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ABSTRACT

Shuffled frog leaping algorithm is a biological swarm intelligent optimization algorithm and improved 
into capacity-limited vehicle routing problem. However, the optimization performance is limited with 
improvement strategies in major of the improvement algorithm. A novel framework of algorithm is 
proposed to solve capacity-limited vehicle routing problem, including three modules such as origin 
oriented shuffled frog leaping algorithm strategy, origin oriented shuffled frog leaping vehicle routing 
multiobjective optimization algorithm strategy, and output module. The frog individuals gather 
near the origin with the maximum probability and in the area circle, with the frog leaping radius 
or frog-oriented radius, as the neighborhood. The negative value of the maximum entropy and the 
shortest total path length of the vehicle are selected as the fitness. The performance test shows that 
it overcomes the defect of slow convergence compared with other five algorithms. It performs well 
to solve vehicle routing problems.

Keywords
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INTRODUCTION

The shuffled frog leaping algorithm (SFLA) originated from the biological swarm intelligent 
optimization algorithm. The authors of Eusuff et al. (2003) and Sun et al. (2021) showed in their 
previous work that it has the advantages of the frog swarm optimization strategy of cyclic sorting 
and grouping and the frog individual jump optimization in the Group. He et al. (2021) discuss it has 
been largely applied to solve numerical problems. The results in the research of Lei et al. (2021) 
showed SFLA has the shortcomings of relying on the inertial guidance of the original position and the 
limitation of step size. The capacity-limited vehicle routing problem (CVRP) is a non-deterministic 
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polynomial problem, usually be considered as a multiobjective optimization problem. However, most 
of existing technology using heuristic algorithm to solve CVRP has the defects of long running time 
and easy to fall into premature convergence.

Related Work in Field of Shuffled Frog Leaping Algorithm
Scholars have improved the defects of SFLA and applied it to different fields. In the research of Wang et 
al. (2021), it introduced the intermediate factor and acceleration factor based on the idea of dichotomy 
search in mathematics. Shen et al. (2021) proposed a personalized tourism route recommendation 
method based on an improved hybrid leapfrog algorithm. Al-Ghussain et al. (2020) used shuffled 
frog leaping and pattern search to model a photovoltaic system. Cai et al. (2021) proposed a modified 
shuffled frog leaping algorithm with a ternary quantum. You et al. (2020) used an improved hybrid 
leapfrog algorithm to optimize fault diagnosis in a support vector machine.

The above research adopted different strategies to improve the performance of SFLA. However, 
the above methods all have defects of themselves. In this article, in the view of a local mechanism 
in the area with the origin as the center and the individual step size as the radius, the definitions of 
the frog leaping radius and frog oriented radius are defined. The frog’s current position inertia and 
jump step in the local search are discarded so that the frog individuals gather near the origin with 
the maximum probability and in the area circle with the frog leaping radius or frog oriented radius 
as the neighborhood.

Related Work in Field of Capacity-Limited Vehicle Routing Problem
In the research of Yan (2015), it shows that the capacity-limited vehicle routing problem is a typical 
NP-hard problem. Yang et al. (2020) proposed a multigroup multistrategy sine cosine algorithm 
to solve the CVRP. Mohammed et al. (2017) used a genetic algorithm (GA) to solve the route of 
the vehicle routing problem (VRP). Sajid et al. (2021) proposed an operator of giant tour best cost 
crossover for CVRP solutions. Faust et al. (2020) used the ant colony optimization (ACO) algorithm 
with optimized parameters from the GA to compute the CVRP. Li et al. (2021) proposed a new ACO 
algorithm based on an improved greedy strategy for path planning problem. Dhanya et al. (2018) 
provided a hybrid relay algorithm, which involved ACO and the Crow Search Algorithm (CSA) to 
solve the CVRP. Gupta et al. (2018) proposed a CVRP solution using improved ACO algorithm. Yang 
et al. (2019) proposed a generating sparks mechanism in the fireworks algorithm (FWA) to apply in 
the benchmark CVRP. Kussman et al. (2020) proposed the hybrid bat algorithm to solve the CVRP. 
Luo et al. (2011) proposed the shuffled frog leaping algorithm on real coding mode using the method 
of power law external optimization to solve the CVRP. Wan et al. (2011) used a different local search 
mechanism in the SFLA for the improvement efficiency of CVRP. Hannan et al. (2018) computed 
the route optimization solutions in the CVRP model with more efficient particle swarm optimization 
(PSO) algorithm. Kao et al. (2013) developed a discrete PSO with Simulated Annealing (SA) to 
compute the CVRP. Kao et al. (2012) proposed a new algorithm combining ACO and PSO for the 
CVRP. Ahmed et al. (2018) developed a new PSO algorithm with a bilayer local search mechanism 
for decoding the CVRP. ElMousel et al. (2021) introduced the discrete whale optimization algorithm 
to solve the CVRP. Altabeeb et al. (2019) proposed the firefly algorithm (FA) to solve the CVRP. 
The above research adopted different improved swarm intelligence algorithms to solve the CVRP. 
The research results show that using better strategy to improve the swarm intelligence algorithm 
and applying into the CVRP problem is a good solution. However, the optimization performance is 
limited with improvement strategies in major of the improvement algorithm.

