
SDUMLA-FV, FV-USM, and FV-TJ databases, respectively. Figure 9 demonstrates that genuine 
matching and imposter matching have highly independent distributions from the vein database. 
Among them, the genuine matching scores are mainly concentrated in regions greater than 0.8, while 
the imposter matching scores are mainly concentrated in regions less than 0.8. This shows that the 
HCGDBS feature has strong discriminative power for finger vein images. On the FV-TJ database, the 
matching scores show a high degree of independence, while there is partial overlap on the other three 
databases. The images in these three databases have severe deformation, blurring and scale changes, 
which lead to the change in the features extracted by the Gabor filter being the main reason for this 
result. In the next step, the authors consider using multiscale, multiorientation, and multicurvature 
to enhance the robustness of HCGDBS features to fit shape and scale changes.

Figure 9. 
Finger vein database genuine matching score and imposter matching score
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CONCLUSION

The histogram of competitive Gabor directional binary statistics proposed in this paper is an effective 
image representation. It calculates the sequential filtering difference relationship between adjacent 
three directions under the multidirectional Gabor filter regarding the dominant direction and obtains 
the discriminative feature of each pixel from finger vein images. HCGDBS is based on training-free 
and designed to overcome illumination, translation, noise, and rotation, and the effectiveness of the 
HCGDBS is validated using widely used finger vein databases.

In addition, there are still some problems in this paper that need further research. (1) HCGDBS 
considers the rotation, translation, and illumination of the image but ignores the influence of scale 
change and curvature on the extracted features. In the next experiments, multiscale and multicurvature 
Gabor filters can be used to extract vein image features to improve the discrimination of extracted 
features. (2) The current research is based on finger vein recognition, but this method may also apply 
to other biometric recognition methods, such as palmprint and fingerprint.
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