Considering that the optimization performance is limited with improvement strategies in major 
of the improvement algorithm, an origin oriented shuffled frog leaping algorithm (OPSFLA) is 
proposed, which greatly improves the convergence performance of the original SFLA. The proposed 
OPSFLA is implemented to solve the CVRP, and an origin oriented shuffled frog leaping vehicle 
routing multiobjective optimization algorithm (OPSFLA-MOVRP) is proposed to achieve good results.
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Contributions
The contributions in this article are summarized as follows:

First, the framework of algorithm is proposed to solve the CVRP, including three modules such 
as OPSFLA strategy, OPSFLA-MOVRP strategy and output module.

Second, OPSFLA algorithm is proposed to improve the efficiency of SFLA. The purpose of the 
frog leaping radius and frog oriented radius is to limit the frog’s current position inertia and jump step 
in the local search so that the frog individuals gather near the origin with the maximum probability 
and in the area circle with the frog leaping radius or frog oriented radius as the neighborhood. The 
CEC2017 benchmark function experiment shows that the OPSFLA overcomes the defect of slow 
convergence of the original SFLA.

Third, taken the CVRP problem as a multiobjective optimization problem, OPSFLA-MOVRP 
is proposed to solve CVRP. The negative value of the maximum entropy and the shortest total path 
length of the vehicle are selected as the multiobjective fitness. The small-scale data and large-
scale standard test results show that the OPSFLA-MOVRP algorithm reflects the good effect of 
multiobjective path optimization.

Paper Structure
The structure in this article is summarized as follows.

In introduction section, the original shuffled frog leaping algorithm is introduced. In related work 
section, two fields are described. In contributions section, three contributions are clarified. In paper 
structure section, the structure of this paper is given out. In origin oriented shuffled frog leaping 
algorithm section, the framework, definition, idea, convergence analysis and algorithm efficiency 
analysis are given out. In origin oriented shuffled frog leaping vehicle routing multiobjective 
optimization algorithm section, the multiobjective optimization strategy, algorithm idea, and algorithm 
efficiency analysis are given out. In test experiment section, two types of test are given out, including 
OPSFLA algorithm optimization performance test, and optimization application experiment of vehicle 
routing problem. In the end section, the conclusion of this paper is given out.

ORIGIN ORIENTED SHUFFLED FROG LEAPING ALGORITHM

Framework of Algorithm
Aiming at the weaknesses of tending to get into grouping convergence caused by the original SFLA 
frog’s dependence on the original position inertial guidance and step size limitation, this paper 
proposes an origin oriented shuffled frog leaping algorithm. And an origin oriented shuffled frog 
leaping vehicle routing multiobjective optimization algorithm is proposed to solve the CVRP. The 
framework of algorithm is descripted in Figure 1.

As shown in Figure 1, the SFLA strategy is discarded, including the frog’s current position inertia 
strategy and jump step in the local search strategy. Instead of it, a novel framework of algorithm 
is proposed to solve the CVRP, including three modules. First, the OPSFLA strategy is proposed, 
including five definitions and two improvement strategies. And then, the OPSFLA strategy is adopted 
into the OPSFLA-MOVRP strategy to solve CVRP. At last, the output module is used to output pareto 
optimal individual and optimal path sequence.

Background of Origin Oriented Shuffled Frog Leaping Algorithm
Based on the idea of a local mechanism in the area with the origin as the center and the individual 
step size as the radius, the definitions of the frog leaping radius and frog oriented radius are defined 
as follows.
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Definition One: The initial frog space is represented asX
P

. The initial frog population is p, the number 
of groups is m, the number of frogs in the group is n, and each frog has s dimensions. Set the 
number of optimizations within the group as T1 and the number of global optimizations as T2.

Definition Two: The best frog in Group k is recorded asx k x k x k x k
b b b b

( ) ( ( ) , ( ) , , ( ) )=
1 2



S
.

Definition Three: The best frog in the current global optimization is recorded as
x g x g x g x g

b b b b
( ) ( ( ) , ( ) , , ( ) )=

1 2


S
.

Definition Four: The frog leaping radius (Leap_radius ) in Group k is defined as the difference 
between the best frog and the worst frog in the current group k, which is recorded as
Ls x k x k

b w
= −( ) ( ) . x k

w
( ) represents the worst frog in group k.

Definition Five: The frog oriented radius (Oriented_radius ) in Group k is defined as the difference 
between the best frog and the worst frog in the current group k, which is recorded as
Os x g x k

b w
= −( ) ( ) . x k

w
( ) represents the worst frog in group k.

Frog Leaping Radius Strategy Based on Original Point

In one iteration of frog group optimization, the worst frog component x k i
i

( ) , , , ,
w

S= 1 2  in Group 
k will take the origin (0,0) as the center and search with radiusLs , as shown in equation (1).

x k rand x k x knew
wi bi

old
wi

( ) ( , )[ ( ) ( ) ]= −0 1 	 (1)

In equation (1), the frog’s current position inertia and jump step in the local search are discarded 
so that the frog individuals gather near the origin with the maximum probability and in the area 
circle with the frog leaping radius as the neighborhood. The origin is used as the center to guide the 
direction of individual frog jumping, and then the frog leaping radius is used to guide the speed of 
individual frog jumping so that individual frogs gather near the origin with maximum probability, 
which improves the search ability.

Figure 1. Framework of algorithm
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Frog Oriented Radius Strategy Based on Original Point
In one iteration of frog group optimization, if the optimization requirements are not met, the worst 
frog component x k i

i
( ) , , , ,

w
S= 1 2 in Group K will take the origin (0,0) as the center and search 

with radiusOs
w

, as shown in equation (2).

x k rand x x knew
wi bi

old
wi

( ) ( , )[ ( ) ( ) ]= −0 1 g 	 (2)

In equation (2), the frog’s current position inertia and jump step in the local search are discarded 
so that the frog individuals gather near the origin with the maximum probability and in the area 
circle with the frog oriented radius as the neighborhood. The origin is used as the center to guide the 
direction of individual frog jumping, and then the frog oriented radius is used to guide the speed of 
individual frog jumping so that individual frogs gather near the origin with maximum probability, 
which improves the search ability.

Idea of Origin Oriented Shuffled Frog Leaping Algorithm
The frogs jump as follows in SFLA. First, select the worst one in the group. Second, let the worst one 
jump to the best one in the group. Third, if the updated value is worse than the former value, let the 
worst value jump to the global optimum. Fourth, if the updated value is still worse than the former 
value, it will jump randomly once. In this way, the frog’s jump is limited by the step size. Therefore, 
the frog will carry out the optimal convergence within the population step by step and then carry out 
the optimal convergence between the populations. Thus, the evolution performance is poor, and it 
tends to enter the extreme of grouping convergence.

According to the no free lunch theory in the research of Wolpert et al. (1997), that is, from the 
perspective of solving practical problems, it is assumed that the optimal algorithm has the same average 
performance as the simple algorithm, which is as well as shown in the research of Goodfellow et 
al. (2017). Therefore, in the origin oriented shuffled frog leaping algorithm, discarding the inertial 
guidance of the individual’s original position and the step size limit in the group search will produce 
the following results. First, select the worst one in the group. Second, the worst one jumps into an 
area that is a circle with (0,0) as the center and the frog leaping radius as the neighborhood. Third, 
if it is inferior to the original value, it jumps into an area that is a circle with (0,0) as the center and 
the frog oriented radius as the neighborhood. Fourth, if it is still inferior to the original value, it will 
jump randomly. The principle of the OPSFLA algorithm is shown in Figure 2. The origin (0,0) is used 
as the center to guide the direction of individual frog jumping, and then the frog leaping radius and 
frog oriented radius are used to guide the speed of individual frog jumping so that individual frogs 
gather near the origin (0,0) with maximum probability, which improves the search ability.

Convergence Analysis
The Origin Oriented Shuffled Frog Leaping Algorithm mainly aims at the defects that the original 
SFLA group optimization depends too much on the original position inertial guidance and step size 
limit. In the group optimization, two optimization strategies, including the frog leaping radius strategy 
based on the original point and the frog oriented radius strategy based on the original point, are used 
to evolve the worst frogs in the group, jumping to the optimal frog in the group with Ls  as the radius 
and jumping to the global optimal frog with Os  as the radius. Taking the (0,0) origin as the center 
and the improved individual step size as the radius, evolutionary optimization can promote frog 
individuals to gather near the origin (0,0) in the way of maximum probability, which greatly modifies 
the convergence performance of the original SFLA.
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Algorithm Efficiency Analysis

The space-time complexity of the SFLA and improved OPSFLA algorithms are O T T m S( )
1 2
´ ´ ´  and 

O m n S( )´ ´ , respectively. The OPSFLA does not add additional computational complexity and cost.

ORIGIN ORIENTED SHUFFLED FROG LEAPING VEHICLE 
ROUTING MULTIOBJECTIVE OPTIMIZATION ALGORITHM

Multiobjective Optimization Strategy of Vehicle Routing
The CVRP problem is taken as a multiobjective optimization problem, OPSFLA-MOVRP is proposed 
to solve CVRP. In this multiobjective optimization problem, the customer number is coded as the 
initial frog individual, and the negative value of the maximum entropy and the shortest total path 
length of the vehicle are selected as the fitness.

Encoding and Decoding Strategy
A customer number is encoded as an initial individual component, and the S-dimensional component is 
the number of S customers. Decode the individual into the vehicle routing sequence and customer number.

Random Production Strategy
In a grouping evolution, if the updated value of the evolution strategy in two groups is still worse 
than the original value, equation (3) is used.

x k r
i
new( ) %= +S 1 	 (3)

Figure 2. Principle of origin oriented shuffled frog leaping algorithm
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Objective Function of the Capacity-Limited Vehicle 
Routing Multiobjective Optimization Problem
In practical applications, the CVRP problem can be regarded as a multiobjective problem. The fitness 
expression is shown in equation (4). Two functions, the negative value of the maximum entropy
H X( )  and the shortest total path length of the vehicleD i j( , ) , are selected as the multiobjective 
fitness. Among them, the value of the maximum entropyH X( )  represents the maximum value of 
information included in the transportation. And, the shortest total path length of the vehicleD i j( , )  
represents the minimum summary value of vehicle path in the transportation.
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Construction Strategy of the Multiobjective Nondominated Solution Set
In this problem, the advantages and disadvantages of individuals are judged by the dominant 
relationship and density of solutions. The grid construction technology is used to check the density 
of the Pareto data set to ensure that the distribution between Pareto optimal solutions is not too dense. 
Equation (5) is used as the condition of multiobjective nondominated solution ranking.

f x j f x j andf x j f
T et T et T et T earg arg arg arg

( ( )) ( ( )) ( ( ))= = =< + <
1 1 2

1
tt
x j= +

2
1( ( )) 	 (5)

Algorithm Idea
Step 1: 	 Set the number of optimizations within the group to T1, the number of global optimizations to 
T2, the number of objective functions to target = 2, and the number of nondominated solutions to Pare.
Step 2: 	 Calculate the frog fitness according to equation (4), judge whether there is a dominant 
relationship within the initial frog, and construct a nondominant solution set.
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Step 3: 	 Sort the nondominated solution according to f x j
T etarg

( ( )) , determine the Pareto optimal frog 
in this evolution, and the frog cycle enters the grouping.
Step 4: 	 In each group, sort the nondominated solution of frog individuals in the group according to 
the fitness, find the Pareto optimal frog in group k = 1 2, , , m , and evolve each one-dimensional 
weight x k i

i
( ) , , , ,= 1 2 S  of different frog individuals x k( )  through the frog leaping radius strategy 

based on the original point of equation (1). Judge the dominating relationship of the current 
nondominating solution set. If there is a dominating solution, delete it; otherwise, replace x k

i
old( )  

with x k
i
new( ) . Judge the grid density and delete the dense solution.

Step 5: 	 The frog oriented radius strategy based on the original point of equation (2) is used for 
evolution. Judge the dominant relationship of the current nondominant solution set and delete it if it 
is dominant. Judge the grid density.
Step 6: 	 Use equation (3) to randomly generate a new nonrepeating frog individual component. Judge 
the dominant relationship of the current nondominant solution set and delete it if it is dominant.
Step 7: 	 Judge that T1 is reached in the group; otherwise, go to Step 4 to continue group information 
exchange.
Step 8: 	 Otherwise, the judgment reaches T2 or convergence accuracy; otherwise, go to Step 3, mix 
all frogs, sort the nondominated solution again according to the fitness, and then continue to evolve. 
Otherwise, the algorithm stops outputting the result f x j

T etarg
( ( )) .

The algorithm flow is shown in Figure 3.

Algorithm Efficiency Analysis

The space-time complexity of OPSFLA-MOVRP is O T T m n T et Pare S K( arg )
1 2
´ ´ ´ ´ ´ ´ ´  

and O m n S T et Pare N K( arg )× × × × × + , respectively. S, N and K will vary with the size of 
the data set.

TEST EXPERIMENT

OPSFLA Algorithm Optimization Performance Test Experiment
The experiment adopts the CEC2017 test set functions which were listed in the research of Awad et al. (2016). 
The optimization performance of the following six algorithms is tested: OPSFLA, shuffled frog leaping 
algorithm with memory (MSFLA) which was proposed by Dai et al. (2011), shuffled frog leaping algorithm 
based on global sharing factor (GSF2LA) which was proposed by Liu et al. (2013), SFLA, harmony search 
algorithm (HSA) which was proposed by Geem et al. (2001), and artificial bee colony algorithm (ABCA) 
which was proposed by Karaboga et al. (2007). Twenty benchmark functions of CEC2017 test set are chosen in 
this paper, including nine unimodal functions, and nine multimodal functions, and two composition functions. 
Among them, P = 200, M = 20, n = 10, S = 30, T1 = 10, and T2 = 200.

The iterative results are shown in Figure 4 ~ Figure 23. The results show that, except for the 
optimization results of two multipeak functions f8 and f18, which are not ideal, the OPSFLA performs 
well in the convergence accuracy of the single peak function, multipeak function and composite 
functions f19 and f20. The OPSFLA overcomes the defect of slow convergence of the original SFLA.

Single Objective Optimization Application Experiment of Vehicle Routing Problem
The experiments are conducted on the following four algorithms OPSFLA, MSFLA, GSF2LA, and 
SFLA for single objective optimization of the vehicle routing problem. The shortest path value is 
adopted to be the fitness of single objective optimization. Four algorithms are obtained, including 
OPSFLA-MOVRP, shuffled frog leaping algorithm with memory for Capacity-Limited vehicle 
routing problem (MSFLA-CVRP), shuffled frog leaping algorithm based on global sharing factor 
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Figure 3. Flow chart of OPSFLA-MOVRP
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for capacity-limited vehicle routing problem (GSF2LA-CVRP), shuffled frog leaping algorithm for 
capacity-limited vehicle routing problem (SFLA-CVRP).

The RC101 data set from the Solomon website is adopted to test the performance of the CVRP 
using the above four algorithms. The RC101 data set could be available from http://web.cba.neu.
edu/~msolomon/problems.htm. Where p = 100, M = 10, n = 10, S = 8, T1 = 10, T2 = 30, n = 100, 
S = 100, K = 2 and K = 4, q

s
= 200. When K = 2, the optimized vehicle route results are shown in 

Table 1. When K = 4, the results are shown in Table 2.

Figure 4. Iterative results of f1

Figure 5. Iterative results of f2

http://web.cba.neu.edu/~msolomon/problems.htm
http://web.cba.neu.edu/~msolomon/problems.htm
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Multiobjective Optimization Application Experiment of Vehicle Routing Problem
Small-scale Data Application Experiment
The proposed OPSFLA-MOVRP algorithm is tested with small-scale data which is come from the 
research of Yan et al. (2015). The distance and demand between customers are set similar to the 

Figure 6. Iterative results of f3

Figure 7. Iterative results of f4
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research of Yan et al. (2015). Where p = 100, M = 10, n = 10, S = 8, T1 = 10, T2 = 100, n = 8, S = 
8, and K = 2. The optimized vehicle route results are shown in Figure 24 and Table 3.

Figure 8. Iterative results of f5

Figure 9. Iterative results of f6
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Large-Scale Data Application Experiment
In this test, to expand the data scale, the large-scale test set C202 data is used for the performance 
test. The C202 data set could be available from http://web.cba.neu.edu/~msolomon/problems.htm. 
Where p = 100, M = 10, n = 10, S = 100, T1 = 10, T2 = 80, n = 100, S = 100, K = 3 and K = 4, q

s

Figure 10. Iterative results of f7

Figure 11. Iterative results of f8

http://web.cba.neu.edu/~msolomon/problems.htm
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= 700. The optimized vehicle route is shown in Figure 25 ~ Figure 26. When K = 3, the route 
optimization results are shown in Table 4.

The results show that the OPSFLA-MOVRP algorithm reflects the good effect of multiobjective 
path optimization, whether it is small-scale data or large-scale standard test data. In the small-scale 
data experiment, five solutions meet the requirements of path optimization. As seen from figure 24, 

Figure 12. Iterative results of f9

Figure 13. Iterative results of f10
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multiple paths start and end with the distribution center after passing through three customers. In 
large-scale data experiments, when K = 3, the result is Pare = 4, and when K = 4, the result is Pare 
= 9. With the number of customers rising and the vehicle capacity adding, the number of multiple 

Figure 14. Iterative results of f11

Figure 15. Iterative results of f12
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solutions increases, as does the number of corresponding paths, showing the trend of multiple path 
optimization.

In conclusion, the two types of experiments results are summarized as follows:

Figure 16. Iterative results of f13

Figure 17. Iterative results of f14



Journal of Database Management
Volume 34 • Issue 3

17

First, the CEC2017 benchmark function experiment shows that the OPSFLA overcomes the 
defect of slow convergence of the original SFLA compared with other five algorithms.

Second, the small-scale data and large-scale standard test results show that the OPSFLA-MOVRP 
algorithm reflects the good effect of multiobjective path optimization compared with other three 
algorithms.

Figure 18. Iterative results of f15

Figure 19. Iterative results of f16
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As the CVRP problem is NP-hard problem, it is difficult to find the optimal solution within the 
polynomial time complexity. A novel framework of algorithm is proposed to solve capacity-limited 
vehicle routing problem. In the proposed origin oriented shuffled frog leaping algorithm strategy, the 
frog individuals gather near the origin with the maximum probability and in the area circle with the 

Figure 20. Iterative results of f17

Figure 21. Iterative results of f18
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frog leaping radius or frog oriented radius as the neighborhood. The negative value of the maximum 
entropy and the shortest total path length of the vehicle are selected as the fitness. The results show 
that OPSFLA-MOVRP algorithm has high robustness and reliability, and can still meet the actual 
needs of multiple customers under the condition of multiple vehicles.

Figure 22. Iterative results of f19

Figure 23. Iterative results of f20
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Table 1. Comparisons of the RC101 data set when K = 2

Algorithms Shortest Path Value Vehicle 1 Optimized Route Vehicle 2 Optimized Route

OPSFLA-MOVRP 616.90 83-75-57-19-91-89-22 11-5-42-80-69-12-71-88-98

MSFLA-CVRP 629.68 59-46-4-81-9-11-67-94 22-1-3-50-88-82-95-87

GSF2LA-CVRP 634.21 98-16-4-17-58-67-53-65-82 38-59-11-75-32-69-8-12

SFLA-CVRP 647.69 56-79-85-22-58-18-57-86-74 12-96-78-11-5-50-31-29

Table 2. Comparisons of the RC101 data set when K = 4

Algorithms Shortest 
Path Value

Vehicle 1 
Optimized 

Route

Vehicle 2 
Optimized 

Route

Vehicle 3 
Optimized Route

Vehicle 4 
Optimized 

Route

OPSFLA-MOVRP 1530.84 98-50-61-53-86-
78-13-22-15-41

68-99-8-74-43-
79-9-59-2-67

40-21-34-30-19-
63-62-29-77

85-16-11-3-75-
83-95-31

MSFLA-CVRP 1552.84 87-97-17-68-36-
89-85-57-65

12-58-16-27-34-
95-33-30-35-83

90-64-74-46-60-
75-28-21-53-98-
18-80

11-86-94-56-22-
26-38

GSF2LA-CVRP 1566.62
64-21-15-80-5-
87-53-36-92-
83-52

96-89-42-85-93-
94-25-44-6-17

23-76-97-73-49-
30-33-40-69-65

10-38-61-18-68-
75-95

SFLA-CVRP 1578.83 86-7-85-11-82-
45-90-50-8-3

95-36-49-34-
22-93-66

78-21-73-96-57-
62-87-24-23-48

38-26-46-13-97-
61-35-70-91-
68-55

Figure 24. Small-scale data vehicle route optimization curve

Table 3. Small-scale vehicle route optimization data

Pareto Solution Shortest Path Value Entropy Vehicle 1 Optimized Route Vehicle 2 Optimized Route

1 62.5 2.48 2-8-1 6-4-3

2 63.0 2.51 4-2-1 6-7-3

3 61.0 2.38 4-7-3 6-2-1

4 63.5 2.67 2-7-1 6-7-4

5 59.5 2.36 8-2-1 6-4-3
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CONCLUSION

Considering that the optimization performance is limited with improvement strategies in the 
improvement algorithm, a novel framework of algorithm is proposed to solve the CVRP, including 
three modules such as OPSFLA strategy, OPSFLA-MOVRP strategy and output module. And a 
new origin oriented shuffled frog leaping algorithm is proposed and applied into the CVRP path 
optimization problem. An origin oriented shuffled frog leaping vehicle routing multiobjective 
optimization algorithm is proposed. The improved idea comes from the no free lunch theory in the 
field of optimization research, discarding the inertial guidance of the original position of group search 

Figure 25. Large-scale data vehicle route optimization curve when K=3

Figure 26. Large-scale data vehicle route optimization curve when K=4
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and the limitation of step size. Two strategies, including the frog leaping radius strategy based on 
the original point and the frog oriented radius strategy based on the original point are proposed to 
improve the search strategy of shuffled frog jumping. In this way, the individual frog jumps into an 
area with (0,0) as the center and the individual step size as the radius. This increases the probability 
of gathering near the origin (0,0) and improves the search ability. The tests show that the proposed 
origin oriented shuffled frog leaping algorithm has good convergence performance, and the origin 
oriented shuffled frog leaping vehicle routing multiobjective optimization algorithm meets the 
requirements of multipath optimization. However, the results of two multipeak functions are not ideal 
of the proposed OPSFLA-MOVRP algorithm. In the future research, the improvement strategies will 
be further researched to make the algorithm more efficient. In addition, the method of deep learning 
can be considered in future research.
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Table 4. Large-scale vehicle route optimization data when K = 3

Pareto 
solution

Shortest 
path value Entropy Vehicle 1 

Optimized Route
Vehicle 2 

Optimized Route Vehicle 3 Optimized Route

Solution 1 2432.44 11.07
57-69-86-80-92-
66-90-62-82-1-11-
51-84-61-77-44

99-95-54-75-58-43-
41-56-78-22-55-31-
28-18-27-81-50-13

73-2-15-17-35-9-40-42-7-93-32-65-
76-97-85-25-39-21-33-53-74-63-29-
34-59-10-30-46-67-38-45

Solution 2 2289.81 9.60
72-64-83-50-45-
21-69-15-84-91-
52-80-79-36-51-24

70-67-76-68-32-33-
16-100-62-81-2-12-
4-20-3-71-77

28-14-10-22-46-86-87-88-73-74-93-40-
59-61-55-49-57-60-47-85-53-63-19-
11-94-9-98-44-56-54-13-43-82-78-66

Solution 3 2309.46 10.23
89-78-8-32-44-60-
31-1-39-28-35-34-
73-52-20-58-41

97-71-66-55-59-61-
70-64-79-62-53-
7-29-6

13-45-94-18-48-87-25-24-17-95-91-
26-30-33-43-36-65-37-69-47-46-23-
15-27-16-93-68-54-76-96-85-63-9-88

Solution 4 2336.31 11.01
22-50-70-71-49-
72-56-84-100-64-
41-63-83-99-66

98-58-77-45-68-61-
26-30-52-36-43-67-
55-73-42-88-9-89

85-7-15-93-20-25-5-14-69-65-18-27-
23-59-2-8-29-79-90-78-16-24-32-97-
46-82-86-60-44-6-39-54-91
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